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Escaping a Grid by Edge-Disjoint Paths* 

W u n - T a t  C h a n  t F r a n c i s  Y.L.  C h i n  t H i n g - F u n g  T i n g  t 

Abstract  

We study the edge-disjoint escape problem in grids: 
Given a set of n sources in a two-dimensional grid, the 
problem is to connect all sources to the grid boundary 
using a set of n edge-disjoint paths. Different from 
the conventional approach that  reduces the problem to 
network flow problem, we solve the problem by ensuring 
that no rectangles in the grid contain more sources 
than outlets, a necessary and sufficient condition for 
the existence of a solution. Based on this condition, we 
give a greedy algorithm which finds the paths in O(n 2) 
time, which is faster than the previous approaches. 
This problem has applications in point-to-point delivery, 
VLSI reconfiguration and package routing. 

1 I n t r o d u c t i o n  

We study the edge-disjoint escape problem in grids, 
which is defined as follows. The problem input is a 
two-dimensional grid G and a set S of n sources in 
G. Note tha t  there may be more than one sources 
in a vertex of G. The objective is to construct a set 
of n edge-disjoint paths (called a solution) such that  
there is a path connecting each source to the boundary 
of G. See Figure 1 for an example. We say that  
a problem is escapable if there is a solution to the 
problem. In this paper, we present an O(n 2) time 
algorithm which determines whether a given problem is 
escapable. Based on this algorithm, we design another 
O(n 2) time algorithm which finds a solution to the 
problem. Throughout our discussion, we assume that  G 
has at most n rows and at most n columns, i.e., G has 
O(n 2) vertices and edges. We can make this assumption 
without loss of generality by a simple preprocessing 
presented in [1]. 

The edge-disjoint escape problem is similar to the 
escape problem, which is to determine whether or not 
there are n vertex-disjoint paths connecting all sources 
to the boundary (see the book by Cormen et al. [3]). 
Finding disjoint paths in grids has applications in 
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many real-world problems. The point-to-point delivery 
problem [7,8] is to determine a set of disjoint "shipping" 
paths matching the sources to destinations on the 
boundary. The VLSI reconfiguration problem [10-12] 
is to find a set of disjoint "compensation" paths which 
connects the faulty processors in a processor array to 
the healthy ones on the boundary. Another relevant 
problem is the fanout routing problem in pin/ball grid 
array packages [13, 14], which is to fan the array pins 
out to the package boundary for further connection. 

A straightforward approach to solve the edge- 
disjoint escape problem reduces the problem to the 
maximum flow problem in a unit capacity network. 
The network can be constructed as follows. Given 
G and 5, create a supersource that  connects to ev- 
ery source in 5 and a supersink that  connects to ev- 
ery boundary vertex of G, and then assign unit capac- 
ity to every edge. A maximum flow in the network 
corresponds to a solution to the edge-disjoint escape 
problem. Using the maximum flow algorithm of Gold- 
berg and Rao [5], we can solve the edge-disjoint escape 
problem in O( ~v/~min(IEI ,  JV13/2)) time for a network 
hf  = (V, E), or equivalently O(n 3) time because ]El and 
IVI are O(n 2) in the reduction. The time complexity 
can be reduced to O([V] 4/3 log]VI), i.e., O(n s/a logn) 
by applying the multiple sources and multiple sinks flow 
algorithm of Miller and Naor [9] for planar network, to- 
gether with the fast shortest-path algorithm for planar 
graph by Henzinger et al. [6]. In view of the sparse- 
ness of the n sources in the O(n 2) grid, an O(n 5/2) time 
algorithm [1] was proposed that  compresses the O(n 2) 
grid to a graph with O(n 3/2) edges for finding the edge- 
disjoint paths. Recently, the time complexity is further 
improved to O(n 9/4) by an algorithm [2] applying the 
layered network technique in the compressed grid. 

To break through the O(n 9/4) barrier, we turn 
to a different approach. The approach bases on a 
simple observation that  there are no solutions if there 
exists an oversaturated region--a region in the grid 
containing more sources than outlets. It turns out that  
the absence of oversaturated regions is also sufficient for 
the existence of a solution. To test for the absence of 
oversaturated regions, we need only confine ourselves to 
testing rectangles in the grid. However, testing if there 
are any oversaturated rectangles can be time-consuming 
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since there are O(n 4) rectangles in the grid that  may 
need to be tested. Reducing the number of rectangles 
to be tested is non-trivial. For example, a rectangle 
having a small number of sources relative to the area of 
the rectangle, i.e., sparse sources, could still have more 
sources than outlets, and thus cannot be exempted from 
testing. Moreover, although only the rectangles with 
sources on all four boundaries need to be considered, it 
still means O(n 4) rectangles to be tested. 

In next section, we give an O(n 2) time algorithm to 
determine if a problem is escapable, by detecting if there 
are any oversaturated rectangles. The algorithm takes 
advantage of some properties in the oversaturated rect- 
angles and applies the disjoint set union data  structure 
to search the grid efficiently for the oversaturated rect- 
angles. Section 3 focuses on the path-finding problem. 
We adopt a greedy approach to extend the edge-disjoint 
paths row by row. In each row, a test is carried out to 
ensure that  given the paths built up thus far a solution 
still exists before moving on to the next row. If a sohi- 
tion no longer exists, we made a mistake in the extension 
of the paths in this row and should t ry  again until we 
find the appropriate extension. The key to being able to 
solve the problem in O(n 2) time is performing the test 
step in O(n) time and limiting the number of extension 
attempts to O(n) in total. Section 4 gives an efficient 
implementation of the approach and bounds the run- 
ning t ime to O(n2). 

