
Title Trade-offs between speed and processor in hard-deadline
scheduling

Author(s) Lam, Tak Wah; To, Kar Keung

Citation Proceedings Of The Annual Acm-Siam Symposium On Discrete
Algorithms, 1999, p. 623-632

Issued Date 1999

URL http://hdl.handle.net/10722/45606

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37884417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

623

Trade-offs between Speed and Processor
in Hard-deadline Scheduling

Tak Wah Lam* Kar Keung Tot

Abstract

This paper revisits the problem of on-line scheduling
of sequential jobs with hard deadlines in a preemptive,
multiprocessor setting. An on-line scheduling algorithm
is said to be optimal if it can schedule any set of jobs
to meet their deadlines whenever it is feasible in the off-
line sense. It is known that the earliest-deadline-first
strategy (EDF) is optimal in a one-processor setting,
and there is no optimal on-line algorithm in an m-
processor setting where m 1 2. Recent work (Phihips
et al. STOC 971 however reveals that if the on-line
algorithm is given faster processors, EDF is actually
optimal for all m (e.g., when m = 2, it suffices to use
processors 1.5 times as fast).

This paper initiates the study of the trade-off be-
tween increasing the speed and using more processors in
deriving optimal on-line scheduling algorithms. Several
upper bound and lower bound results are presented. For
example, the speed requirement of EDF can be reduced
to2-s when it is given p 2 0 extra processors.
The main result is a new on-line algorithm which de-
mands less speedy processors so as to attain optimality
(e.g., when m = 2, the speed requirement is 19) and ad-
mits a better speed-processor trade-off than EDF (e.g.,
when m = 2 and p = 1, the speed requirement is 1.2).
In Eeneral, no ontimal alnorithm exists when the sneed
factor is less than l/(27! - 2).

1 Introduction

Problems of on-line scheduling have a rich literature
(see e.g., [1,2,7,11,13] for some recent results). In
this paper we consider a classical scheduling problem
encountered in a hard-deadline real-time environment.
There is a pool of m identical processors. At any time
a job can be released, which is sequential in nature
(i.e. to be run on at most one processor at any time),
and must be completed before a certain deadline. The

‘Department of Computer Science, The University of Hong
Kong. Email: tulamcPcs .hku.hk

tDepartment of Computer Science, The University of Hong
Kong. Email: kktoocs .hku.hk

release time of a job, as well as the required amount
of work and the deadline, is known only when the job
is released. This model has been considered by many
authors (see e.g., [9,10,12,13]) for scheduling with
deadlines. Our goal is to devise an on-line algorithm to
schedule such jobs so that their deadlines can all be met.
We allow preemptive scheduling, which is commonly
used in computer systems. I\rot every set of jobs can
be scheduled to meet their deadlines. We expect an
on-line algorithm to meet the deadline requirements
whenever it is feasible in the off-line sense. Such an
on-line algorithm is said to be optimal.

When there is only one processor for scheduling, the
earliest-deadline-first strategy (EDF) gives an optimal
algorithm 141. However, when there are two or more
processors, it is known that no on-line algorithm is op-
timal [S]. Recently, there are studies on the effect of
giving the on-line algorithm faster processors in differ-
ent scheduling problems [3,6,10,13]. Intuitively, using
faster processors compensates the on-line algorithm for
the lack of future information. In the following, we as-
sume that the off-line algorithm is given processors of
speed-l and the on-line algorithm is given processors of
speed-s for some s 1 1 (precisely, a speed-s processor
can process CC units of work in z/s units of time). Re-
garding hard-deadline scheduling in particular, Phillips
et al. [13] showed that, when using processors of speed-
(2 - l/m), EDF is actually optimal.’ That means, for
a two-processor system, the speed requirement is 1.5.
Phillips et al. [13] also showed a lower bound of 1.2 for
all m 2 2.

Another way to facilitate the on-line algorithm is
to use more processors. However, due to the sequential
nature of the jobs, more processors may not improve
the performance. It is known that EDF cannot achieve
optimality even if it is allowed to use up to O(m) speed-l

‘Phillips also showed that the least-laxity-first (LLF) strategy
is optimal when given speed-(2 - l/m) processors. However,
LLF may schedule jobs to migrate among processors infinitely
frequently, whereas EDF (as well as our new algorithm) requires
only O(n) migrations for a set of n jobs.

624

processors [13]. -4s far as we know, no on-line algorithm
using O(m) speed-l processors is optimal.

This paper initiates the study of the trade-off be-
tween increasing the speed and using more processors
so as to attain optimality. Several upper bound and
lower bound results are presented, illustrating to what
extent using more processors can reduce the speed re-
quirement .

