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Trade-offs between Speed and Processor 
in Hard-deadline Scheduling 

Tak Wah Lam* Kar Keung Tot 

Abstract 

This paper revisits the problem of on-line scheduling 
of sequential jobs with hard deadlines in a preemptive, 
multiprocessor setting. An on-line scheduling algorithm 
is said to be optimal if it can schedule any set of jobs 
to meet their deadlines whenever it is feasible in the off- 
line sense. It is known that the earliest-deadline-first 
strategy (EDF) is optimal in a one-processor setting, 
and there is no optimal on-line algorithm in an m- 
processor setting where m 1 2. Recent work (Phihips 
et al. STOC 971 however reveals that if the on-line 
algorithm is given faster processors, EDF is actually 
optimal for all m (e.g., when m = 2, it suffices to use 
processors 1.5 times as fast). 

This paper initiates the study of the trade-off be- 
tween increasing the speed and using more processors in 
deriving optimal on-line scheduling algorithms. Several 
upper bound and lower bound results are presented. For 
example, the speed requirement of EDF can be reduced 
to2-s when it is given p 2 0 extra processors. 
The main result is a new on-line algorithm which de- 
mands less speedy processors so as to attain optimality 
(e.g., when m = 2, the speed requirement is 19) and ad- 
mits a better speed-processor trade-off than EDF (e.g., 
when m = 2 and p = 1, the speed requirement is 1.2). 
In Eeneral, no ontimal alnorithm exists when the sneed 
factor is less than l/(27! - 2). 

1 Introduction 

Problems of on-line scheduling have a rich literature 
(see e.g., [1,2,7,11,13] for some recent results). In 
this paper we consider a classical scheduling problem 
encountered in a hard-deadline real-time environment. 
There is a pool of m identical processors. At any time 
a job can be released, which is sequential in nature 
(i.e. to be run on at most one processor at any time), 
and must be completed before a certain deadline. The 
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release time of a job, as well as the required amount 
of work and the deadline, is known only when the job 
is released. This model has been considered by many 
authors (see e.g., [9,10,12,13]) for scheduling with 
deadlines. Our goal is to devise an on-line algorithm to 
schedule such jobs so that their deadlines can all be met. 
We allow preemptive scheduling, which is commonly 
used in computer systems. I\rot every set of jobs can 
be scheduled to meet their deadlines. We expect an 
on-line algorithm to meet the deadline requirements 
whenever it is feasible in the off-line sense. Such an 
on-line algorithm is said to be optimal. 

When there is only one processor for scheduling, the 
earliest-deadline-first strategy (EDF) gives an optimal 
algorithm 141. However, when there are two or more 
processors, it is known that no on-line algorithm is op- 
timal [S]. Recently, there are studies on the effect of 
giving the on-line algorithm faster processors in differ- 
ent scheduling problems [3,6,10,13]. Intuitively, using 
faster processors compensates the on-line algorithm for 
the lack of future information. In the following, we as- 
sume that the off-line algorithm is given processors of 
speed-l and the on-line algorithm is given processors of 
speed-s for some s 1 1 (precisely, a speed-s processor 
can process CC units of work in z/s units of time). Re- 
garding hard-deadline scheduling in particular, Phillips 
et al. [13] showed that, when using processors of speed- 
(2 - l/m), EDF is actually optimal.’ That means, for 
a two-processor system, the speed requirement is 1.5. 
Phillips et al. [13] also showed a lower bound of 1.2 for 
all m 2 2. 

Another way to facilitate the on-line algorithm is 
to use more processors. However, due to the sequential 
nature of the jobs, more processors may not improve 
the performance. It is known that EDF cannot achieve 
optimality even if it is allowed to use up to O(m) speed-l 

‘Phillips also showed that the least-laxity-first (LLF) strategy 
is optimal when given speed-(2 - l/m) processors. However, 
LLF may schedule jobs to migrate among processors infinitely 
frequently, whereas EDF (as well as our new algorithm) requires 
only O(n) migrations for a set of n jobs. 
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processors [13]. -4s far as we know, no on-line algorithm 
using O(m) speed-l processors is optimal. 