2 D e t e r m i n i n g  w h e t h e r  a problem is e scap ab l e  

Denote an instance of the edge-disjoint escape problem 
by a pair (G, S) where G is an H x W grid and S is a 
set of n sources in G with n />  max(H, W). Since there 
may be more than one sources in a vertex of G, S (and 
any s e t o f  sources) can be represented by a multi-set 
of vertices. The solution to (G, S) is a set of n edge- 
disjoint paths where each of which starts from a source 
in S and escapes G through a boundary vertex. The 
maximum number of paths that  can escape through a 
boundary vertex v depends on the number of outlets 
connecting to v. An outlet of G is an edge connecting a 
(boundary) vertex in G to a vertex outside G (assuming 
G is a subgraph of the infinite grid). In general, as 
shown in Figure 1, at most two of the sources can escape 
G through each corner vertex 1 and one through other 
boundary vertices. In particular when H = 1 or W -- 1, 
at most three of the sources can escape G through each 
corner vertex and two through other boundary vertices. 
We will discuss this special case in detail in Section 3. 

1 W e  c a n  h a n d l e  t h e  c a s e  w h e r e  a t  m o s t  o n e  s o u r c e  c a n  e s c a p e  

t h r o u g h  e a c h  o f  t h e  f o u r  c o r n e r s  b y  a d d i n g  o n e  a d d i t i o n a l  s o u r c e  

t o  e a c h  c o r n e r  v e r t e x .  

(~) denotes the vertex containing k sources 

F i g u r e  1: An example showing 29 sources that  escape 
from an 8 x 10 grid. 

In this section we present an O(n 2) time algorithm 
which determines whether (G, S) is escapable. First, we 
prove that  the absence of oversaturated rectangles in 
G is necessary and sufficient for (G, S) to be escapable. 
Based on the distribution of the sources in G, we define 
H sequences and transform the search of oversaturated 
rectangles into finding n "maximum intervals" in these 
sequences. Finally, we give a novel technique for finding 
the maximum intervals. 

2.1 N e c e s s a r y  a n d  sufficient condit ion.  For any 
two integers i and j with 1 ~< i ~ H and 1 ~< j ~< W, 
let [i, j] denote the vertex of G in row i (from the top) 
and column j (from the left). Given four integers t, b, 
and r with 1 ~< t ~ b ~< H and 1 ~< £ ~ r ~< W, 
a rectangle It, b; £, r] denotes the subgrid bounded by 
row t and b, and column £ and r,  i.e., the subgraph 
induced by the set of vertices {[i,j] ] t ~ i ~ b and 

~ j ~ r}. For instance, G = [1, H; 1, W]. Let O(R) 
be the set of outlets of the rectangle R. We say that 
R is oversaturated (with respect to S) if the number of 
sources inside R is more than IO(R)h and R is saturated 
if the number of sources inside R equals IO(R)I. Note 
that  if there exists an oversaturated rectangle, then 
(G, S) is not escapable. The following lemma asserts 
that  the reverse is also true. 

LEMMA 2.1. If  (G,S) is not escapable, there is an 
oversaturated rectangle with respect to S in G. 

Proof. Let G = (V, E).  We create two vertices s and t, 
and define a flow network Af = (V U {s, t}, E U  Es U Et) 
where Es = {(s,v) I v E S} and Et = {(u,t)  I u E Y 
and (u, w) is an outlet of G for some vertices w}. (Note 
that  both E~ and Et may be the multi-sets of edges.) 
Every edge in Af has unit capacity. 
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As IS[ = n, (G,$) is escapable if and only if 
the value of the maximum flow from s to t in Af is 
n. Given (G,S) is not escapable, the value of the 
maximum flow, and hence the capacity of the minimum 
cut, in J~f is smaller than n. Consider the minimum 
cut M C  of Af with most edges in Es. If we remove 
M C  from Af, G is decomposed into a number of 
connected components. One of these components must 
still connect to s (through some edges in E~) because 
levi = n > IMCI. Let D be this component, C0(D) be 
the set of outlets of D, and SD be the set of sources in 
D. We must have [O(D)I < ISD]; otherwise, either 
( M C -  O ( D ) ) U  {(s,x) [ x • So} is a cut with 
less edges than M C  for the case IO(D)] > ]SD[, or 
( M C  - O(D) )  U {(s, x) I x • SD} is another minimum 
cut containing more edges in Es than M C  for the 
case [O(D)I = [SD]. Let R be the smallest rectangle 
containing D, and SR be the set of sources in R. Since 
[O(R)I ~< [O(D)l < [SDI <, [Sn[, R is oversaturated. [] 

As a result, determining whether (G, S) is escapable 
can be reduced to finding whether there are any over- 
saturated rectangles. In next  two subsections we give 
an O(n) t ime procedure to determine for a fixed integer 
t, whether there are any oversaturated rectangles whose 
top boundary  is on row t. By repeating this procedure 
for all t with 1 ~ t ~< H,  we can determine whether 
(G,S) is escapable in O(n 2) time. In our procedure 
we will ignore those rectangles [t, b; g, r] which contain 
no sources in their bot tom row b because, even if they 
are oversaturated, we must have found some smaller 
oversaturated rectangles It, b'; g, r] with b' < b and their 
bot tom rows containing sources. This implies that  we 
only need to find for each vertex [b, hi containing sources 
whether there are any oversaturated rectangles It, b; g, r] 
whose bo t tom rows include [b, hi (i.e., g ~< h ~< r). 