For EDF, we show that the speed requirement is
reduced to 2 - $$$ when there are p > 0 additional
processors. In general, when m is large, we find that no
optimal algorithm exists when the processor speed is less
than l/(2$--2) (which is roughly equal to 1.207
when p = 0). The main result in this paper is a new
scheduling algorithm which demands a smaller speed
requirement to attain optimality and admits a better
speed-processor trade-off than EDF. Precisely, when
there are p 2 0 extra processors, the speed requirement
is 2 - 2(m-lf+mP

(m+1)(m-1)frnP (i.e. 2 - & if p = 0). For
example, when m = 2 and there is no extra processor,
the speed requirement is If; when m = 2 and p = 1, the
speed requirement is 1.2. The improvement is rooted
at a simple yardstick schedule which results from an
attempt to estimate the optimal off-line schedule.

Like EDF, our new algorithm depends on the
relative ordering of the deadlines of jobs instead of
their actual values. We call such algorithms deadline-
ordered. In this paper we also show improved lower
bounds on the speed and processor requirements of
such kind of algorithms. When p extra processors
are available, the speed requirement is at least 1 /
(1 - (F)m + c(e)“-I). When m = 2 and p = 0,
this lower bound is equal to li; therefore, our algorithm
is actually the best possible deadline-ordered algorithm
in this case. Our work also implies that using speed-l
processors, any algorithm requires at least m - 1 extra
processors to achieve optimality. This result should be
compared with the previously known lower bound for
general algorithms [13], which states that at least m/4
extra processors must be used to achieve optimal&y.

As a summary, we illustrate in Figure 1 the speed-
processor trade-off achieved by EDF and our new algo
rithm, as well as the lower bounds for deadline-ordered
algorithms and general algorithms.

Related work: In the literature, the study of
using faster processors to enhance on-line scheduling
algorithms covers not only hard-deadline systems, but
also some less stringent requirements. Based on a
setting similar to the one considered in this paper,

Organization: The remainder of this paper is orga-
nized as follows. Section 2 serves as a warm-up, show-
ing that using more processors, EDF demands less on
processor speed to achieve optimality. Section 3 shows
a lower bound on the speed requirement of any opti-
mal on-line algorithm using m + p processors. Section 4
describes a simple way to estimate the optimal off-line
schedule, which is then used in Section 5 to derive a new
on-line algorithm attaining the improved results claimed
earlier. Section 6 shows new lower bounds for the class
of deadline-ordered on-line algorithms. Before we leave
this section, let us clarify how an on-line scheduling al-
gorithm operates. The algorithm is invoked whenever
aa interrupt occurs. An interrupt is either triggered by
the release of a job, or preset by the algorithm itself in
some previous invocation. The output of the algorithm
is a mapping from the jobs to the processors. The algo-
rithm is said to be optimal if it never misses a deadline
for any feasible job set, that is, any job set which ad-
mits a schedule which meets all the deadlines using m
speed-l processors.

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

Figure 1: Trade-offs between speed and processor when m = 5.

Kalyanasundaram and Pruhs [lo] have studied one-
processor scheduling with an objective to maximize
the benefits earned from jobs that meet the deadlines,
and Phillips et al. [13] have studied the multiprocessor
scheduling in view of average response time. There are
also a number of interesting results based on a single-
processor system in which jobs have unknown processing
time [3, lo]; the primary concern is. again on average
response time. Edmonds [6] recently extended these
works to a multiprocessor setting in which jobs are
parallelizable (i.e., jobs can be speeded up by using more
processors).

625

2 Speed-processor trade-off for EDF

With EDF, job assignment is done only when a job
is released or completed. Basically, whenever the
number of remaining jobs does not exceed the number of
processors, every job is assigned to a distinct processor;
otherwise, only those with the earliest deadlines are
assigned. In this section: we extend the work of Phillips
et al. 1131 to show that the speed requirement for EDF to
achieve optimal&y can be lowered when more processors
are used. In particular, we prove that EDF is optimal
if it is given m + p speed-(2 - $$$) processors: where
p is any nonnegative integer (Corollary 2.1). We also
show that this trade-off result is tight at the end of this
section (Lemma 2.2).

The following lemma generalizes a property given
in [13] about the work done in accordance with EDF,
as well as any “busy” scheduling algorithm (i.e. any al-
gorithm that produces a schedule satisfying that when-
ever there is an idling job that is not yet completed, all
processors must be working on other jobs). Using this
property, we obtain the trade-off result for EDF.

LEMMA 2.1. Consider any algorithm A using m speed-l
processors, and any busy scheduling algorithm A’ using
m + p speed-s processors, where s 1 2 - $$$. Suppose
A and A’ are each used to schedule a job set L. At
any time t; let d(t; t) denote the total work done on L:
up to t with A, and similarly A’(& t) with A’. Then
d’(L, t) 2 d(C, t).

Proof. We prove the lemma by contradiction. Assume
that at some time t, d’(L, t) < d(L, t). Then there
must be a job J such that d’({J},t) < d({J},t).
Denote r, as the release time of J. Without loss
of generality, we assume that d’(C ,rJ) 2 d(&r,)
(otherwise we replace t by r,). Consider the period
of time between r, and t. Let z be the amount of
time when A’ uses all processors available, and let y
be the rest of the time. Since A’ is a busy algorithm,
whenever A’ is not using all processors, J must be
worked on by one processor. Therefore,

SY 5 d’({J},t) < 4{J),t) I Z+Y.

