
Title Escaping a grid by edge-disjoint paths

Author(s) Chan, WunTat; Chin, Francis YL; Ting, HingFung

Citation Proceedings Of The Annual Acm-Siam Symposium On Discrete
Algorithms, 2000, p. 726-734

Issued Date 2000

URL http://hdl.handle.net/10722/45612

Rights Creative Commons: Attribution 3.0 Hong Kong License

726

Escaping a Grid by Edge-Disjoint Paths*

W u n - T a t C h a n t F r a n c i s Y.L. C h i n t H i n g - F u n g T i n g t

Abstract

We study the edge-disjoint escape problem in grids:
Given a set of n sources in a two-dimensional grid, the
problem is to connect all sources to the grid boundary
using a set of n edge-disjoint paths. Different from
the conventional approach that reduces the problem to
network flow problem, we solve the problem by ensuring
that no rectangles in the grid contain more sources
than outlets, a necessary and sufficient condition for
the existence of a solution. Based on this condition, we
give a greedy algorithm which finds the paths in O(n 2)
time, which is faster than the previous approaches.
This problem has applications in point-to-point delivery,
VLSI reconfiguration and package routing.

1 I n t r o d u c t i o n

We study the edge-disjoint escape problem in grids,
which is defined as follows. The problem input is a
two-dimensional grid G and a set S of n sources in
G. Note tha t there may be more than one sources
in a vertex of G. The objective is to construct a set
of n edge-disjoint paths (called a solution) such that
there is a path connecting each source to the boundary
of G. See Figure 1 for an example. We say that
a problem is escapable if there is a solution to the
problem. In this paper, we present an O(n 2) time
algorithm which determines whether a given problem is
escapable. Based on this algorithm, we design another
O(n 2) time algorithm which finds a solution to the
problem. Throughout our discussion, we assume that G
has at most n rows and at most n columns, i.e., G has
O(n 2) vertices and edges. We can make this assumption
without loss of generality by a simple preprocessing
presented in [1].

The edge-disjoint escape problem is similar to the
escape problem, which is to determine whether or not
there are n vertex-disjoint paths connecting all sources
to the boundary (see the book by Cormen et al. [3]).
Finding disjoint paths in grids has applications in

research is partially supported by a Hong Kong RGC
grant 338/065/0022.

tDepartment of Computer Science and Information Systems,
The University of Hong Kong, Pokfulam Road, Hong Kong.
E-mail : { ~r~ than, chin, hf ting} @ c s i s. hku. hk

many real-world problems. The point-to-point delivery
problem [7,8] is to determine a set of disjoint "shipping"
paths matching the sources to destinations on the
boundary. The VLSI reconfiguration problem [10-12]
is to find a set of disjoint "compensation" paths which
connects the faulty processors in a processor array to
the healthy ones on the boundary. Another relevant
problem is the fanout routing problem in pin/ball grid
array packages [13, 14], which is to fan the array pins
out to the package boundary for further connection.

A straightforward approach to solve the edge-
disjoint escape problem reduces the problem to the
maximum flow problem in a unit capacity network.
The network can be constructed as follows. Given
G and 5, create a supersource that connects to ev-
ery source in 5 and a supersink that connects to ev-
ery boundary vertex of G, and then assign unit capac-
ity to every edge. A maximum flow in the network
corresponds to a solution to the edge-disjoint escape
problem. Using the maximum flow algorithm of Gold-
berg and Rao [5], we can solve the edge-disjoint escape
problem in O(~v/~min(IEI , JV13/2)) time for a network
hf = (V, E), or equivalently O(n 3) time because]El and
IVI are O(n 2) in the reduction. The time complexity
can be reduced to O([V] 4/3 log]VI), i.e., O(n s/a logn)
by applying the multiple sources and multiple sinks flow
algorithm of Miller and Naor [9] for planar network, to-
gether with the fast shortest-path algorithm for planar
graph by Henzinger et al. [6]. In view of the sparse-
ness of the n sources in the O(n 2) grid, an O(n 5/2) time
algorithm [1] was proposed that compresses the O(n 2)
grid to a graph with O(n 3/2) edges for finding the edge-
disjoint paths. Recently, the time complexity is further
improved to O(n 9/4) by an algorithm [2] applying the
layered network technique in the compressed grid.

To break through the O(n 9/4) barrier, we turn
to a different approach. The approach bases on a
simple observation that there are no solutions if there
exists an oversaturated region--a region in the grid
containing more sources than outlets. It turns out that
the absence of oversaturated regions is also sufficient for
the existence of a solution. To test for the absence of
oversaturated regions, we need only confine ourselves to
testing rectangles in the grid. However, testing if there
are any oversaturated rectangles can be time-consuming

727

since there are O(n 4) rectangles in the grid that may
need to be tested. Reducing the number of rectangles
to be tested is non-trivial. For example, a rectangle
having a small number of sources relative to the area of
the rectangle, i.e., sparse sources, could still have more
sources than outlets, and thus cannot be exempted from
testing. Moreover, although only the rectangles with
sources on all four boundaries need to be considered, it
still means O(n 4) rectangles to be tested.

In next section, we give an O(n 2) time algorithm to
determine if a problem is escapable, by detecting if there
are any oversaturated rectangles. The algorithm takes
advantage of some properties in the oversaturated rect-
angles and applies the disjoint set union data structure
to search the grid efficiently for the oversaturated rect-
angles. Section 3 focuses on the path-finding problem.
We adopt a greedy approach to extend the edge-disjoint
paths row by row. In each row, a test is carried out to
ensure that given the paths built up thus far a solution
still exists before moving on to the next row. If a sohi-
tion no longer exists, we made a mistake in the extension
of the paths in this row and should t ry again until we
find the appropriate extension. The key to being able to
solve the problem in O(n 2) time is performing the test
step in O(n) time and limiting the number of extension
attempts to O(n) in total. Section 4 gives an efficient
implementation of the approach and bounds the run-
ning t ime to O(n2).