2.2 Oversaturated rectangles and  m a x i m u m  in- 
t e rva l s .  Given two fixed integers t and b, let Nh be the 
number of sources in column h between row t and b in- 
clusively (i.e., the number of sources in It, b; h, hi). Note 
that  [t ,b;g,r]  has Nt + N~+I + . . .  + Nr sources and 
2 ( b - t + l ) + 2 ( r - g + l )  outlets. Thus, [t, b; g, r] is oversat- 
urated if and only if (Nl - 2) + (Nt+ 1 - 2) + - . . +  ( N r -  2) is 
greater than  2 ( b - t  + 1), which is a constant with respect 
to t and b. Let  Qb ---- (N1-2 ,  N 2 - 2 , . . . ,  N w - 2 ) .  Define 
the maximum interval of Qb containing the h-th element 
to be the interval (Ni - 2, Ni+l - 2 , . . .  , Nj - 2) where 
i ~< h ~ j and ( N i - 2 ) + ( N i + I - 2 ) + - ' - + ( N j - 2 )  
attains the maximum value. 

FACT 2.1. I f  ( N i -  2, Ni+l - 2 , . . .  , Nj - 2) is an interval 
with its sum greater than 2(b - t + 1), then [t, b; i, j] is 
an oversaturated rectangle. 

The  following lemma gives a condition for the exis- 
tence of an oversaturated rectangle It, b; g, r] containing 
[b, hi. 

LEMMA 2.2. Given Qb and [b, h], there is an oversatu- 
rated rectangle with top boundary on row t and bottom 
boundary on row b and containing [b, hi if and only if 
the sum of the maximum interval of Qb containing the 
h-th element is greater than 2(b - t + 1). 

In our procedure, we would not compute the sum 
of an interval directly. Instead, we would reduce it to 
finding the number of sources in a corresponding rect- 
angle because after a preprocessing it can be computed 
very efficiently, i.e., in constant time. Let s(t ,b;g,r) 
denote the number of sources in a rectangle It, b; g, r]. 
Note tha t  s(t, b; g, r) = s(1, b; 1, r) - s(1, t - 1; 1, r) - 
s(1,b; 1 , g -  1) + s(1, t - 1; 1,g - 1). If we precompute 
all the values s(1, b;1,r)  for 1 ~< b ~< H and 1 ~< r ~< W 
and store them in a table, we can compute s(t, b; g, r) 
in constant time. By the definition of Qb, the sum 
of an interval (Ni - 2, N~+I - 2 , . . . ,  Nj  - 2) equal to 
s(t, b; i , j )  - 2(j - i + 1), which can also be computed in 
constant time. 

2.3 F i n d i n g  m a x i m u m  in t e rva l s .  For notational 
simplicity, let Qb = (ql ,q2,- .-  ,qw) ,  i.e., qi = Ni - 2. 
For any integer i with 1 ~< i ~< W, let ~ ( i )  denote 
the smallest integer r ~> i such that  qi + qi+l + "'" + qr 
attains the maximum value. Similarly, £:(i) denotes the 
largest integer g ~< i such that  qe + q~+l +" " "+ qi attains 
the maximum value. See Figure 2 for an example. Given 
the values T~(i) and £:(i) for 1 ~< i ~< W, we can identify 
for any integer h the maximum interval of Qb containing 
qh as follows: 

LEMMA 2.3. The maximum interval of Qb containing 
qh is (q£(h) , ' ' '  ,qTC(h)). 

Proof. (qi , . . .  ,qj) is the maximum interval of Qb con- 
taining qh if and only if the maximum interval of Qb 
beginning from and ending at qh are (qh, . . .  ,qj) and 
(qi , . . .  , qh) respectively. [] 

Before we show how to find the values T~(i) and/ : ( i )  
for Qb, we give some properties on the values T~(i). The 
values £:(i) also have the similar properties. 

a. T~(j) = T~(i) for i <<. j <<. T~(i); 
b. n ( j )  >~ T~(i) for j >i i; 

FACT 2.2. c. T ~ ( i ) = 7 ~ ( i + l )  i f ( i C W  and 
~+l,<j,<n(~+l) qJ > 0), 
otherwise, T~( i ) = i. 

Since the sequence of values 7~(i) for 1 ~< i ~< W is 
non-decreasing, i.e., there may be consecutive repeating 
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T~(i) : 2 2 7 7 7 7 7 10 10 10 
qi : 2 2 - 7  1 - 9  5 6 - 4  -1  2 

£( i ) :  1 1 1 4 4 6 6 6 6 6 

F i g u r e  2: A sequence with its right-partition equal to 
(2, 7, 10) and its left-partition equal (1, 4, 6). 

values, we adopt a simple representation for the values 
T~(i), the right-partition, that  is the sequence of distinct 
values among the values ~( i ) .  Let T~ -- (rl ,  r 2 . . .  , ra) 
be the right-partition where rj < r j+l  for 1 ~< j ~< d -  1. 
Given any integer i with 1 ~< i ~< W, we have 

~( i )  = r j  fo r r j_1  < i ~ < r j  a n d l ~ < j ~ < d  

assuming ro = 0. Similarly, the left-partition is the 
sequence of distinct values among the values £(i) .  

Instead of computing each right-partition (and left- 
partition) of Qb individually for each integer b with 
t ~ b ~ H,  we give a method to efficiently update  the 
right-partition of Q~ to the right-partition of Q~+x- The 
left-partitions can be updated similarly. Let Qb+~ = 
(q~,q2,--. ,q~v). Suppose there are k vertices which 
contain sources in row (b + 1). Denote c~ < c~ < 
. . .  < Ck the columns of these vertices, then q~ > qe. 
for 1 <. a <. k and q~ = qi elsewhere. We call 
Po,P1, . . .  ,Pk a refinement from Qb to Qb+~ where 
Po = Qb, Pa = Qb+l, and Pa+l contains the same 
sequence of elements as P~ except that  the ca+~-th 
element of Pa+y is q'~+l (instead of %.+1 ). For instance, 
P~+I = (q~,...  ,q~c~+,,qe~+l+l,... ,qw) .  The update 
from the right-partition of Qb to the right-partition of 
Q~+I can be refined to k updates, which are from the 
right-partition of P0 to that  of P~, the right-partition of 
P1 to that  of P2, and so on. 