This paper initiates the study of the trade-off be- 
tween increasing the speed and using more processors 
so as to attain optimality. Several upper bound and 
lower bound results are presented, illustrating to what 
extent using more processors can reduce the speed re- 
quirement . 

For EDF, we show that the speed requirement is 
reduced to 2 - $$$ when there are p > 0 additional 
processors. In general, when m is large, we find that no 
optimal algorithm exists when the processor speed is less 
than l/(2$--2) (which is roughly equal to 1.207 
when p = 0). The main result in this paper is a new 
scheduling algorithm which demands a smaller speed 
requirement to attain optimality and admits a better 
speed-processor trade-off than EDF. Precisely, when 
there are p 2 0 extra processors, the speed requirement 
is 2 - 2(m-lf+mP 

(m+1)(m-1)frnP (i.e. 2 - & if p = 0). For 
example, when m = 2 and there is no extra processor, 
the speed requirement is If; when m = 2 and p = 1, the 
speed requirement is 1.2. The improvement is rooted 
at a simple yardstick schedule which results from an 
attempt to estimate the optimal off-line schedule. 

Like EDF, our new algorithm depends on the 
relative ordering of the deadlines of jobs instead of 
their actual values. We call such algorithms deadline- 
ordered. In this paper we also show improved lower 
bounds on the speed and processor requirements of 
such kind of algorithms. When p extra processors 
are available, the speed requirement is at least 1 / 
(1 - (F)m + c(e)“-I). When m = 2 and p = 0, 
this lower bound is equal to li; therefore, our algorithm 
is actually the best possible deadline-ordered algorithm 
in this case. Our work also implies that using speed-l 
processors, any algorithm requires at least m - 1 extra 
processors to achieve optimality. This result should be 
compared with the previously known lower bound for 
general algorithms [13], which states that at least m/4 
extra processors must be used to achieve optimal&y. 

As a summary, we illustrate in Figure 1 the speed- 
processor trade-off achieved by EDF and our new algo 
rithm, as well as the lower bounds for deadline-ordered 
algorithms and general algorithms. 

Related work: In the literature, the study of 
using faster processors to enhance on-line scheduling 
algorithms covers not only hard-deadline systems, but 
also some less stringent requirements. Based on a 
setting similar to the one considered in this paper, 

Organization: The remainder of this paper is orga- 
nized as follows. Section 2 serves as a warm-up, show- 
ing that using more processors, EDF demands less on 
processor speed to achieve optimality. Section 3 shows 
a lower bound on the speed requirement of any opti- 
mal on-line algorithm using m + p processors. Section 4 
describes a simple way to estimate the optimal off-line 
schedule, which is then used in Section 5 to derive a new 
on-line algorithm attaining the improved results claimed 
earlier. Section 6 shows new lower bounds for the class 
of deadline-ordered on-line algorithms. Before we leave 
this section, let us clarify how an on-line scheduling al- 
gorithm operates. The algorithm is invoked whenever 
aa interrupt occurs. An interrupt is either triggered by 
the release of a job, or preset by the algorithm itself in 
some previous invocation. The output of the algorithm 
is a mapping from the jobs to the processors. The algo- 
rithm is said to be optimal if it never misses a deadline 
for any feasible job set, that is, any job set which ad- 
mits a schedule which meets all the deadlines using m 
speed-l processors. 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

Figure 1: Trade-offs between speed and processor when m = 5. 

Kalyanasundaram and Pruhs [lo] have studied one- 
processor scheduling with an objective to maximize 
the benefits earned from jobs that meet the deadlines, 
and Phillips et al. [13] have studied the multiprocessor 
scheduling in view of average response time. There are 
also a number of interesting results based on a single- 
processor system in which jobs have unknown processing 
time [3, lo]; the primary concern is. again on average 
response time. Edmonds [6] recently extended these 
works to a multiprocessor setting in which jobs are 
parallelizable (i.e., jobs can be speeded up by using more 
processors). 
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2 Speed-processor trade-off for EDF 

With EDF, job assignment is done only when a job 
is released or completed. Basically, whenever the 
number of remaining jobs does not exceed the number of 
processors, every job is assigned to a distinct processor; 
otherwise, only those with the earliest deadlines are 
assigned. In this section: we extend the work of Phillips 
et al. 1131 to show that the speed requirement for EDF to 
achieve optimal&y can be lowered when more processors 
are used. In particular, we prove that EDF is optimal 
if it is given m + p speed-(2 - $$$) processors: where 
p is any nonnegative integer (Corollary 2.1). We also 
show that this trade-off result is tight at the end of this 
section (Lemma 2.2). 