Consider the work done for all jobs during the time
interval (r, : t). We have

s((m + p)z + y) 5 d’(.C: t) - d’(L, r,)

< A(.& t) - d(L, rJ) 5 m(z + y).

Combining the above inequalities, we have s(m +p)(z +

Y) < Pm+p- ~)(z+Y), which contradicts the bound
of s. 0

COROLLARY 2.1. Let p be any nonnegative integer.
EDF, when given m + p speed-s processors where s >
2 - $$, is optimal.

Proof. Suppose, for the sake of contradiction, that there
exists a feasible job set L: for which EDF causes the
deadline of a job J to be missed. Denote 4(J) as the
set of jobs in L: with deadlines earlier than J. Note that
4(J) can be scheduled by some off-line algorithm A,
and using EDF to schedule 4 (J) would again cause the
deadline of J to be missed. At the deadline of J, all
jobs are completed with A but not with EDF. This
contradicts Lemma 2.1. cl

LEMMA 2.2. (Tightness) Let p be any nonnegative in-
teger. EDF, when given m + p speed-s processors where
s<2-s, is not optimal.

Proof. It suffices to show a feasible job set for which
EDF fails to schedule all the jobs to meet the deadlines.
Consider a set of m + p + 1 jobs, all released at time
0. Among them, m + p jobs are %hort”, with required
work m - 1 and deadline m + p. The last job is “long)‘,
with required work m + p and with deadline m + p + e
for some E > 0. This job set is feasible as all deadlines
can be met by a simple schedule: Allocate a processor
solely for the long job, and allocate other processors for
the small jobs in a round-robin fashion. With EDF, the
m + p processors are each allocated to the short jobs
until all of them are completed. The time for the long
job to complete is (m- l+m+p)/s. Since s < 2- s,
(m - 1 + m + p) /s > m + p-t E for some E chosen suitably.
So EDF misses the deadline of the long job. 0

3 A lower bound for trading processor for
speed

In this section, we derive a lower bound for the speed
requirement of any on-line algorithm using m + p pro-
cessors. We show that such algorithms need speed-
&$‘& processors to achieve optimality, where k is
any integer between 0 and m. In particular, choosing
k = m/2, we obtain a speed lower bound of 6.
This result implies the lower bound of 1.2 given in (131
for the case using no extra processor. When m is large,
we can choose a suitable k so that the speed require-
ment approaches l/(2,/? - 2) _ In the special

626

case when p = 0, the bound is approximately 1.20’7, Suppose the speed of the processors are (1 - E) (km +
slightly improving the previous lower bound. m2)/(k2 +m’ i-pm) for some E > 0. Then the maximum

amount of work that can be done in each iteration is

LEMMA 3.1. No on-line algorithm using m + p speed- s(p+m+k’/m)-k

s processors is optimal when s < ,2~m,$?~m, where k is =
any integer between 0 and m.

(1 - E) (k2kmm: :a) (p + m + k*/m) - k

= m - (k + m)e.

Proof. To show this lower bound, we consider the
following repetitive list of jobs. Assume that the time
frame is divided into iterations, each of length 1. -4t
the beginning of each iteration, the following jobs are
released.

l m jobs-required work: 1 - k/m; deadline: at the
end of the iteration;

l k jobs-required work: 1; deadline: at the end of
the next iteration.

The number of iterations is determined by the adver-
sary. In the final iteration, there are m additional jobs.
They are released exactly after 1 - k/m units of time
has elapsed; each job requires k/m units of work and has
deadline at the end of this iteration. It is easy to see
that an off-line algorithm (using m speed-l processors)
can schedule all the jobs to meet their deadlines.

We define the critical moment of an iteration to be
the time when 1 - k/m units of time has elapsed. An
on-line algorithm (using m + p speed-s processors) does
not know whether an iteration is the final one or not
until it sees the additional jobs released at the critical
moment. Just before the critical moment, let w be the
amount of remaining work due to jobs with deadlines at
the end of the current iteration. Note that w cannot be
too large. Otherwise, if the current iteration is indeed
the final one, the additional jobs cannot be completed
in time. More precisely, the algorithm must maintain
k + w 5 s(m + p)$. In each iteration other than the
final one, the amount of work that can be done starting
from the critical moment is at most w + sk(k/m). Thus
the maximum amount of work that can be done in each
iteration is

(1 - i)s(m +p) + w + Sk(k)

I Cl- -ff-)s(m +p) + s(m + p); - k + skk m
= s(p+m+k2/m)-k.