2 D e t e r m i n i n g w h e t h e r a problem is e scap ab l e

Denote an instance of the edge-disjoint escape problem
by a pair (G, S) where G is an H x W grid and S is a
set of n sources in G with n /> max(H, W). Since there
may be more than one sources in a vertex of G, S (and
any s e t o f sources) can be represented by a multi-set
of vertices. The solution to (G, S) is a set of n edge-
disjoint paths where each of which starts from a source
in S and escapes G through a boundary vertex. The
maximum number of paths that can escape through a
boundary vertex v depends on the number of outlets
connecting to v. An outlet of G is an edge connecting a
(boundary) vertex in G to a vertex outside G (assuming
G is a subgraph of the infinite grid). In general, as
shown in Figure 1, at most two of the sources can escape
G through each corner vertex 1 and one through other
boundary vertices. In particular when H = 1 or W -- 1,
at most three of the sources can escape G through each
corner vertex and two through other boundary vertices.
We will discuss this special case in detail in Section 3.

1 W e c a n h a n d l e t h e c a s e w h e r e a t m o s t o n e s o u r c e c a n e s c a p e

t h r o u g h e a c h o f t h e f o u r c o r n e r s b y a d d i n g o n e a d d i t i o n a l s o u r c e

t o e a c h c o r n e r v e r t e x .

(~) denotes the vertex containing k sources

F i g u r e 1: An example showing 29 sources that escape
from an 8 x 10 grid.

In this section we present an O(n 2) time algorithm
which determines whether (G, S) is escapable. First, we
prove that the absence of oversaturated rectangles in
G is necessary and sufficient for (G, S) to be escapable.
Based on the distribution of the sources in G, we define
H sequences and transform the search of oversaturated
rectangles into finding n "maximum intervals" in these
sequences. Finally, we give a novel technique for finding
the maximum intervals.

2.1 N e c e s s a r y a n d sufficient condit ion. For any
two integers i and j with 1 ~< i ~ H and 1 ~< j ~< W,
let [i, j] denote the vertex of G in row i (from the top)
and column j (from the left). Given four integers t, b,
and r with 1 ~< t ~ b ~< H and 1 ~< £ ~ r ~< W,
a rectangle It, b; £, r] denotes the subgrid bounded by
row t and b, and column £ and r, i.e., the subgraph
induced by the set of vertices {[i,j]] t ~ i ~ b and

~ j ~ r}. For instance, G = [1, H; 1, W]. Let O(R)
be the set of outlets of the rectangle R. We say that
R is oversaturated (with respect to S) if the number of
sources inside R is more than IO(R)h and R is saturated
if the number of sources inside R equals IO(R)I. Note
that if there exists an oversaturated rectangle, then
(G, S) is not escapable. The following lemma asserts
that the reverse is also true.

LEMMA 2.1. If (G,S) is not escapable, there is an
oversaturated rectangle with respect to S in G.

Proof. Let G = (V, E). We create two vertices s and t,
and define a flow network Af = (V U {s, t}, E U Es U Et)
where Es = {(s,v) I v E S} and Et = {(u,t) I u E Y
and (u, w) is an outlet of G for some vertices w}. (Note
that both E~ and Et may be the multi-sets of edges.)
Every edge in Af has unit capacity.

728

As IS[= n, (G,$) is escapable if and only if
the value of the maximum flow from s to t in Af is
n. Given (G,S) is not escapable, the value of the
maximum flow, and hence the capacity of the minimum
cut, in J~f is smaller than n. Consider the minimum
cut M C of Af with most edges in Es. If we remove
M C from Af, G is decomposed into a number of
connected components. One of these components must
still connect to s (through some edges in E~) because
levi = n > IMCI. Let D be this component, C0(D) be
the set of outlets of D, and SD be the set of sources in
D. We must have [O(D)I < ISD]; otherwise, either
(M C - O (D)) U {(s,x) [x • So} is a cut with
less edges than M C for the case IO(D)] >]SD[, or
(M C - O(D)) U {(s, x) I x • SD} is another minimum
cut containing more edges in Es than M C for the
case [O(D)I = [SD]. Let R be the smallest rectangle
containing D, and SR be the set of sources in R. Since
[O(R)I ~< [O(D)l < [SDI <, [Sn[, R is oversaturated. []

As a result, determining whether (G, S) is escapable
can be reduced to finding whether there are any over-
saturated rectangles. In next two subsections we give
an O(n) t ime procedure to determine for a fixed integer
t, whether there are any oversaturated rectangles whose
top boundary is on row t. By repeating this procedure
for all t with 1 ~ t ~< H, we can determine whether
(G,S) is escapable in O(n 2) time. In our procedure
we will ignore those rectangles [t, b; g, r] which contain
no sources in their bot tom row b because, even if they
are oversaturated, we must have found some smaller
oversaturated rectangles It, b'; g, r] with b' < b and their
bot tom rows containing sources. This implies that we
only need to find for each vertex [b, hi containing sources
whether there are any oversaturated rectangles It, b; g, r]
whose bo t tom rows include [b, hi (i.e., g ~< h ~< r).

2.2 Oversaturated rectangles and m a x i m u m in-
t e rva l s . Given two fixed integers t and b, let Nh be the
number of sources in column h between row t and b in-
clusively (i.e., the number of sources in It, b; h, hi). Note
that [t ,b;g,r] has Nt + N~+I + . . . + Nr sources and
2 (b - t + l) + 2 (r - g + l) outlets. Thus, [t, b; g, r] is oversat-
urated if and only if (Nl - 2) + (Nt+ 1 - 2) + - . . + (N r - 2) is
greater than 2 (b - t + 1), which is a constant with respect
to t and b. Let Qb ---- (N1-2 , N 2 - 2 , . . . , N w - 2) . Define
the maximum interval of Qb containing the h-th element
to be the interval (Ni - 2, Ni+l - 2 , . . . , Nj - 2) where
i ~< h ~ j and (N i - 2) + (N i + I - 2) + - ' - + (N j - 2)
attains the maximum value.