The following lemma generalizes a property given 
in [13] about the work done in accordance with EDF, 
as well as any “busy” scheduling algorithm (i.e. any al- 
gorithm that produces a schedule satisfying that when- 
ever there is an idling job that is not yet completed, all 
processors must be working on other jobs). Using this 
property, we obtain the trade-off result for EDF. 

LEMMA 2.1. Consider any algorithm A using m speed-l 
processors, and any busy scheduling algorithm A’ using 
m + p speed-s processors, where s 1 2 - $$$. Suppose 
A and A’ are each used to schedule a job set L. At 
any time t; let d(t; t) denote the total work done on L: 
up to t with A, and similarly A’(& t) with A’. Then 
d’(L, t) 2 d(C, t). 

Proof. We prove the lemma by contradiction. Assume 
that at some time t, d’(L, t) < d(L, t). Then there 
must be a job J such that d’({J},t) < d({J},t). 
Denote r, as the release time of J. Without loss 
of generality, we assume that d’(C ,rJ) 2 d(&r,) 
(otherwise we replace t by r,). Consider the period 
of time between r, and t. Let z be the amount of 
time when A’ uses all processors available, and let y 
be the rest of the time. Since A’ is a busy algorithm, 
whenever A’ is not using all processors, J must be 
worked on by one processor. Therefore, 

SY 5 d’({J},t) < 4{J),t) I Z+Y. 

Consider the work done for all jobs during the time 
interval (r, : t). We have 

s((m + p)z + y) 5 d’(.C: t) - d’(L, r,) 

< A(.& t) - d(L, rJ) 5 m(z + y). 

Combining the above inequalities, we have s(m +p)(z + 

Y) < Pm+p- ~)(z+Y), which contradicts the bound 
of s. 0 

COROLLARY 2.1. Let p be any nonnegative integer. 
EDF, when given m + p speed-s processors where s > 
2 - $$, is optimal. 

Proof. Suppose, for the sake of contradiction, that there 
exists a feasible job set L: for which EDF causes the 
deadline of a job J to be missed. Denote 4(J) as the 
set of jobs in L: with deadlines earlier than J. Note that 
4(J) can be scheduled by some off-line algorithm A, 
and using EDF to schedule 4 (J) would again cause the 
deadline of J to be missed. At the deadline of J, all 
jobs are completed with A but not with EDF. This 
contradicts Lemma 2.1. cl 

LEMMA 2.2. (Tightness) Let p be any nonnegative in- 
teger. EDF, when given m + p speed-s processors where 
s<2-s, is not optimal. 

Proof. It suffices to show a feasible job set for which 
EDF fails to schedule all the jobs to meet the deadlines. 
Consider a set of m + p + 1 jobs, all released at time 
0. Among them, m + p jobs are %hort”, with required 
work m - 1 and deadline m + p. The last job is “long)‘, 
with required work m + p and with deadline m + p + e 
for some E > 0. This job set is feasible as all deadlines 
can be met by a simple schedule: Allocate a processor 
solely for the long job, and allocate other processors for 
the small jobs in a round-robin fashion. With EDF, the 
m + p processors are each allocated to the short jobs 
until all of them are completed. The time for the long 
job to complete is (m- l+m+p)/s. Since s < 2- s, 
(m - 1 + m + p) /s > m + p-t E for some E chosen suitably. 
So EDF misses the deadline of the long job. 0 