Note that the total amount of work due to the jobs
released in each non-final iteration is exactly m. In
other words, the on-line algorithm fails to schedule at
least (k + m)E units of work after the first iteration, and
2(k + m)e after the second iteration. At the end of the
([k/((k + m)e)J + l)-st iteration, the on-line algorithm
has accumulated more than k units of work not yet
scheduled. Since the amount of work with deadline later
than the end of that iteration is only k, at least one of
the jobs with deadline at the end of that iteration misses
its deadline. 13

COROLLARY 3.1. When m is even, no on-line algo-
rithm using m + p speed-s processois is optimal when
s < 6/(5 + 4p/m).

Proof. Putting k = m/2 in Lemma 3.1 yields the
corollary directly. 0

When m is large enough, we can improve this
bound by choosing k more carefully. That is, when m
is arbitrarily large, we can choose k arbitrarily close
to GGG - m. This implies that the speed
requirement for an optimal algorithm using m + p
processors is at least 1/(2J%77K - 2).

4 Yardstick schedule versus off-line schedule

EDF is primarily based on a greedy strategy to drive
its speedy processors to meet the deadlines. It does not
care how the jobs are actuahy scheduled using m speed-
1 processors. Our new algorithm, called FR, performs
better by making reference to a yardstick schedule using
m speed-l processors. This yardstick schedule meets
the deadlines of any feasible job set, although it is not
a realistic schedule and cannot be used directly.

Note that an on-line algorithm does not know
the jobs in advance. At a particular time, a natural
yardstick it can refer to is the optimal off-line schedule
(using m speed-l processors) for the jobs released so
far. Yet polynomial time algorithms for computing the
optimal off-line schedule is known only in the special

627

3 ’
t

Tim completed is scheduled on a processor and the amount
A x i of work done for these jobs must equal to the amount

lob List B Xl
C: 7X

of time they had released. In other words: the amount
of work done for any job by the real scheduler cannot

Yardstick I exceed that by YS, contradicting the proposition that
Schcdulc Z B tX’- the real scheduler has done more work over all released

: Current time
jobs. 0

Figure 2: An example of yardstick schedule using 2 processors.
Crosses in the figure denote deadlines of the jobs. Jobs A and B LEMMA 4.2. Using m speed-l processors, YS produces

are released at time 0, while Job C at time 1. Note that C runs a schedule which does not miss any deadline for any
on both processors for 1 unit of time in the yardstick schedule. feasible job set.

Proof. Suppose that there is a feasible job set .C in

case when m = 2 [S]. Moreover, whenever a new job is which some jobs miss their deadlines under the schedule

released, the optimal schedule may change drastically, produced by YS. Among these jobs, let J be the job with

which then has little value to the on-line algorithm since the earliest deadline. Denote 4(J) as the subset of f

it cannot roll back its decision. in which jobs have deadlines earlier than the deadline

To arrive at a good yardstick schedule, we make of J. Consider the scheduling of h(J) by YS. Since YS

an unrealistic assumption that when a job J is under- determines the schedule of a job before examining any

worked (i.e., the work done on J is smaller than the job with later deadline, the scheduling of jobs in 4(J)

period of time since J is released), J can be speeded up is the same as the scheduling of Ic. Therefore, J still

by running on more than one processor simultaneously. misses its deadline when YS is used to schedule 4(J).

With this assumption, we can extend EDF to obtain an Also, 4(J) is’feasible since it is a subset of a feasible

on-line algorithm, denoted YS below, that can produce job set. This however contradicts Lemma 4.1 at the

a good yardstick schedule using m speed-l processors. deadline of J, since all jobs are completed in the optimal

YS is invoked when a job is released or completed. YS schedule but not by YS. cl

always considers the remaining jobs in ascending order
of the deadlines. Before scheduling a job J, YS takes
an extra step to examine whether J is under-worked.
If not, YS simply allocates one processor for J; if so,
YS allocates all remaining processors to work on J. In
the latter case, YS will be invoked again as soon as J
becomes no longer under-worked. See Figure 2 for an
example.

The assumption made by YS actually does not give
it too much power. In fact, we can prove that EDF using
m speed-(2 - $) processors can match the progress of
YS on every job at any time. In 55, we see that YS
serves as a yardstick for our new algorithm FR, which
uses less speedy processors to match the progress of YS
and completes every job no later than YS does.

Note that YS is not a “real” scheduler as it depends
on an unrealistic assumption. Yet YS is optimal since

5 FR-a less speed-demanding algorithm

processors are kept to be busy as far as possible in the By simulating the on-line algorithm YS, we can modify

following sense. EDF to adjust dynamically so as to achieve optimal&y
with less speedy processors. The new algorithm is called

LEMMA 4.1. At any time, the total amount of work FR. The reduced speed requirement is 2 - A, FR also

scheduled for all released jobs by any real scheduler using admits a trade-off between speed and processor. We

m speed-l processors cannot exceed that by YS. show that if p 2 0 extra processors are available, the
2(m--l)+mp speed requirement of FR becomes 2 - (m+lJ(m--lJ+mp