FACT 2.1. I f (N i - 2, Ni+l - 2 , . . . , Nj - 2) is an interval
with its sum greater than 2(b - t + 1), then [t, b; i, j] is
an oversaturated rectangle.

The following lemma gives a condition for the exis-
tence of an oversaturated rectangle It, b; g, r] containing
[b, hi.

LEMMA 2.2. Given Qb and [b, h], there is an oversatu-
rated rectangle with top boundary on row t and bottom
boundary on row b and containing [b, hi if and only if
the sum of the maximum interval of Qb containing the
h-th element is greater than 2(b - t + 1).

In our procedure, we would not compute the sum
of an interval directly. Instead, we would reduce it to
finding the number of sources in a corresponding rect-
angle because after a preprocessing it can be computed
very efficiently, i.e., in constant time. Let s(t ,b;g,r)
denote the number of sources in a rectangle It, b; g, r].
Note tha t s(t, b; g, r) = s(1, b; 1, r) - s(1, t - 1; 1, r) -
s(1,b; 1 , g - 1) + s(1, t - 1; 1,g - 1). If we precompute
all the values s(1, b;1,r) for 1 ~< b ~< H and 1 ~< r ~< W
and store them in a table, we can compute s(t, b; g, r)
in constant time. By the definition of Qb, the sum
of an interval (Ni - 2, N~+I - 2 , . . . , Nj - 2) equal to
s(t, b; i , j) - 2(j - i + 1), which can also be computed in
constant time.

2.3 F i n d i n g m a x i m u m in t e rva l s . For notational
simplicity, let Qb = (ql ,q2,- .- ,qw) , i.e., qi = Ni - 2.
For any integer i with 1 ~< i ~< W, let ~ (i) denote
the smallest integer r ~> i such that qi + qi+l + "'" + qr
attains the maximum value. Similarly, £:(i) denotes the
largest integer g ~< i such that qe + q~+l +" " "+ qi attains
the maximum value. See Figure 2 for an example. Given
the values T~(i) and £:(i) for 1 ~< i ~< W, we can identify
for any integer h the maximum interval of Qb containing
qh as follows:

LEMMA 2.3. The maximum interval of Qb containing
qh is (q£(h) , ' ' ' ,qTC(h)).

Proof. (qi , . . . ,qj) is the maximum interval of Qb con-
taining qh if and only if the maximum interval of Qb
beginning from and ending at qh are (qh, . . . ,qj) and
(qi , . . . , qh) respectively. []

Before we show how to find the values T~(i) and/ : (i)
for Qb, we give some properties on the values T~(i). The
values £:(i) also have the similar properties.

a. T~(j) = T~(i) for i <<. j <<. T~(i);
b. n (j) >~ T~(i) for j >i i;

FACT 2.2. c. T ~ (i) = 7 ~ (i + l) i f (i C W and
~+l,<j,<n(~+l) qJ > 0),
otherwise, T~(i) = i.

Since the sequence of values 7~(i) for 1 ~< i ~< W is
non-decreasing, i.e., there may be consecutive repeating

729

T~(i) : 2 2 7 7 7 7 7 10 10 10
qi : 2 2 - 7 1 - 9 5 6 - 4 -1 2

£(i) : 1 1 1 4 4 6 6 6 6 6

F i g u r e 2: A sequence with its right-partition equal to
(2, 7, 10) and its left-partition equal (1, 4, 6).

values, we adopt a simple representation for the values
T~(i), the right-partition, that is the sequence of distinct
values among the values ~(i) . Let T~ -- (rl , r 2 . . . , ra)
be the right-partition where rj < r j+l for 1 ~< j ~< d - 1.
Given any integer i with 1 ~< i ~< W, we have

~(i) = r j fo r r j_1 < i ~ < r j a n d l ~ < j ~ < d

assuming ro = 0. Similarly, the left-partition is the
sequence of distinct values among the values £(i) .

Instead of computing each right-partition (and left-
partition) of Qb individually for each integer b with
t ~ b ~ H, we give a method to efficiently update the
right-partition of Q~ to the right-partition of Q~+x- The
left-partitions can be updated similarly. Let Qb+~ =
(q~,q2,--. ,q~v). Suppose there are k vertices which
contain sources in row (b + 1). Denote c~ < c~ <
. . . < Ck the columns of these vertices, then q~ > qe.
for 1 <. a <. k and q~ = qi elsewhere. We call
Po,P1, . . . ,Pk a refinement from Qb to Qb+~ where
Po = Qb, Pa = Qb+l, and Pa+l contains the same
sequence of elements as P~ except that the ca+~-th
element of Pa+y is q'~+l (instead of %.+1). For instance,
P~+I = (q~,... ,q~c~+,,qe~+l+l,... ,qw) . The update
from the right-partition of Qb to the right-partition of
Q~+I can be refined to k updates, which are from the
right-partition of P0 to that of P~, the right-partition of
P1 to that of P2, and so on.

Now we show how to update the right-partition T~ of
P~ to the right-partition ~ ' of Pa+l , for 0 ~< a ~ k - 1 .
Let P~ = (p~,p~,.. . ,Pw), P~+I = (P~,P~,... ,P~w),
and T~ = (rl, r2 , . . . , rd). Recall that p~ = Pi for 1 ~< i ~<
W except for i = ca+l where p '+~ > Pc.+~. Let ru =
~(ca+t) , and rx with x < y be the largest integer in T~
such that ~ +1.<'-<, Pj ~< 0. So ' > 0
mr x < i ~ y. In the following lemma, we further prove
that Y~i~<i<~ P~ > 0 for r~ + 1 < i 4 r~. Therefore,
7~(i) for r~ + 1 ~< i ~< ry are all the same (by Fact 2.2c).
Thus, we can update 7~ to ~ ' using r u and r~ as follows.