3 A lower bound for trading processor for 
speed 

In this section, we derive a lower bound for the speed 
requirement of any on-line algorithm using m + p pro- 
cessors. We show that such algorithms need speed- 
&$‘& processors to achieve optimality, where k is 
any integer between 0 and m. In particular, choosing 
k = m/2, we obtain a speed lower bound of 6. 
This result implies the lower bound of 1.2 given in (131 
for the case using no extra processor. When m is large, 
we can choose a suitable k so that the speed require- 
ment approaches l/(2,/? - 2) _ In the special 
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case when p = 0, the bound is approximately 1.20’7, Suppose the speed of the processors are (1 - E) (km + 
slightly improving the previous lower bound. m2)/(k2 +m’ i-pm) for some E > 0. Then the maximum 

amount of work that can be done in each iteration is 

LEMMA 3.1. No on-line algorithm using m + p speed- s(p+m+k’/m)-k 

s processors is optimal when s < ,2~m,$?~m, where k is = 
any integer between 0 and m. 

(1 - E) ( k2kmm: :a) (p + m + k*/m) - k 

= m - (k + m)e. 

Proof. To show this lower bound, we consider the 
following repetitive list of jobs. Assume that the time 
frame is divided into iterations, each of length 1. -4t 
the beginning of each iteration, the following jobs are 
released. 

l m jobs-required work: 1 - k/m; deadline: at the 
end of the iteration; 

l k jobs-required work: 1; deadline: at the end of 
the next iteration. 

The number of iterations is determined by the adver- 
sary. In the final iteration, there are m additional jobs. 
They are released exactly after 1 - k/m units of time 
has elapsed; each job requires k/m units of work and has 
deadline at the end of this iteration. It is easy to see 
that an off-line algorithm (using m speed-l processors) 
can schedule all the jobs to meet their deadlines. 

We define the critical moment of an iteration to be 
the time when 1 - k/m units of time has elapsed. An 
on-line algorithm (using m + p speed-s processors) does 
not know whether an iteration is the final one or not 
until it sees the additional jobs released at the critical 
moment. Just before the critical moment, let w be the 
amount of remaining work due to jobs with deadlines at 
the end of the current iteration. Note that w cannot be 
too large. Otherwise, if the current iteration is indeed 
the final one, the additional jobs cannot be completed 
in time. More precisely, the algorithm must maintain 
k + w 5 s(m + p)$. In each iteration other than the 
final one, the amount of work that can be done starting 
from the critical moment is at most w + sk(k/m). Thus 
the maximum amount of work that can be done in each 
iteration is 

(1 - i)s(m +p) + w + Sk(k) 

I Cl- -ff-)s(m +p) + s(m + p); - k + skk m 
= s(p+m+k2/m)-k. 

Note that the total amount of work due to the jobs 
released in each non-final iteration is exactly m. In 
other words, the on-line algorithm fails to schedule at 
least (k + m)E units of work after the first iteration, and 
2(k + m)e after the second iteration. At the end of the 
([k/((k + m)e)J + l)-st iteration, the on-line algorithm 
has accumulated more than k units of work not yet 
scheduled. Since the amount of work with deadline later 
than the end of that iteration is only k, at least one of 
the jobs with deadline at the end of that iteration misses 
its deadline. 13 

COROLLARY 3.1. When m is even, no on-line algo- 
rithm using m + p speed-s processois is optimal when 
s < 6/(5 + 4p/m). 

Proof. Putting k = m/2 in Lemma 3.1 yields the 
corollary directly. 0 

When m is large enough, we can improve this 
bound by choosing k more carefully. That is, when m 
is arbitrarily large, we can choose k arbitrarily close 
to $GG$G - m. This implies that the speed 
requirement for an optimal algorithm using m + p 
processors is at least 1/(2J%77K - 2). 

4 Yardstick schedule versus off-line schedule 

EDF is primarily based on a greedy strategy to drive 
its speedy processors to meet the deadlines. It does not 
care how the jobs are actuahy scheduled using m speed- 
1 processors. Our new algorithm, called FR, performs 
better by making reference to a yardstick schedule using 
m speed-l processors. This yardstick schedule meets 
the deadlines of any feasible job set, although it is not 
a realistic schedule and cannot be used directly. 