Now we show how to update the right-partition T~ of 
P~ to the right-partition ~ '  of Pa+l ,  for 0 ~< a ~ k - 1 .  
Let P~ = (p~,p~,.. .  ,Pw),  P~+I = (P~,P~,...  ,P~w), 
and T~ = (rl, r2 , . . .  , rd). Recall that  p~ = Pi for 1 ~< i ~< 
W except for i = ca+l where p '+~  > Pc.+~. Let ru = 
~(ca+t ) ,  and rx with x < y be the largest integer in T~ 
such that  ~ +1.<'-<, Pj ~< 0. So ' > 0 
mr x < i ~ y. In the following lemma, we further prove 
that Y~i~<i<~ P~ > 0 for r~ + 1 < i 4 r~. Therefore, 
7~(i) for r~ + 1 ~< i ~< ry are all the same (by Fact 2.2c). 
Thus, we can update 7~ to ~ '  using r u and r~ as follows. 

LEMMA 2.4. Let ry = T~(Ca+l) and rz with x < y be 
the largest integer in ~ such that ~r~+~<j~<r~P~ <~ 
O. If  rz exists, the right-partition T~' of Pa+l is 
( r l , . . .  ,r~,ry . . . .  ,rd); otherwise, T~' is (ry . . . .  ,rd). 

Proof. Since p~ = Pi for ry + 1 ~ i ~ W ,  we 
have 7~'(i) = T~(i) for ru ~ i ~ W. The values 

ry,ry+l . . .  ,ra are retained in T~'. In contrast, the 
values rx+l , r~+2 , . . .  , ru-x are removed in ~ ' .  It is 
because 7~'(i) = ry for rx + 1 ~< i ~ ry which can 
be proved as follows. Since ~ ( r x )  = rx, T~(rz + 1) = 
rz+l (by the definition of right-partition), and hence 
:~'~r~+2~<i~<r~+l P~ /> ~r~+:~<i~<~.+l Pi > 0. Also, by the 
definition of x, we have ~r~+~+l~<i~<~y P~ > 0. Thus 

summing up the two terms, we have ~-'~r,+2~<i~<~ P~ > 0. 
Also, as 7~'(ry) = ru, T~'(rx + 1) = ry (by Fact 2.2b). 
Therefore, we have 7~'(i) = ry for rx + 1 ~< i ~< ru 
(by Fact 2.2a). If rx exists, the values r l , r 2 , . . .  ,r~ 
are also retained in T~'. Since )-']~r.+l~<i<n'(~+l)P~ < 0, 
T~'(rz) = rz (by Fact 2.2c). For 1 ~< i ~< r~, sincep~ = pi 
and T~(rx) = r~, we have T~'(i) -- T~(i), and thus the 
values r l ,  r2,.  • • , r~ are retained. [] 

R e m a r k :  Recall that  we do not compute the 
sums of intervals directly but  reduce it to finding the 
numbers of sources in the corresponding rectangles. 
For that  reason, we may not refine an update from 
the right-partition of Qb to tha t  of Qb+l to exactly k 
updates in the refinement, but  less than k updates. For 
example, if c l , c2 , . . .  ,ci are all less than or equal to 
T~(cl), we update the right-parti t ion of P0 directly to 
that  of Pi because we can only compute the sum of 
(q j ,q j+l , . . .  ,q~(c,)) in Qb+l where T~(j - 1) = j - 1 
and T~(j) = T~(cl), by finding the number of sources in 
It, b+ 1; j , n ( c l ) ] .  

Our procedure starts from a sequence Qt-1 = 
( - 2 , - 2 , . . . , - 2 )  which represents tha t  there is no 
source in each column. Its right-partition is 
(1, 2 , . . .  , W). From the right-parti t ion of Qt-1, we can 
construct the right-partition of Qt through the updates 
in the refinement defined above. Consequently, our pro- 
cedure computes the right-parti t ion of Qb for t ~< b ~< H. 

Now, we show that  our problem of computing the 
right-partitions of Qb for t ~< b ~< H can be transformed 
to a special case of the disjoint set union problem 
proposed by Gabow and Tarjan [4]. This special case 
also support the FIND and UNION operations as in 
the general case, but  the UNION operation here can 
only combine two sets with "special relation". For 
example, when the sets can be arranged in a line, the 
UNION operation only combine two adjacent sets. The 
transformation can be describe as follows. Let all the 
integers i for r j -1  + 1 ~< i ~< r j  be represented by a set 
denoted by r j .  The operation of determining the value 
7~(i) is transformed to finding the set representing i. 
An update of the right-partit ion in the refinement is 
transformed to a series of "adjacent" sets unions, i.e., 
the unions of sets r~, r ~ - l , . . . ,  a~d r~+l. Since one set 
is deleted in one UNION operation, the total number of 
UNION operations is less than W. The total number 
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of FIND operations is no more than n because for each 
vertex containing the sources we only need to locate the 
set that  contains the vertex once. Since this disjoint 
set union problem can be solved in time linear to the 
number of FIND and UNION operations [4], our problem 
of computing right-partitions and left-partitions can be 
solved in O(W + n), or O(n) time. 

LEMMA 2.5. Procedure OVERSAT(R, SR) (in Algo- 
rithm 1) runs in O(ISRI) time. 

The procedure which finds if there are any oversat- 
urated rectangles It, b; ~, r] in a given rectangle R with 
a set of sources SR is shown in Algorithm 1. This pro- 
cedure can be called, for each R -- It, H; 1, W] with 
1 ~< t ~ H,  to find if there are any oversaturated rect- 
angles in G. Hence, we can determine whether (G, S) is 
escapable in O(n 2) time. 