LEMMA 2.4. Let ry = T~(Ca+l) and rz with x < y be
the largest integer in ~ such that ~r~+~<j~<r~P~ <~
O. If rz exists, the right-partition T~' of Pa+l is
(r l , . . . ,r~,ry ,rd); otherwise, T~' is (ry ,rd).

Proof. Since p~ = Pi for ry + 1 ~ i ~ W , we
have 7~'(i) = T~(i) for ru ~ i ~ W. The values

ry,ry+l . . . ,ra are retained in T~'. In contrast, the
values rx+l , r~+2 , . . . , ru-x are removed in ~ ' . It is
because 7~'(i) = ry for rx + 1 ~< i ~ ry which can
be proved as follows. Since ~ (r x) = rx, T~(rz + 1) =
rz+l (by the definition of right-partition), and hence
:~'~r~+2~<i~<r~+l P~ /> ~r~+:~<i~<~.+l Pi > 0. Also, by the
definition of x, we have ~r~+~+l~<i~<~y P~ > 0. Thus

summing up the two terms, we have ~-'~r,+2~<i~<~ P~ > 0.
Also, as 7~'(ry) = ru, T~'(rx + 1) = ry (by Fact 2.2b).
Therefore, we have 7~'(i) = ry for rx + 1 ~< i ~< ru
(by Fact 2.2a). If rx exists, the values r l , r 2 , . . . ,r~
are also retained in T~'. Since)-']~r.+l~<i<n'(~+l)P~ < 0,
T~'(rz) = rz (by Fact 2.2c). For 1 ~< i ~< r~, sincep~ = pi
and T~(rx) = r~, we have T~'(i) -- T~(i), and thus the
values r l , r2,. • • , r~ are retained. []

R e m a r k : Recall that we do not compute the
sums of intervals directly but reduce it to finding the
numbers of sources in the corresponding rectangles.
For that reason, we may not refine an update from
the right-partition of Qb to tha t of Qb+l to exactly k
updates in the refinement, but less than k updates. For
example, if c l , c2 , . . . ,ci are all less than or equal to
T~(cl), we update the right-parti t ion of P0 directly to
that of Pi because we can only compute the sum of
(q j ,q j+l , . . . ,q~(c,)) in Qb+l where T~(j - 1) = j - 1
and T~(j) = T~(cl), by finding the number of sources in
It, b+ 1; j , n (c l)] .

Our procedure starts from a sequence Qt-1 =
(- 2 , - 2 , . . . , - 2) which represents tha t there is no
source in each column. Its right-partition is
(1, 2 , . . . , W). From the right-parti t ion of Qt-1, we can
construct the right-partition of Qt through the updates
in the refinement defined above. Consequently, our pro-
cedure computes the right-parti t ion of Qb for t ~< b ~< H.

Now, we show that our problem of computing the
right-partitions of Qb for t ~< b ~< H can be transformed
to a special case of the disjoint set union problem
proposed by Gabow and Tarjan [4]. This special case
also support the FIND and UNION operations as in
the general case, but the UNION operation here can
only combine two sets with "special relation". For
example, when the sets can be arranged in a line, the
UNION operation only combine two adjacent sets. The
transformation can be describe as follows. Let all the
integers i for r j -1 + 1 ~< i ~< r j be represented by a set
denoted by r j . The operation of determining the value
7~(i) is transformed to finding the set representing i.
An update of the right-partit ion in the refinement is
transformed to a series of "adjacent" sets unions, i.e.,
the unions of sets r~, r ~ - l , . . . , a~d r~+l. Since one set
is deleted in one UNION operation, the total number of
UNION operations is less than W. The total number

730

of FIND operations is no more than n because for each
vertex containing the sources we only need to locate the
set that contains the vertex once. Since this disjoint
set union problem can be solved in time linear to the
number of FIND and UNION operations [4], our problem
of computing right-partitions and left-partitions can be
solved in O(W + n), or O(n) time.

LEMMA 2.5. Procedure OVERSAT(R, SR) (in Algo-
rithm 1) runs in O(ISRI) time.

The procedure which finds if there are any oversat-
urated rectangles It, b; ~, r] in a given rectangle R with
a set of sources SR is shown in Algorithm 1. This pro-
cedure can be called, for each R -- It, H; 1, W] with
1 ~< t ~ H, to find if there are any oversaturated rect-
angles in G. Hence, we can determine whether (G, S) is
escapable in O(n 2) time.

Input: R is a rectangle [t, H; 1, W] and SR is a
set of sources in R;
Output: A set of oversaturated rectangles
[t,b;~,r] for t ~< b ~< H and 1 ~< ~ ~< r ~ W;

/*Qi = (ql, q2,... , qw) where qj + 2 is the num-
ber of sources of SR in [1,i;j,j].*/
Let Qt-1 = (- 2 , - 2 , . . . , - 2) and both
the right- and left-partitions of Qt-1 be
(1 ,2 , . . . ,W);
for b ~ - t t 0 H d o

Update the right- and left-partitions of
Qb-1 to those of Qb;
fo reach vertex [b, h] containing sources do

~ Output [t, b; L:(h), T~(h)] if it is oversat-
urated;

A l g o r i t h m 1: OVERSAT(R, SR)

3 Finding the paths
Assume (G, S) is escapable. In this section we present
an algorithm which finds a solution to (G, S). Let F
denote the set of sources in row 1 and Sl (s2 ~< -. .
s~ denote the sequence of columns where the sources
in F axe located, i.e., F = {[1,si] [1 ~ i ~< /3}.
Roughly speaking, our algorithm solves the problem
by solving its two subproblems, ([1, 1; 1, W], F) and
([2, H; 1, W], $ - F). Obviously, the solutions to these
two subproblems affect each other. In the following,
we give the condition on the solutions to the two
subproblems such that they do not conflict with each
other. Then we show how to combine the two solutions
to form a solution to (G, S).