Note that an on-line algorithm does not know 
the jobs in advance. At a particular time, a natural 
yardstick it can refer to is the optimal off-line schedule 
(using m speed-l processors) for the jobs released so 
far. Yet polynomial time algorithms for computing the 
optimal off-line schedule is known only in the special 
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3 ’ 
t 

Tim completed is scheduled on a processor and the amount 
A x i of work done for these jobs must equal to the amount 

lob List B Xl 
C: 7X 

of time they had released. In other words: the amount 
of work done for any job by the real scheduler cannot 

Yardstick I exceed that by YS, contradicting the proposition that 
Schcdulc Z B tX’- the real scheduler has done more work over all released 

: Current time 
jobs. 0 

Figure 2: An example of yardstick schedule using 2 processors. 
Crosses in the figure denote deadlines of the jobs. Jobs A and B LEMMA 4.2. Using m speed-l processors, YS produces 

are released at time 0, while Job C at time 1. Note that C runs a schedule which does not miss any deadline for any 
on both processors for 1 unit of time in the yardstick schedule. feasible job set. 

Proof. Suppose that there is a feasible job set .C in 

case when m = 2 [S]. Moreover, whenever a new job is which some jobs miss their deadlines under the schedule 

released, the optimal schedule may change drastically, produced by YS. Among these jobs, let J be the job with 

which then has little value to the on-line algorithm since the earliest deadline. Denote 4(J) as the subset of f 

it cannot roll back its decision. in which jobs have deadlines earlier than the deadline 

To arrive at a good yardstick schedule, we make of J. Consider the scheduling of h(J) by YS. Since YS 

an unrealistic assumption that when a job J is under- determines the schedule of a job before examining any 

worked (i.e., the work done on J is smaller than the job with later deadline, the scheduling of jobs in 4(J) 

period of time since J is released), J can be speeded up is the same as the scheduling of Ic. Therefore, J still 

by running on more than one processor simultaneously. misses its deadline when YS is used to schedule 4(J). 

With this assumption, we can extend EDF to obtain an Also, 4(J) is’feasible since it is a subset of a feasible 

on-line algorithm, denoted YS below, that can produce job set. This however contradicts Lemma 4.1 at the 

a good yardstick schedule using m speed-l processors. deadline of J, since all jobs are completed in the optimal 

YS is invoked when a job is released or completed. YS schedule but not by YS. cl 

always considers the remaining jobs in ascending order 
of the deadlines. Before scheduling a job J, YS takes 
an extra step to examine whether J is under-worked. 
If not, YS simply allocates one processor for J; if so, 
YS allocates all remaining processors to work on J. In 
the latter case, YS will be invoked again as soon as J 
becomes no longer under-worked. See Figure 2 for an 
example. 

The assumption made by YS actually does not give 
it too much power. In fact, we can prove that EDF using 
m speed-(2 - $) processors can match the progress of 
YS on every job at any time. In 55, we see that YS 
serves as a yardstick for our new algorithm FR, which 
uses less speedy processors to match the progress of YS 
and completes every job no later than YS does. 

Note that YS is not a “real” scheduler as it depends 
on an unrealistic assumption. Yet YS is optimal since 

5 FR-a less speed-demanding algorithm 

processors are kept to be busy as far as possible in the By simulating the on-line algorithm YS, we can modify 

following sense. EDF to adjust dynamically so as to achieve optimal&y 
with less speedy processors. The new algorithm is called 

LEMMA 4.1. At any time, the total amount of work FR. The reduced speed requirement is 2 - A, FR also 

scheduled for all released jobs by any real scheduler using admits a trade-off between speed and processor. We 

m speed-l processors cannot exceed that by YS. show that if p 2 0 extra processors are available, the 
2(m--l)+mp speed requirement of FR becomes 2 - (m+lJ(m--lJ+mp 

Proof. Suppose the contrary holds for some time period (95.2). For example, when m = 2 and p = 0, the speed 
with respect to a real scheduler. Then within the time requirement is If; when m = 2 and p = 1, the speed 
period, there must be a time when the real scheduler requirement is l-2. 
schedules more processors to work than YS. .4t this In the full paper we will show that both results are 
time YS must have some processors idle. By definition, tight, in the sense that FR is not optimal with slower 
this can happen only if every released job that is not processors. The number of migrations induced by FR 
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is linear in terms of the number of jobs, comparable to 5.1 Optimality In the remainder of this section 
that of EDF ($5.3). we show that FR is optimal when given m speed-s 