Input: R is a rectangle [t, H; 1, W] and SR is a 
set of sources in R; 
Output: A set of oversaturated rectangles 
[t,b;~,r] for t ~< b ~< H and 1 ~< ~ ~< r ~ W; 

/*Qi = (ql, q2,... , qw) where qj + 2  is the num- 
ber of sources  of SR in [1,i;j,j].*/ 
Let Qt-1 = ( - 2 , - 2 , . . .  , - 2 )  and both 
the right- and left-partitions of Qt-1 be 
(1 ,2 , . . .  ,W); 
for b ~ - t  t 0 H d o  

Update the right- and left-partitions of 
Qb-1 to those of Qb; 
fo reach  vertex [b, h] containing sources do 

~ Output [t, b; L:(h), T~(h)] if it is oversat- 
urated; 

A l g o r i t h m  1: OVERSAT(R, SR) 

3 Finding the paths 
Assume (G, S) is escapable. In this section we present 
an algorithm which finds a solution to (G, S). Let F 
denote the set of sources in row 1 and Sl ( s2 ~< -. .  
s~ denote the sequence of columns where the sources 
in F axe located, i.e., F = {[1,si] [ 1 ~ i ~< /3}. 
Roughly speaking, our algorithm solves the problem 
by solving its two subproblems, ([1, 1; 1, W], F) and 
([2, H; 1, W], $ - F). Obviously, the solutions to these 
two subproblems affect each other. In the following, 
we give the condition on the solutions to the two 
subproblems such that they do not conflict with each 
other. Then we show how to combine the two solutions 
to form a solution to (G, S). 

3.1 D iv id ing  t h e  p r o b l e m .  We represent a solu- 
tion to ([1, 1; 1, W], F) by a mapping which stores the 
columns where the sources in F escape [1, 1; 1, W]. For 
a mapping a = ( a (1 ) , a (2 ) , . . .  ,a(j3)), the sources in 
[1, si] escapes [1, 1; 1, W] through [1, a(i)]. Moreover, 
we assume a(i) <~ a ( i+  1) for 1 ~ i ~< / 3 -  1. Since 
there are three outlets connecting to each of [1, 1] and 
[1, W], and two outlets to other vertices, a satisfies the 
following conditions: 

{ No more than three a(i) 's have the } s a m e  value 1; 

(3.1) no more than two a(i) 's  have the 
same value j ,  for 2 ~< j ~< W - 1; 

no more than three a(i) 's have the 
same value W. 

Note that  if the path of the first source in F 
escapes through [1, 1] horizontally, and similarly if the 
path of the last source in F escapes through [1, W] 
horizontally, both paths will not conflict with any 
solution to ([2, H; 1, W], S - F). Thus, without loss of 
generality, we assume for all mappings a, 

a(1) = 1 and a(/3) = W. 

Moreover, since the paths must be edge-disjoint, we can 
assume that the path starting at [1, si] do not escape on 
the left of [1, si-1] nor on the right of [1, Si+l]. Hence, 
for 2 ~< i <~/3- 1 we have 

(3.2) si-1 <<. a(i) <<. Si+l. 

On the other hand, we can determine a solution to 
([1,1;1, W],F) by a given mapping. Although the 
mapping does not specify whether a path starting from 
the source in [1, si] escapes through [1, a(i)] upwards or 
downwards, we assume the path always goes upwards 
whenever possible, i.e., when i = 2 or a(i) ¢ a( i -  1). In 
the rest of the paper, finding a solution to ([1, 1; 1, W], F) 
is always referred to finding a mapping (satisfying 
the above conditions). Figure 3 shows an example 
on a solution to ([1, 1; 1, W], F) and the corresponding 
mapping. 

(~) denote the vertex containing k sources 

F i g u r e  3: A solution to ([1, 1; 1,10],F). The corre- 
sponding mapping is (1, 1, 2, 4, 5, 7, 7, 8, 8, 10). 

Given any mapping a to ([1, 1; 1, W], F), we present 
a condition that guarantees the existence of a conflict- 
free solution to ([2, H;  1, W ] , S -  F), i.e., the solution 
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to ([2, Hi 1, W], S - F) that  can be combined with the 
solution to ([1, 1; 1, W], F) to form a solution to (G, S). 
In fact, the condition depends on whether the problem 
instance ([2, H; 1, W], S~U (S - F)) is escapable where 

s~ = {[2, a(i)] 12 ~ i ~< fl - 1}. 

Obviously, a solution to ([2, H; 1, W], S~ U (S - F)) 
contains a solution to ([2, H; 1, W], S - F). The set of 
extra sources Sa, called induced sources, ensures that  
such solution to ([2, H; 1, W], S -  F) are compatible with 
the solution to ([1, 1; 1, W], F) induced by a. 

Denote T~ = S~ U ( S -  F). If ([2,H;1, W],T~) 
is escapable, we can combine the solution to 
([2, H; 1, W], S - F) with the solution to ([1, 1; 1, W], F) 
induced by a to form the solution to (G, S). 

LEMMA 3.1. Given a mapping a and a solution to 
([2, H; 1~ W], T~), we can construct a solution to (G, S) 
in O ( W )  time. 

Proof. The construction is done by extending the paths 
in both the solution to ([1, 1; 1, W], F) induced by 
and the solution to ([2, H; 1, W], S - F) included in the 
solution to ([2, H; 1, W],Ta).  We perform two types 
of path extension: to extend the paths which escape 
downwards through [1, j] towards [2, j] in the solution 
to ([1, 1; 1, W], F), and to extend the paths which escape 
upwards through [2, k] towards [1, k] in the solution to 
([2, H; 1, W], S - F). First, if a path escapes through 
[1,j] towards [2,j] in the solution to ([1, 1; 1,H], F), 
we have [2,j] E Sa, and we need to extend this path 
from [1,j] to [2,j] and then to the boundary of G. In 
fact, the extension from [2,j] is already done by the 
path starting from the induced source in [2,j] in the 
solution to ([2, H; 1, W], Ta). Second, in the solution 
to ([2, H; 1, W], S - F) if a path escapes through [2, k] 
towards [1,k], we need to extend the path to [1, k]. 
The extension is trivial when there are no other paths 
escaping through [1, k] toward [0, k] (assuming [0, k] is 
in the infinite grid) in the solution to ([1, 1; 1, W], F). 
Otherwise, there is an induced source in [2, k]. In that 
case, we assume the path which escapes through [2, k] 
towards [1, k] indeed starts from the induced source and 
we can discard the path. [] 

The above lemma prove that the existence of an 
escapable ([2, H; 1, W], -r~) is a sufficient condition for 
(G, S) to be escapable. In the following, Lemma 3.2 
proves that  the condition is also necessary for (G, S) to 
be escapable. 