3.1 D iv id ing t h e p r o b l e m . We represent a solu-
tion to ([1, 1; 1, W], F) by a mapping which stores the
columns where the sources in F escape [1, 1; 1, W]. For
a mapping a = (a (1) , a (2) , . . . ,a(j3)), the sources in
[1, si] escapes [1, 1; 1, W] through [1, a(i)]. Moreover,
we assume a(i) <~ a (i+ 1) for 1 ~ i ~< / 3 - 1. Since
there are three outlets connecting to each of [1, 1] and
[1, W], and two outlets to other vertices, a satisfies the
following conditions:

{ No more than three a(i) 's have the } s a m e value 1;

(3.1) no more than two a(i) 's have the
same value j , for 2 ~< j ~< W - 1;

no more than three a(i) 's have the
same value W.

Note that if the path of the first source in F
escapes through [1, 1] horizontally, and similarly if the
path of the last source in F escapes through [1, W]
horizontally, both paths will not conflict with any
solution to ([2, H; 1, W], S - F). Thus, without loss of
generality, we assume for all mappings a,

a(1) = 1 and a(/3) = W.

Moreover, since the paths must be edge-disjoint, we can
assume that the path starting at [1, si] do not escape on
the left of [1, si-1] nor on the right of [1, Si+l]. Hence,
for 2 ~< i <~/3- 1 we have

(3.2) si-1 <<. a(i) <<. Si+l.

On the other hand, we can determine a solution to
([1,1;1, W],F) by a given mapping. Although the
mapping does not specify whether a path starting from
the source in [1, si] escapes through [1, a(i)] upwards or
downwards, we assume the path always goes upwards
whenever possible, i.e., when i = 2 or a(i) ¢ a(i - 1). In
the rest of the paper, finding a solution to ([1, 1; 1, W], F)
is always referred to finding a mapping (satisfying
the above conditions). Figure 3 shows an example
on a solution to ([1, 1; 1, W], F) and the corresponding
mapping.

(~) denote the vertex containing k sources

F i g u r e 3: A solution to ([1, 1; 1,10],F). The corre-
sponding mapping is (1, 1, 2, 4, 5, 7, 7, 8, 8, 10).

Given any mapping a to ([1, 1; 1, W], F), we present
a condition that guarantees the existence of a conflict-
free solution to ([2, H; 1, W] , S - F), i.e., the solution

731

to ([2, Hi 1, W], S - F) that can be combined with the
solution to ([1, 1; 1, W], F) to form a solution to (G, S).
In fact, the condition depends on whether the problem
instance ([2, H; 1, W], S~U (S - F)) is escapable where

s~ = {[2, a(i)] 12 ~ i ~< fl - 1}.

Obviously, a solution to ([2, H; 1, W], S~ U (S - F))
contains a solution to ([2, H; 1, W], S - F). The set of
extra sources Sa, called induced sources, ensures that
such solution to ([2, H; 1, W], S - F) are compatible with
the solution to ([1, 1; 1, W], F) induced by a.

Denote T~ = S~ U (S - F). If ([2,H;1, W],T~)
is escapable, we can combine the solution to
([2, H; 1, W], S - F) with the solution to ([1, 1; 1, W], F)
induced by a to form the solution to (G, S).

LEMMA 3.1. Given a mapping a and a solution to
([2, H; 1~ W], T~), we can construct a solution to (G, S)
in O (W) time.

Proof. The construction is done by extending the paths
in both the solution to ([1, 1; 1, W], F) induced by
and the solution to ([2, H; 1, W], S - F) included in the
solution to ([2, H; 1, W],Ta). We perform two types
of path extension: to extend the paths which escape
downwards through [1, j] towards [2, j] in the solution
to ([1, 1; 1, W], F), and to extend the paths which escape
upwards through [2, k] towards [1, k] in the solution to
([2, H; 1, W], S - F). First, if a path escapes through
[1,j] towards [2,j] in the solution to ([1, 1; 1,H], F),
we have [2,j] E Sa, and we need to extend this path
from [1,j] to [2,j] and then to the boundary of G. In
fact, the extension from [2,j] is already done by the
path starting from the induced source in [2,j] in the
solution to ([2, H; 1, W], Ta). Second, in the solution
to ([2, H; 1, W], S - F) if a path escapes through [2, k]
towards [1,k], we need to extend the path to [1, k].
The extension is trivial when there are no other paths
escaping through [1, k] toward [0, k] (assuming [0, k] is
in the infinite grid) in the solution to ([1, 1; 1, W], F).
Otherwise, there is an induced source in [2, k]. In that
case, we assume the path which escapes through [2, k]
towards [1, k] indeed starts from the induced source and
we can discard the path. []

The above lemma prove that the existence of an
escapable ([2, H; 1, W], -r~) is a sufficient condition for
(G, S) to be escapable. In the following, Lemma 3.2
proves that the condition is also necessary for (G, S) to
be escapable.

LEMMA 3.2. I f (G,$) is escapable, then there exists
a mapping cr for F such that ([2, H; 1, W], T~) is es-
capable.