Proof. Suppose the contrary holds for some time period (95.2). For example, when m = 2 and p = 0, the speed
with respect to a real scheduler. Then within the time requirement is If; when m = 2 and p = 1, the speed
period, there must be a time when the real scheduler requirement is l-2.
schedules more processors to work than YS. .4t this In the full paper we will show that both results are
time YS must have some processors idle. By definition, tight, in the sense that FR is not optimal with slower
this can happen only if every released job that is not processors. The number of migrations induced by FR

628

is linear in terms of the number of jobs, comparable to 5.1 Optimality In the remainder of this section
that of EDF ($5.3). we show that FR is optimal when given m speed-s

As mentioned in the previous section, EDF using m
speed-(2 - A) processors can match the progress of YS
which uses m speed-l processors. In fact, in most cases,
EDF schedules a job to work much faster than YS, and
completes the job earlier. Notice that YS meets the
deadlines of all jobs and there is no need to work faster
than YS. The key idea of FR is to use a less greedy
strategy for jobs whenever these jobs have been “over-
scheduled”, as compared with the yardstick schedule.

processors, where s. 2 2 ‘- A. With the optimality
of YS (Lemma 4.2), it suffices to prove the following
lemma:

LEMMA 5.1. Consider the scheduling of any feasible job
set C using FR, as well as that using YS. At any time t,
for any job J E C: WFR(J) 5 Wys(J).

Roughly speaking, FR attempts to apply EDF to
schedule the jobs. This allows FR, using speed-s pro-
cessors for some s > 2 - &, to outperform any speed-
1 algorithm (and YS) on jobs with earlier deadlines as
quickly as possible. However, when the remaining work
of such a job J, denoted by WFR(J), becomes only a
small fraction (precisely, s/m) of the remaining work
of J in the yardstick schedule, FR deliberately slows
down its execution as follows. Whenever YS allocates
k 2 1 processors to J, FR allocates k/m of a processor
for it. Thus, the ratio between WFR(J) and Wys (J) re-
mains to be s/m until J completes. As a result of this
slowdown, jobs with later deadlines can be started ear-
lier than in EDF, and they can eventually be completed
by FR using less speedy processors.

Proof. We prove this lemma by contradiction. Without
loss of generality, suppose the job Jo with the latest
deadline in .C is the only job failing to satisfy the lemma
(otherwise we find the job J with the earliest deadline
violating the lemma, and replace C with the subset
of L with deadlines no later than J). Let T denote the
release time of Jo. Let t be the first time such that

WFR(JO) = WYS(JO) at t, and Wm(Jo) > Wrs(Jo)
right after t. That is, YS makes more progress on JO
than FR starting from t. Note that Jo must be in full
mode at time t (because once a job J has switched to
reduced mode, WFR(J) = (s/m)Wys (J)). The only
way YS makeS more progress on Jo from t onward is to
use multiple (1 2) processors for JO at t. Therefore, JO
is under-worked by YS at t. We observe a number of
interesting properties:

The algorithm FR is illustrated in Algorithm 1.
Once a job is released, it is said to be in “full” mode.
At the time when W.GR(J) = (s/m)Wys(J), the job is
said to be in “reduced” mode. Jobs in reduced mode
are always allocated in a specific processor, which is
denoted by Pl. In 35.1 we see that speed-(2 - &)
processors are sufficient to guarantee that each job
eventually switches to reduced mode, and completes
exactly when it completes in the yardstick schedule.

0)

(2)

(3)

The amount of work YS has scheduled on JO up
to t, which is equal to the amount of work FR has
scheduled on JO, is strictly less than t - T.

At t, every job other than Jo is either already
completed by YS (as well as by FR), or not
under-worked and selected for execution by YS.
Otherwise, YS cannot selects Jo--the job with the
latest deadline-for execution. We call these two
categories of jobs C and R respectively. Note

that [RI 5 m - 2.

It is worth-mentioning that FR, like some other
well-known scheduling algorithms such as Balance and
Equi-partition (see e.g., [3,6, lo]), takes advantage of
the time-sharing capability of processors. Yet FR only
needs time-sharing in at most one processor (i.e., Pl).
For convenience, the discussion in Algorithm 1 allows
Pl to be time-shared by up to m jobs. In the full
paper, we will give a small modification to FR, with
which at most two jobs are scheduled to time-share Pr.
This modification is not only of theoretical interest. In
practice, time-sharing among many jobs causes a lot of

Let t’ be any time before t. Consider the amount
of work scheduled for JO, as well as any job in C,
during the period of time (t’, t). The amount of
work scheduled with YS is at least that with FR.
This is because at t, Wys(Jo) = WFR(JO) and

Wys(J) = WFR(J) = 0 for every job J in C; and
at t’, IVys (J) 2 WFR(J) for every job J.

overheads.