LEMMA 3.2. I f  (G,$) is escapable, then there exists 
a mapping cr for F such that ([2, H; 1, W], T~) is es- 
capable. 

Proof. In a solution to (G, S), consider the paths start- 
ing from the sources in F. By the columns from which 
the paths escape [1, 1; 1, W], we obtain a sequence of in- 
tegers which form a mapping a. However, a thus formed 
does not guarantee an escapable ([2, H; 1, W], T~). This 
is because the paths are not unique due to their edge- 
disjointness. (See .Figure 4 for an example.) In order to 
find the a with an escapable ([2, H; 1, W], T~), we have 
to ensure that  if a path p starting from a source in F es- 
capes through [1, j] toward [0, j], the edge ([2, j], [1, j]) 

(a) 

(b) 

i ! A saturated rectangle ............ J 
(~) denotes the vertex containing k sources 

F i g u r e  4: The. sources escape from an 8 x 10 grid. 
(a) The paths starting from the sources on row 1 are: 
([1, 1]), ([1, 2]), ([1, 7] -+ [1, 6]), ([1, 7]), ([1, 10]). Thus we 
obtain a mapping a -- (1, 2, 6, 7, 10). Since the rectangle 
[2, 6; 4, 9] is saturated with respect to S, it is oversatu- 
rated with respect to T~, and hence the problem in- 
stance ([2, 8; 1, 10], T~) is not escapable. (b) The paths 
starting from the sources on row 1 are: ([1, 1]), ([1, 2] -+ 
[1, 1]), ([1, 7] ~ [1, 6] - + . . . - ~  [1, 2]), ([1, 7] --+ [1,8] --+ 
. . .  --+ [1, 10]), ([1, 10]). Thus we obtain a mapping 
a -- (1, 1, 2, 10, 10) and an escapable problem instance 
([2, 8; 1,10], 
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is not used by any path. (If a path starting from a 
source in F entered row 2 through column j ,  the edge 
([2, 1], [1,j]) surely will not be used by any path.) This 
can always be done because if there is a path q using the 
edge ([2,j], [1,j]), the paths p and q can be switched at  
[1,j], i.e., path p will follow the remaining part of path 
q to escape [1,1; 1, W] at some other column. If nec- 
essary, the path can be switched more than once until 
the path escapes [1, 1; 1, W] at a column k where edge 
([2, k], [1, k]) is not used by any path. 

We show that  ([2,H; 1,W],T~) is escapable as 
follows. In the solution to (G, S), we already have the 
paths starting from the sources in S - F to the boundary 
of [2, H; 1, W]. The main point is how we can construct 
the paths from the induced sources to the boundary 
of [2, H;  1, W]. Consider an induced source in [2, a(i)], 
if it is due to a path p' starting from a source in F 
entering row 2 through [2, a(i)], the path starting from 
this induced source follows the remaining part of path 
p' at [2, a(i)] to the boundary of [2, H; 1, W]. If the 
induced source in [2, a(i)] is due to a path starting from 
a source in F escapes through [1, a(i)] towards [0, a(i)], 
as there are no paths in the solution to (G, S) using the 
edge ([2, a(i)], [1, a(i)]) (by the property of a), the path  
starting from this induced source can escape through 
[2, a(i)] towards [1, a(i)]. D 

Combining Lemmas 3.1 and 3.2, we have the fol- 
lowing theorem. 

THEOREM 3.1. (G, S) is escapable if and only if there 
is a mapping a for F such that ([2, H;1,  W], T~) is 
escapable. 

DEFINITION 3.1. A mapping a for F is feasible if T~ is 
escapable. 

In our algorithm we will find a feasible mapping for 
F, in particular, the "smallest" feasible one. To check 
whether a mapping a is feasible, we can test whether 
([2, H;  1, W], Ta) is escapable. Since ([2, H; 1, W], S - F) 
is escapable and the induced sources are added to 
row 2 only, ([2,H; 1,W],T~) is escapable if and only if 
OVERSAW(f2, H; 1, W], T~) (in Algorithm 1) outputs no 
oversaturated rectangle. After the mapping a is found, 
we will solve ([2, H; 1, W], T~) recursively. Then, we 
combine the solution to ([1, 1; 1, W], F) and the solution 
to ([2, H; 1, W], Tz) to form the solution to (G, S). 

3.2 Finding the  smal les t  feasible mapp ing .  A 
mapping a is smaller than another mapping A, denoted 
by a < A, if there exists an integer i with 1 ~ i ~ ~ - 1 
such that  a(j)  = A(j) for 1 ~ j ~< i - 1 and a(i) < )~(i). 
In addition, we say a ~ ~ if a < )~ or a(j)  = )~(j) for 

1 ~ j ~< 8. The smallest feasible mapping (SFM) is the 
smallest mapping among the feasible mappings. 

Our algorithm composes a number of testing map- 
ping and checks their feasibilities one by one. The first 
testing mapping a is the smallest mapping. If a is not 
feasible, we compose the next testing mapping a ~ based 
on a such tha t  a < a ~ ~< SFM. Such a ~ can be con- 
structed based on one of the oversaturated rectangles 
with respect to T~ (as in Definition 3.2). This process 
(called trial) is repeated until a feasible mapping (the 
SFM) is found . 