Proof. In a solution to (G, S), consider the paths start-
ing from the sources in F. By the columns from which
the paths escape [1, 1; 1, W], we obtain a sequence of in-
tegers which form a mapping a. However, a thus formed
does not guarantee an escapable ([2, H; 1, W], T~). This
is because the paths are not unique due to their edge-
disjointness. (See .Figure 4 for an example.) In order to
find the a with an escapable ([2, H; 1, W], T~), we have
to ensure that if a path p starting from a source in F es-
capes through [1, j] toward [0, j], the edge ([2, j], [1, j])

(a)

(b)

i ! A saturated rectangle J
(~) denotes the vertex containing k sources

F i g u r e 4: The. sources escape from an 8 x 10 grid.
(a) The paths starting from the sources on row 1 are:
([1, 1]), ([1, 2]), ([1, 7] -+ [1, 6]), ([1, 7]), ([1, 10]). Thus we
obtain a mapping a -- (1, 2, 6, 7, 10). Since the rectangle
[2, 6; 4, 9] is saturated with respect to S, it is oversatu-
rated with respect to T~, and hence the problem in-
stance ([2, 8; 1, 10], T~) is not escapable. (b) The paths
starting from the sources on row 1 are: ([1, 1]), ([1, 2] -+
[1, 1]), ([1, 7] ~ [1, 6] - + . . . - ~ [1, 2]), ([1, 7] --+ [1,8] --+
. . . --+ [1, 10]), ([1, 10]). Thus we obtain a mapping
a -- (1, 1, 2, 10, 10) and an escapable problem instance
([2, 8; 1,10],

732

is not used by any path. (If a path starting from a
source in F entered row 2 through column j , the edge
([2, 1], [1,j]) surely will not be used by any path.) This
can always be done because if there is a path q using the
edge ([2,j], [1,j]), the paths p and q can be switched at
[1,j], i.e., path p will follow the remaining part of path
q to escape [1,1; 1, W] at some other column. If nec-
essary, the path can be switched more than once until
the path escapes [1, 1; 1, W] at a column k where edge
([2, k], [1, k]) is not used by any path.

We show that ([2,H; 1,W],T~) is escapable as
follows. In the solution to (G, S), we already have the
paths starting from the sources in S - F to the boundary
of [2, H; 1, W]. The main point is how we can construct
the paths from the induced sources to the boundary
of [2, H; 1, W]. Consider an induced source in [2, a(i)],
if it is due to a path p' starting from a source in F
entering row 2 through [2, a(i)], the path starting from
this induced source follows the remaining part of path
p' at [2, a(i)] to the boundary of [2, H; 1, W]. If the
induced source in [2, a(i)] is due to a path starting from
a source in F escapes through [1, a(i)] towards [0, a(i)],
as there are no paths in the solution to (G, S) using the
edge ([2, a(i)], [1, a(i)]) (by the property of a), the path
starting from this induced source can escape through
[2, a(i)] towards [1, a(i)]. D

Combining Lemmas 3.1 and 3.2, we have the fol-
lowing theorem.

THEOREM 3.1. (G, S) is escapable if and only if there
is a mapping a for F such that ([2, H;1, W], T~) is
escapable.

DEFINITION 3.1. A mapping a for F is feasible if T~ is
escapable.

In our algorithm we will find a feasible mapping for
F, in particular, the "smallest" feasible one. To check
whether a mapping a is feasible, we can test whether
([2, H; 1, W], Ta) is escapable. Since ([2, H; 1, W], S - F)
is escapable and the induced sources are added to
row 2 only, ([2,H; 1,W],T~) is escapable if and only if
OVERSAW(f2, H; 1, W], T~) (in Algorithm 1) outputs no
oversaturated rectangle. After the mapping a is found,
we will solve ([2, H; 1, W], T~) recursively. Then, we
combine the solution to ([1, 1; 1, W], F) and the solution
to ([2, H; 1, W], Tz) to form the solution to (G, S).

3.2 Finding the smal les t feasible mapp ing . A
mapping a is smaller than another mapping A, denoted
by a < A, if there exists an integer i with 1 ~ i ~ ~ - 1
such that a(j) = A(j) for 1 ~ j ~< i - 1 and a(i) <)~(i).
In addition, we say a ~ ~ if a <)~ or a(j) =)~(j) for

1 ~ j ~< 8. The smallest feasible mapping (SFM) is the
smallest mapping among the feasible mappings.

Our algorithm composes a number of testing map-
ping and checks their feasibilities one by one. The first
testing mapping a is the smallest mapping. If a is not
feasible, we compose the next testing mapping a ~ based
on a such tha t a < a ~ ~< SFM. Such a ~ can be con-
structed based on one of the oversaturated rectangles
with respect to T~ (as in Definition 3.2). This process
(called trial) is repeated until a feasible mapping (the
SFM) is found .

DEFINITION 3.2. Let R = [2, b; ~,r] be an oversaturated
rectangle with respect to T~ and 5R be the difference
between the number of sources of Ta in R and the
number of outlets IO(R)I. In order to prevent R
from oversaturated, we have to construct a new testing
mapping such that the last ~R induced sources in R are
introduced to the right of column r. We define 0 the
threshold of R, for 1 <~ 0 <~ ~ - 1, to be the maximum
number of induced sources that can be retained to the
left of column r, without making R oversaturated. To
be precise, 0 is defined by the condition a(O + 5R) <~ r <
~(0 + ~R + 1).

Hence, a ' is constructed by assigning a~(i) = a(i)
for 1 ~<i ~< 0, a ' (0 + l) = r + l , a n d a ' (0 + l) , a ' (0 +
2) , a ' (~ - 1) to be the smallest sequence of values
satisfying Conditions (3.1) and (3.2). Lemma 3.3 shows
that the SFM can be obtained in a finite number of
trials.

LEMMA 3.3. a ~ is a mapping and a < a ~ ~ SFM.