We partition the time period from T to t according
to the processor share FR allocates to JO. For each
0 < i 5 m, we denote Zi as the total length of time
periods during which FR allocates i/m of a processor

629

Algorithm 1 FR
1: Update mode(J) for each job J.
2: Simulate YS.
3: for all jobs J which YS schedules k 2 1 processors to work on J do
4: if mode(J)= full then
5: Schedule J to one processor, using processors other than Pt if possible.
6: else
7: Schedule J to k/m of 9.
8: while some processor other than F’f is not used and some full mode job is not scheduled do
9: Schedule the job with the earliest deadline among these jobs to that processor.

10: if Pl is not fully used and some full mode job is not scheduled then
11: Schedule the job with the earliest deadline among these jobs to all remaining share of A.
12: Preset an interrupt to occur at the earliest of the following: an interrupt preset by YS, the first time when a job would

complete, and the first time when a job would change mode.

to Jo. The amount of work FR scheduled on JO up to
time t is Cz”=, s(i/m)zi. By (l), this is strictly less than
t - T = Cz”=, xi. We thus obtain an upper bound on the
amount of time when FR uses one full processor for JO.

m-1

(5-l) (s - 1)x, <c 1-z xi
i=o (>

On the other hand, we observe that FR has a
tendency to allocate a full processor to JO and thus x,
has a sufficiently large lower bound, contradicting the
upper bound above.

For 0 5 j < JR(, define rj as the first time

after r when j or more jobs have been releases. For
IRI + 1 2 j 5 m - 1, we define rj to be t. Note that
TO = T. Denote xi,j as the total length of time periods in
(rj, rj+i) during which FR allocates i/m of a processor
to Jo. Note that zi = CT=, “if. In the following
discussion, we inductively show for 4 = m - 1 down
to 0 a relation concerning the period of time (T+, t):

(5.2) 2 (I.- g) 2Zi,j 5 (~-l)yxm,j.

i=o j=4 j=&

When I$ = 0, (5.2) leads to:

g (l- Z) xi < (s - l)xm.

We thus have a contradiction with (5.1). This shows
that JO does not exist and Lemma 5.1 holds. cl

The inductive proof of (5.2) goes from the trivial
case where 4 = m - 1, in which all xi,m-i are zero
(since /El 2 m - 2). Assuming that (5.2) holds for

40 5 m - 1, we consider the case for 40 - 1. We add
up (5.2) for all 4 2 &, to produce

(5.3)

m-l

c
I=0

40 + l)Xi,j

m-l

5 (S - 1) C (j - 40 + l)Xm,j.

j=&-1

We analyze how much work YS has performed on all
jobs, i.e. {Je}URUC, during the time period (~-+~-i,t).
With respect to this period of time, let we and wi be the
amount of work done for jobs in C with YS when JO runs
on a partial and full processor respectively according to
FR. By (3), the amount of work done for JO with YS
is at least that with FR, i.e. cc”=, ~~=.-& s(i/m)si,j.
The amount of work done with YS for jobs in C
is we + wi. For a job in R released at rj on or
after r@O -r, exactly t - Tj work is done since the job
is not under-worked at t. Similarly, for a job in R
released before r+,-i , at least t - r+,-i work is done.
This leads to at least Cc”=, ~~=-,& jxi,j work done
for jobs in 72. On the other hand, YS can do at most

m(t - ~+l) = m Cz>i-l xi,j work during the period
of time, producing the following relationship.

m m-l . m m-l

(5.4) c c
i=O j=&-1

zXi,j + C C jXi,j
i=O j=&-1

+wo+wl <rng mc Xij

i=O j=&-1

We obtain another relationship concerning the time

period (rbO-i, t) when we study the work on C with
FR. Whenever FR uses less than one processor for JO,

630

no processor can be idle (since Jc is still in full mode).
Between rj and Tj+l , only jobs released on or before Tj

can be scheduled since other jobs are released on or
after rj . So only j processors can be used for jobs in R.
Exactly i/m processors are used for Jo for a period
of length 2i.j. All the remaining processors must be
scheduled for executing jobs in C. By definition, FR
ensures that whenever k processors is used for a job
with YS, at least k/m processors are used for that job
in FR. Therefore, for the time when one processor is
scheduled for JO, at least (s/m)vi work is scheduled
for C. On the other hand, we know from (3) that the
amount of work done on C by FR does not exceed that
by YS (i.e. wg + ~1). Therefore,

(5.5) S *$ *$(m -j - i)Xi,j + ;UQ

j=@o-I i=O

5 wo + Wl.

Together with the fact that s 2 2 - A and

wo _< c:;’ c,-& xi, we obtain the following lower

bound for CT=.,!i-i Zm,j after eliminating wc and w1
from (5.3)-(5.5).

m-l

< (S - 1) C Xm,j

j=&-1

This completes the inductive proof of (5.2), since
the extra term on the left of the inequality above is
never negative.

5.2 Trade-off between speed and processor In
this section we sketch the effect when m + p processors
are available to the FR algorithm (when we know that
the job set is feasible using only m processors). Note
that the algorithm is still well defined. Although p extra
processors are available to FR, we still use YS without
any extra processor as the yardstick.