DEFINITION 3.2. Let R = [2, b; ~,r] be an oversaturated 
rectangle with respect to T~ and 5R be the difference 
between the number of sources of Ta in R and the 
number of outlets IO(R)I. In order to prevent R 
from oversaturated, we have to construct a new testing 
mapping such that the last ~R induced sources in R are 
introduced to the right of column r. We define 0 the 
threshold of R,  for 1 <~ 0 <~ ~ - 1, to be the maximum 
number of induced sources that can be retained to the 
left of column r, without making R oversaturated. To 
be precise, 0 is defined by the condition a(O + 5R) <~ r < 
~(0 + ~R + 1). 

Hence, a '  is constructed by assigning a~(i) = a(i) 
for 1 ~<i ~< 0, a ' ( 0 + l )  = r + l ,  a n d a ' ( 0 + l ) , a ' ( 0 +  
2) . . . .  , a ' (~  - 1) to be the smallest sequence of values 
satisfying Conditions (3.1) and (3.2). Lemma 3.3 shows 
that  the SFM can be obtained in a finite number of 
trials. 

LEMMA 3.3. a ~ is a mapping and a < a ~ ~ SFM. 

Proof. First, we prove that  a' is a mapping. Clearly, a'  
satisfies Condition (3.1). Moreover, if so ~< a'(O + 1) 
se+~, a ~ satisfy Condition (3.2). Since so ~< a(0 + 1) < 
r + 1 = a'(O + 1), we shall prove that  s0+2 >/ r + 1. 
Let R ~ = [2, U;~ , r ]  be the oversaturated rectangle 
with respect to T~ such that  the threshold 0' of R t is 
no larger than 0 and l ~ is the smallest (or leftmost) 
possible. Consider the leftmost induced source [2, a(k)] 
in R', i.e., a ( k -  1) < ~' ~< a(k).  We claim that  
sk-1 >~ ~. Suppose on the contrary that  Sk-1 < ~. 
By Condition (3.2), the smallest possible value of a(k) 
is Sk-1, but now a(k)  >~ e' > Sk-1. Therefore, either 
there is a saturated rectangle R" with respect to T~ with 
its right boundary on column a(k) - 1, or [2, a(k)  - 1] 
already contains two induced sources, i.e., a(k  - 2) = 
a ( k - 1 )  = a ( k ) - I  = e ' - l .  In the former case, the 
smallest rectangle containing both R" and R ~ is also 
oversaturated. In the latter case, [2, b'; ~ - 1,r] is also 
oversaturated. In both cases, we have a contradiction to 
R' that  we obtain an oversaturated rectangle with the 
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threshold no larger than 0 and the right boundary  on 
column r, but  its left boundary on the left of column ~. 
Thus, we prove our claim that  Sk-1 >- ~. Note that  if 
sk-1 >. ~' and so+2 ~< r and [2, b'; g',r] is oversaturated, 
then [1, U; ~,  r] is oversaturated with respect to S which 
is a contradiction. Hence, we prove that so+2 >~ r + 1 
and a ~ is a mapping. 

Second, we show that  a < a ~ ( SFM. Obviously, 
we have a < a ~. Now we prove that  a ~ ~< SFM. If SFM 
< a ~, there is an integer i with 1 ( i ~< ~ - 1 such that  
SFM(j)  = a'(j)  for 1 <~ j <~ i - 1 and SFM(i) < a'(i). 
If i ~< 0, it contradicts to a < SFM. If i = 0 + 1, R is 
oversaturated with respect to TSFM- If 0 -t- 2 ~< i ~< B, 
the SFM violates Conditions (3.1) or (3.2). [:] 

By the brute force implementation of this approach, 
we may need O(W) trials, O(nW)  time for an SFM, and 
hence O ( n H W )  or O(n 3) t ime for the SFMs in all rows. 
In next section, we give a more efficient implementation 
which improves the O(n 3) bound to O(n2). 

4 An  efficient i m p l e m e n t a t i o n  

Recall the flow of our algorithm. Given the problem 
instance ([1, H;  1, W], S), we reduce it to another prob- 
lem instance ([2, H;  1, W], T ~ )  where A~ is the SFM for 
row 1, and we solve ([2,H; 1, W], T ~ )  recursively. Let 
([x, H; 1, W], Ux) for 1 ~< x ~< H denote all problem in- 
stances handled by our algorithm. In particular, UI = S 
and U2 = T~a. Note that  it takes a number of trials to 
check the feasibility of the testing mappings in each row. 
Given one of these trials, we say it is a successful trial 
if the testing mapping is feasible; otherwise, it is a fail 
trial. Obviously, there is only one successful trial for 
a row, and totally H over all rows. However, by the 
brute force approach in previous section, the number 
of fail trials over all rows is O(n2). In order to reduce 
the number of fail trials to O(n), for every row x we 
compose a proper first testing mapping for row x in the 
problem instance (Ix, H;  1, W], Uz) by considering a set 
of saturated rectangles (with respect to U~) having their 
top boundaries on row x. 

Let 3)~ = {R4 = Ix, bi; ~i, ri]} be a set of saturated 
rectangles with respect to U~. (We will show how 
to obtain ~z in next paragraph.) Below, we show 
that  by a given Yx how to compose the first testing 
mapping for row x in ([x, H;  1, W], U~). Denote F' = 
{[x, tx], [x, t2] , . . .  , Ix, t~]} the sources of U~ in row x. 
We compose the first testing mapping/~ by the smallest 
mapping for F' satisfying the following requirement. For 
each tj, if tj  ~< ri < tj+l for some R4 in yx, we have 
ll(tj) = ri + 1. (If there are more than one ri satisfying 
the condition t i <~ ri < tj+l, take the largest ri.) 
This initialization step avoids most of the fail trials. 