Proof. First, we prove that a' is a mapping. Clearly, a'
satisfies Condition (3.1). Moreover, if so ~< a'(O + 1)
se+~, a ~ satisfy Condition (3.2). Since so ~< a(0 + 1) <
r + 1 = a'(O + 1), we shall prove that s0+2 >/ r + 1.
Let R ~ = [2, U;~ , r] be the oversaturated rectangle
with respect to T~ such that the threshold 0' of R t is
no larger than 0 and l ~ is the smallest (or leftmost)
possible. Consider the leftmost induced source [2, a(k)]
in R', i.e., a (k - 1) < ~' ~< a(k). We claim that
sk-1 >~ ~. Suppose on the contrary that Sk-1 < ~.
By Condition (3.2), the smallest possible value of a(k)
is Sk-1, but now a(k) >~ e' > Sk-1. Therefore, either
there is a saturated rectangle R" with respect to T~ with
its right boundary on column a(k) - 1, or [2, a(k) - 1]
already contains two induced sources, i.e., a(k - 2) =
a (k - 1) = a (k) - I = e ' - l . In the former case, the
smallest rectangle containing both R" and R ~ is also
oversaturated. In the latter case, [2, b'; ~ - 1,r] is also
oversaturated. In both cases, we have a contradiction to
R' that we obtain an oversaturated rectangle with the

733

threshold no larger than 0 and the right boundary on
column r, but its left boundary on the left of column ~.
Thus, we prove our claim that Sk-1 >- ~. Note that if
sk-1 >. ~' and so+2 ~< r and [2, b'; g',r] is oversaturated,
then [1, U; ~, r] is oversaturated with respect to S which
is a contradiction. Hence, we prove that so+2 >~ r + 1
and a ~ is a mapping.

Second, we show that a < a ~ (SFM. Obviously,
we have a < a ~. Now we prove that a ~ ~< SFM. If SFM
< a ~, there is an integer i with 1 (i ~< ~ - 1 such that
SFM(j) = a'(j) for 1 <~ j <~ i - 1 and SFM(i) < a'(i).
If i ~< 0, it contradicts to a < SFM. If i = 0 + 1, R is
oversaturated with respect to TSFM- If 0 -t- 2 ~< i ~< B,
the SFM violates Conditions (3.1) or (3.2). [:]

By the brute force implementation of this approach,
we may need O(W) trials, O(nW) time for an SFM, and
hence O (n H W) or O(n 3) t ime for the SFMs in all rows.
In next section, we give a more efficient implementation
which improves the O(n 3) bound to O(n2).

4 An efficient i m p l e m e n t a t i o n

Recall the flow of our algorithm. Given the problem
instance ([1, H; 1, W], S), we reduce it to another prob-
lem instance ([2, H; 1, W], T ~) where A~ is the SFM for
row 1, and we solve ([2,H; 1, W], T ~) recursively. Let
([x, H; 1, W], Ux) for 1 ~< x ~< H denote all problem in-
stances handled by our algorithm. In particular, UI = S
and U2 = T~a. Note that it takes a number of trials to
check the feasibility of the testing mappings in each row.
Given one of these trials, we say it is a successful trial
if the testing mapping is feasible; otherwise, it is a fail
trial. Obviously, there is only one successful trial for
a row, and totally H over all rows. However, by the
brute force approach in previous section, the number
of fail trials over all rows is O(n2). In order to reduce
the number of fail trials to O(n), for every row x we
compose a proper first testing mapping for row x in the
problem instance (Ix, H; 1, W], Uz) by considering a set
of saturated rectangles (with respect to U~) having their
top boundaries on row x.

Let 3)~ = {R4 = Ix, bi; ~i, ri]} be a set of saturated
rectangles with respect to U~. (We will show how
to obtain ~z in next paragraph.) Below, we show
that by a given Yx how to compose the first testing
mapping for row x in ([x, H; 1, W], U~). Denote F' =
{[x, tx], [x, t2] , . . . , Ix, t~]} the sources of U~ in row x.
We compose the first testing mapping/~ by the smallest
mapping for F' satisfying the following requirement. For
each tj, if tj ~< ri < tj+l for some R4 in yx, we have
ll(tj) = ri + 1. (If there are more than one ri satisfying
the condition t i <~ ri < tj+l, take the largest ri.)
This initialization step avoids most of the fail trials.

It is because if #(tj) <~ ri, [x ÷ 1, bi; ~i, ri] would be
oversaturated with respect to the sources including:the
sources of S on or below row x + 1 and the induced
sources by # on row (x + 1), hence ~u is not feasible.
The reason to ass ign/ / (t j) = r~ + 1 is that since P~ is
saturated, there must be a path escaping R4 through
the outlet ([x, ri],[x, ri + 1]) of Ri. Without loss of
generality, we assume tha t the path starts from the
rightmost source in row x of Ri, which is the source
in [x, tj] satisfying the condition tj ~ ri < tj+l.
Note that similar requirement is needed for the left
boundaries of R4. However, because we are testing from
the smallest mapping to the smallest feasible mapping,
these requirement is satisfied automatically.

We find the rectangles in Yz, for 2 ~< x ~ H, by the
following methods. Note that we do not aim at finding
all saturated rectangles (with respect to U~) with top
boundary on row x but we find a set Yx such that
we can bound the number of fail trials according the
initialization of first testing mappings above.

1. Consider a fail trial on a testing mapping a for
row (x - 1). Let Va be the set of sources including
the sources of S on or below row x and the induced
sources by a. As a is not feasible, there exists
an oversaturated rectangle R* having the smallest
threshold O* among the oversaturated rectangles
with respect to V~. In the efficient implementation,
we construct the next testing mapping cr ~ based on
R*. Since R* is saturated with respect to Va, and
M x - z (i) = a'(i) for 1 ~< i ~< 0* where M x - 1 is th~
SFM for row (x - 1), we have R* saturated with
respect to U~. We add R* to J)z-

2. Consider each saturated rectangle Ix - 1, b; ~,r] in
Y~-I. If b >t x, the rectangle Ix, b; £, r] is saturated
with respect to Uz and hence are added to Yz.

With the initialization of the first testing mapping
in each row and the construction of subsequent testing
mappings based on the smallest threshold, we bound
the total number of fall trials by n (See Lemma 4.1).
Therefore, the total t ime for all trails over all rows is
O(n2).
LEMMA 4.1. Let ~ be the set of saturated rectangles
obtained after the fail trials over all rows (in method I).
We have [~l <. n.

Proof. The lemma is proved by showing (1) every
rectangle in ~ contains at least one source of S on
its right boundary, and (2) the right boundary of a
rectangle in ~ does not overlap with the right boundary
of any other rectangles in G.