With more processors, FR achieves optimality with
less speedy machines. More precisely, we show that FR
is optimal when given m + p speed-s processors, where
s>2- 2(m-l)+mp

(m+l)(m-l)+mp' The proof is similar to 55.1. In
particular, we show Lemma 5.1 under this setting, by a
contradiction between inequalities (5.1) and (5.2).

Note that (l)-(3) still hold. Since inequalities (5.1),
(5.3) and (5.4) d o not involve the amount of work done
by FR for jobs other than JO: these inequalities also hold
under this setting.

To complete the inductive proof of (5.2), we im-
prove (5.5) as follows. -4gain we study the work done
on C with FR. Whenever FR schedules less than one
processor for JO, no processor can be idle. Since p more
processors are available, this implies that there are more
processors remaining which must be scheduled for exe-
cuting jobs in C. This results in the following inequality:

.._ _ .._ _
(5.6) SC c (mfp-j-

i=O j=&-I

i)Xi,j + :Wl

I WO-tWl.

Together with the fact that s 2 cm~ln;$~~;tP,p

and the bound wc 5 Czi’ C,“>’ xi,j; we obtain from
(5.3), (5.4) and (5.6) the foliowing lower bound for

Cy=;i-l Xm,j-

772-l m-l , . \ m-1

C “m,j
j=oo--I

where

(s - 1)(2m + p - 2)
T = (m - $0 - s + l)(m - l)*(m +p - 1)

(i((m - l)(m+p-2)-j(m+p-1))fjmp)

Comparing with (5.2), we have an extra term T
on the left of the inequality. T is never negative,
completing the inductive proof of (5.2) and thus the
proof of Lemma 5.1.

5.3 Number of migrations To bound the num-
ber of migrations, FR need to be more careful when
it chooses a processor for each scheduled job. In the
previous discussion, the scheduling of the processor PI
is completely determined. Jobs allocated to other pro-
cessors are always allocated a full processor. We show
that the following simple allocation strategy for pro-
cessors other than Pl would guarantee that only O(n)
migrations are required, where n is the number of jobs
released. -4fter the algorithm is invoked and the set of
jobs to be executed is determined, it compares the jobs

631

to be executed in processors other than PI before and
after the invocation. For jobs which is allocated a pro-
cessor both before and after the algorithm is invoked, it
simply stays in the same processor. The remaining jobs
are allocated arbitrarily in the remaining processors.

Now we bound the number of migrations required OPT I;.. . ..I..’ : ‘.

by the algorithm for jobs. Jobs in reduced mode always 3

work on the same processor and thus need no migration. A X

Each job may change to reduced mode only once, so in
total we have at most n migrations when jobs change
mode. For full mode jobs, FR always schedules the
m - 1 earliest deadline jobs which are in full mode in
the processors other than Pl. Therefore the schedule in
the first m - 1 processors is exactly the same as an EDF
schedule in which

X

Figure 3: Lower bound example when m = 3. The job lists f and
l m- l processors are available. ICI are illustrated, together with a possible schedule by an off-line

algorithm.
l The number of jobs, release times and deadlines of

all jobs are exactly the same as that of the input
for FR; Proof. Consider a collection of feasible job sets which

l The processing time of each job is the amount of are identical except the deadlines; the deadlines, though

work for the job which is scheduled to processors having different values, have the same relative order-

other than Pl in FR; ing. The behavior of a deadline-ordered algorithm is
the same for any of such job sets. Our lower bound ar-

The number of migrations needed by this EDF schedule gument exploits the this feature of deadline-ordered al-

is O(n). Therefore, in FR, jobs working in the first gorithms. We construct the following job set denoted L,

m - 1 processors need only O(n) migrations. Finally, which is characterized by a small positive constant c.

full mode jobs may need to migrate to or from Pl,

but there can only be one such migration per release l One job for each 0 5 k < m - 1; release time: 0,

and mode change, amounting to at most 2n migrations. required work: 1, deadline (m/(m - l))m-l + kc;

Adding up all these, the number of migrations is O(n).
l One job for each 1 5 k 2 m - 1; release time: 0,

6 Lower bound result for deadline-ordered
required work: (m/(m - l))k, deadline (m/(m -

algorithms
l))“-1 + (m - 1 + k)c

Both EDF and FR are deadline-ordered algorithms, Since all jobs have the same release time and have

with which the scheduling of jobs depends only on the deadlines before (m/(m - l))“-l, an optimal off-line

relative order of job deadlines instead of their exact algorithm may simply schedule each job in turn, using

values. For such kind of algorithms, we obtain new up the period of time from 0 to (m/(m - l))m-’ of a
lower bound results on the amount of extra speed and processor before considering the next processor. Since

processors to achieve optimality: the total amount of work is m + CT=<‘(m/(rn - l))k =
m(m/(m-l))n-l, m processors suffices to complete all

THEOREM 6.1. No deadline-ordered algorithm is opti-
jobs without missing any deadline.

ma1 if only p extTa pTocessoTs are given and all proces- For each 0 5 j 2 m - 1, consider the following job
SOTS are speed-s, where set Lj:

.
I

s < 1_ (cgL)m + $(~)??a-1 .
l One job for each 0 5 k 5 m - 1; release time: 0,

required work: 1, deadline (m/(m - l))j + kc;

632

.