It is because if #(tj) <~ ri,  [x ÷ 1, bi; ~i, ri] would be 
oversaturated with respect to the sources including:the 
sources of S on or below row x + 1 and the induced 
sources by # on row (x + 1), hence ~u is not feasible. 
The  reason to ass ign/ / ( t j )  = r~ + 1 is that  since P~ is 
saturated, there must be a path escaping R4 through 
the outlet ([x, ri],[x, ri + 1]) of Ri. Without loss of 
generality, we assume tha t  the path starts from the 
rightmost source in row x of Ri, which is the source 
in [x, tj] satisfying the condition tj ~ ri < tj+l. 
Note that  similar requirement is needed for the left 
boundaries of R4. However, because we are testing from 
the smallest mapping to the smallest feasible mapping, 
these requirement is satisfied automatically. 

We find the rectangles in Yz, for 2 ~< x ~ H,  by the 
following methods. Note that  we do not aim at finding 
all saturated rectangles (with respect to U~) with top 
boundary on row x but  we find a set Yx such that 
we can bound the number of fail trials according the 
initialization of first testing mappings above. 

1. Consider a fail trial on a testing mapping a for 
row (x - 1). Let Va be the set of sources including 
the sources of S on or below row x and the induced 
sources by a. As a is not feasible, there exists 
an oversaturated rectangle R* having the smallest 
threshold O* among the oversaturated rectangles 
with respect to V~. In the efficient implementation, 
we construct the next  testing mapping cr ~ based on 
R*. Since R* is saturated with respect to Va, and 
M x - z ( i )  = a'(i) for 1 ~< i ~< 0* where M x - 1  is th~ 
SFM for row (x - 1), we have R* saturated with 
respect to U~. We add R* to J)z- 

2. Consider each saturated rectangle Ix - 1, b; ~,r] in 
Y~-I. If b >t x, the rectangle Ix, b; £, r] is saturated 
with respect to Uz and hence are added to Yz. 

With the initialization of the first testing mapping 
in each row and the construction of subsequent testing 
mappings based on the smallest threshold, we bound 
the total number of fall trials by n (See Lemma 4.1). 
Therefore, the total t ime for all trails over all rows is 
O(n2). 
LEMMA 4.1. Let ~ be the set of saturated rectangles 
obtained after the fail trials over all rows (in method I). 
We have [~l <. n. 

Proof. The lemma is proved by showing (1) every 
rectangle in ~ contains at least one source of S on 
its right boundary, and (2) the right boundary of a 
rectangle in ~ does not overlap with the right boundary 
of any other rectangles in G. 

Consider a rectangle R E G. Since R is saturated, 
it contains at least two sources on each of its four 
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boundaries, e.g., the right boundary. The worry is that  
these sources are all induced sources in the top-right 
corner vertex of R. However, the top-right corner vertex 
of R must contain no more than one induced source 
because R was once oversaturated in a trial and in next 
trial at least one of the rightmost induced sources in R 
is "shifted" out of the right boundary. Therefore, the 
right boundary of R contains at least one source of S. 

Suppose there are two rectangles R1 = [tl, bl;/1, r] 
and R2 = [t2, b2; ~2, r] in ~ such that  they overlap on 
column r, i.e., t l  ~ t2 ~< bl (or t2 ~< tl ~< b2 but  we 
assume the former one). However, as both rectangles 
are having the same right boundary, if tl = t2, either 
one of them is not an oversaturated rectangle having the 
smallest threshold. Hence we assume tl < t2. In the 
following, we show tha t  we can find an oversaturated 
rectangle in [t2 - 1 , H ; 1 , W ]  with respect to Ut2-1, 
which is a contradiction. By method 2, as [tl, bl; el, r] 
is saturated, we know that  It2 - 1, bl ; /1,r]  is also 
saturated. Thus, according to the initialization of the 
first testing mapping for row (t2 - 1), the rightmost 
source on the left of column r, say in [t2 - 1, s], would be 
assigned to the right of column r. Let a be the mapping 
for row (t2 - 1) in which we obtain the oversaturated 
rectangle/ /2,  and 8 be the threshold of R2. Denote U' 
the sources including the sources of S on or below row t2 
and the induced sources by a. Let R' = It2, b';~', r] be 
the oversaturated rectangle with respect to U' such that  
the threshold 8' of R* equals 8 and *' is the smallest (or 
leftmost) possible. Consider the leftmost ~ource on the 
right of column ~', say in It2 - 1, s']. This source would 
be assigned to the left of column ~' in a. This can 
be proved in a way similar to the proof of Lemma 3.3. 
Consider the rectangle R" = It2 - 1, b'; l ' ,  r]. Since the 
rightmost source It2 - 1, s] in R" is assigned to the right 
of column r, the leftmost source It2 - 1, s'] in R" is 
assigned to the left of column ~' and R' = [t2,U;~',r] 
is still oversaturated with respect to U', thus we show 
that  R" is oversaturated with respect to Ut2-1. [:] 

5 C o n c l u s i o n  

We have solved the edge-disjoint escape problem by 
giving an algorithm to detect if the solution exists and 
another algorithm to find a set of edge-disjoint paths 
which connects all n sources to the grid boundary in 
O(n 2) time. We can also solve the (vertex-disjoint) 
escape problem by following the same framework in 
this paper and adopting the concepts of tilted row, 
tilted column and tilted rectangle as given in [1]. In 
particular, we show that  the absence of oversaturated 
tilted rectangles is a necessary and sufficient condition 
for the existence of a solution to the escape problem. 
Using a similar approach shown in this paper, we can 

also find the vertex-disjoint paths connecting all n 
sources to the grid boundary in O(n 2) time. 
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