Consider a rectangle R E G. Since R is saturated,
it contains at least two sources on each of its four

734

boundaries, e.g., the right boundary. The worry is that
these sources are all induced sources in the top-right
corner vertex of R. However, the top-right corner vertex
of R must contain no more than one induced source
because R was once oversaturated in a trial and in next
trial at least one of the rightmost induced sources in R
is "shifted" out of the right boundary. Therefore, the
right boundary of R contains at least one source of S.

Suppose there are two rectangles R1 = [tl, bl;/1, r]
and R2 = [t2, b2; ~2, r] in ~ such that they overlap on
column r, i.e., t l ~ t2 ~< bl (or t2 ~< tl ~< b2 but we
assume the former one). However, as both rectangles
are having the same right boundary, if tl = t2, either
one of them is not an oversaturated rectangle having the
smallest threshold. Hence we assume tl < t2. In the
following, we show tha t we can find an oversaturated
rectangle in [t2 - 1 , H ; 1 , W] with respect to Ut2-1,
which is a contradiction. By method 2, as [tl, bl; el, r]
is saturated, we know that It2 - 1, bl ; /1,r] is also
saturated. Thus, according to the initialization of the
first testing mapping for row (t2 - 1), the rightmost
source on the left of column r, say in [t2 - 1, s], would be
assigned to the right of column r. Let a be the mapping
for row (t2 - 1) in which we obtain the oversaturated
rectangle/ /2, and 8 be the threshold of R2. Denote U'
the sources including the sources of S on or below row t2
and the induced sources by a. Let R' = It2, b';~', r] be
the oversaturated rectangle with respect to U' such that
the threshold 8' of R* equals 8 and *' is the smallest (or
leftmost) possible. Consider the leftmost ~ource on the
right of column ~', say in It2 - 1, s']. This source would
be assigned to the left of column ~' in a. This can
be proved in a way similar to the proof of Lemma 3.3.
Consider the rectangle R" = It2 - 1, b'; l ' , r]. Since the
rightmost source It2 - 1, s] in R" is assigned to the right
of column r, the leftmost source It2 - 1, s'] in R" is
assigned to the left of column ~' and R' = [t2,U;~',r]
is still oversaturated with respect to U', thus we show
that R" is oversaturated with respect to Ut2-1. [:]

5 C o n c l u s i o n

We have solved the edge-disjoint escape problem by
giving an algorithm to detect if the solution exists and
another algorithm to find a set of edge-disjoint paths
which connects all n sources to the grid boundary in
O(n 2) time. We can also solve the (vertex-disjoint)
escape problem by following the same framework in
this paper and adopting the concepts of tilted row,
tilted column and tilted rectangle as given in [1]. In
particular, we show that the absence of oversaturated
tilted rectangles is a necessary and sufficient condition
for the existence of a solution to the escape problem.
Using a similar approach shown in this paper, we can

also find the vertex-disjoint paths connecting all n
sources to the grid boundary in O(n 2) time.

R e f e r e n c e s

[1] W.-T. CHAN AND F. Y. L. CHIN, Efficient algorithms
for finding maximum number of disjoint paths in grids,
J. Algorithms, (to appear). (A preliminary version of
this paper appeared in SODA'97.).

[2] W.-T. CHAN, F. Y. L. CHIN, AND H.-F. TING, A
faster algorithm for finding disjoint paths in grids, in
Algorithms and Computation, 10th International Sym-
posium, Lecture Notes in Computer Science, Springer,
1999. To appear.

[3] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST,
Introduction to Algorithms, MIT Press, Cambridge,
MA, 1991.

[4] H. N. GABOW AND R. E. TARJAN, A linear-time
algorithm for a special case of disjoint set union, J.
Comput. System Sci., 30 (1985), pp. 209-221.

[5] A. V. GOLDBERG AND S. PLAO, Flows in undirected
unit capacity networks, in 38th Annual Symposium on
Foundations of Computer Science, 1997, pp. 32-34.

[6] M. R. HENZINGER, P. KLEIN, S. RAO, AND S. SUB-
RAMANIAN, Faster shortest-path algorithms for planar
graphs, J. Comput. System Sci., 55 (1997), pp. 3-23.

[7] J. M. Y. LEUNG, W. L. MAGNANTI , AND V. SINGHAL,
Routing in point-to-point delivery systems: Formula-
tions and solution heuristics, Transportation Sci., 24
(1990), pp. 245-260.

[8] C.-L. LI, S. T. McCORMICK, AND D. SIMCHI-LEvI,
The point-to-point delivery and connection problems:
complexity and algorithms, Discrete Appl. Math., 36
(1992), pp. 267-292.

[9] G. L. MILLER AND J. S. NAOR, Flow in planar graphs
with multiple sources and sinks, SIAM J. Comput., 24
(1995), pp. 1002-1017.

[10] V. P. P~OYCHOWDHURY AND J. BRUCE, On finding
non-intersecting paths in grids and its application in
reconfiguring VLSI /WSI arrays, in Proceedings of the
First Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 1990, pp. 454-464.

[11] V. P. ROYCHOWDHURY, J. BRUCK, AND T. KAILATH,
Efficient algorithms for reeonfiguration in VLSI/WSI
arrays, IEEE Trans. Comput., 39 (1990), pp. 480-489.

[12] T. A. VARVARIGOU, V. P. P~OYCHOWDItURY, AND
W. KAILATH, Reconfigurating processor arrays using
multiple-track models: The 3-track-l-spare-approach,
IEEE Trans. Comput., 42 (1993), pp. 1281-1292.

[13] M.-F. Yu AND W. W.-M. DAI, Pin assignment and
routing on a single-layer pin grid array, in Proceedings
of 1st Asia and South Pacific Design Automation
Conference, IEEE, 1995, pp. 203-208.

[14] - - , Single-layer fanout routing and routability anal-
ysis for ball grid arrays, in Proceedings of IEEE/ACM
International Conference on Computer-aided Design,
1995, pp. 581-586.