BY

One job for each 1 5 Ic 5 j; release time: 0,

required work: (m/(m - 1))‘; deadline (m/(m -
1))j + (m - 1 + k)E.

One job for each j + 1 5 k 5 m - 1; release

time: 0, required work: (m/(m - l))“, deadline

2hl(m - l))m-’ + (7-n - I + k)E.

an argument similar to the feasibility of C, the
first m + j jobs can all be completed by (m/(m -
l))j by an off-line optimal algorithm. The remaining
jobs can be scheduled exactly as .L starting at time
(m/(m - l))m-1. Thus Lj is feasible. See Figure 3
for an example.

Note that the collection of two jobs (L, .Cj} satis-
fies the requirements set at the beginning of the proof,
and thus are scheduled exactly the same by a deadline-
ordered on-line algorithm. Since the algorithm is opti-
mal, the first m + j jobs must all be completed before
the deadline of the (m + j)-th job in Lj, i.e. before,time
(m/(m - 1))j + (m - 1-t j)E.

This implies that, during the execution of the
deadline-ordered on-line algorithm for .C, only m-j jobs
remain in the system, and thus at least j processors
must sit idle, after time (m/(m - l))j + (m - 1 +
j)~. By using a small enough E, the sum of non-idle
time of all processors can be made arbitrarily close to
p + (m - 1) + m(m/(m - l))‘+‘. In these time the
algorithm must completes all jobs, which total work is
m(m/(m - l))“-I- Dividing these two quantities gives
the desired lower bound for the speed requirement of a
deadline-ordered on-line algorithm. 0

Putting s = 1 in Theorem 6.1, we obtain a lower
bound for the number of speed-l processors to achieve
optima&y.

COROLLARY 6.1. Using speed-l processors, a deadline-

ordered algon-thm needs at least m - I extra processors
to be optimal.

References

[l] S. .4ibers, Better bounds for online sched&ing, in Prc+
ceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, 1997, pp. 130-139.

[2] M. A. Bender, S. Chakrabarti, and S. Muthukrish-
na.n, Flow and stretch metrics for scheduling contin-
uous job streams, in Proceedings of the Ninth -4nnual
ACM-SIAM Symposium on Discrete Algorithms, 1998,

I31

[41

151

PI

171

PI

PI

PO1

WI

I121

P31

P. Berman and C. Coulston, Speed is more powerful

than clairvoyance, in. Proceedings of the Sixth Scan-
dinavian Workshop on -4lgorithm Theory, 1998. To
appear.
M. L. Dertouzos, Control robotics: the procedural
control of physical processes, in Proceedings of IFIP
Congress, 1974, pp. 807-813.
M. L. Dertouzos and A. K. L. Mok, Multiprocessor on-
line scheduling of hard-real-time tasks, IEEE nansac-
tions on Software Engineering, 15 (1989), pp. 1497-
1506.
J. Edmonds, Non-clairvoyant multiprocessor schedul-
ing of jobs with arbitrary arrival times and changing
ezecution characteristics. Manuscript.
J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng,
Non-clairvoyant multiprocessor scheduling of jobs with
changing ezecution characteristics (e&ended abstract),
in Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, 1997, pp. 120-
129.
M. R. Garey and D. S. Johnson, Computers and in-
tractability: a guide to the theoy of NP-completeness,
W. H. Freeman, 1979.
D. Gusfield, Bounds for naive multiple machine
scheduling with release times and deadlines, Journal of
.4lgorithms, 5 (1984), pp. l-6.
B. Kalyanasundaram and K. R. Pruhs, Speed is as pow-
erful as clairvoyance, in Proceedings of the 36th An-
nual Symposium on Foundations of Computer Science,
1995, pp. 214-221.
B. Kalyanasundaram and K. R. Pruhs, Minimizing
flow time nonclairvoyantly, in Proceedings of the 38th
Annual Symposium on Foundations of Computer Sci-
ence, 1997, pp. 345-352.
G. Koren, D. Shasha, and S. C. Huang, MOCA: A mul-
tiprocessor on-line competitive algorithm for real-time
system scheduling, in Proceedings of the Fourteenth
Real-Time Systems Symposium, 1993, pp. 172-181.
C. -4. Phillips, C. Stein, E. Torng, and J. Wein, Opti-
mal time-critical scheduling via resource augmentation,
in Proceedings of the *enty-Ninth Annual ACM Sym-
posium on Theory of Computing, 1997, pp. 140-149.

pp. 270-279.