As mentioned in the previous section, EDF using m 
speed-(2 - A) processors can match the progress of YS 
which uses m speed-l processors. In fact, in most cases, 
EDF schedules a job to work much faster than YS, and 
completes the job earlier. Notice that YS meets the 
deadlines of all jobs and there is no need to work faster 
than YS. The key idea of FR is to use a less greedy 
strategy for jobs whenever these jobs have been “over- 
scheduled”, as compared with the yardstick schedule. 

processors, where s. 2 2 ‘- A. With the optimality 
of YS (Lemma 4.2), it suffices to prove the following 
lemma: 

LEMMA 5.1. Consider the scheduling of any feasible job 
set C using FR, as well as that using YS. At any time t, 
for any job J E C: WFR(J) 5 Wys(J). 

Roughly speaking, FR attempts to apply EDF to 
schedule the jobs. This allows FR, using speed-s pro- 
cessors for some s > 2 - &, to outperform any speed- 
1 algorithm (and YS) on jobs with earlier deadlines as 
quickly as possible. However, when the remaining work 
of such a job J, denoted by WFR(J), becomes only a 
small fraction (precisely, s/m) of the remaining work 
of J in the yardstick schedule, FR deliberately slows 
down its execution as follows. Whenever YS allocates 
k 2 1 processors to J, FR allocates k/m of a processor 
for it. Thus, the ratio between WFR( J) and Wys (J) re- 
mains to be s/m until J completes. As a result of this 
slowdown, jobs with later deadlines can be started ear- 
lier than in EDF, and they can eventually be completed 
by FR using less speedy processors. 

Proof. We prove this lemma by contradiction. Without 
loss of generality, suppose the job Jo with the latest 
deadline in .C is the only job failing to satisfy the lemma 
(otherwise we find the job J with the earliest deadline 
violating the lemma, and replace C with the subset 
of L with deadlines no later than J). Let T denote the 
release time of Jo. Let t be the first time such that 

WFR(JO) = WYS(JO) at t, and Wm(Jo) > Wrs(Jo) 
right after t. That is, YS makes more progress on JO 
than FR starting from t. Note that Jo must be in full 
mode at time t (because once a job J has switched to 
reduced mode, WFR(J) = (s/m)Wys (J)). The only 
way YS makeS more progress on Jo from t onward is to 
use multiple (1 2) processors for JO at t. Therefore, JO 
is under-worked by YS at t. We observe a number of 
interesting properties: 

The algorithm FR is illustrated in Algorithm 1. 
Once a job is released, it is said to be in “full” mode. 
At the time when W.GR(J) = (s/m)Wys(J), the job is 
said to be in “reduced” mode. Jobs in reduced mode 
are always allocated in a specific processor, which is 
denoted by Pl. In 35.1 we see that speed-(2 - &) 
processors are sufficient to guarantee that each job 
eventually switches to reduced mode, and completes 
exactly when it completes in the yardstick schedule. 

0) 

(2) 

(3) 

The amount of work YS has scheduled on JO up 
to t, which is equal to the amount of work FR has 
scheduled on JO, is strictly less than t - T. 

At t, every job other than Jo is either already 
completed by YS (as well as by FR), or not 
under-worked and selected for execution by YS. 
Otherwise, YS cannot selects Jo--the job with the 
latest deadline-for execution. We call these two 
categories of jobs C and R respectively. Note 

that [RI 5 m - 2. 

It is worth-mentioning that FR, like some other 
well-known scheduling algorithms such as Balance and 
Equi-partition (see e.g., [3,6, lo]), takes advantage of 
the time-sharing capability of processors. Yet FR only 
needs time-sharing in at most one processor (i.e., Pl). 
For convenience, the discussion in Algorithm 1 allows 
Pl to be time-shared by up to m jobs. In the full 
paper, we will give a small modification to FR, with 
which at most two jobs are scheduled to time-share Pr. 
This modification is not only of theoretical interest. In 
practice, time-sharing among many jobs causes a lot of 

Let t’ be any time before t. Consider the amount 
of work scheduled for JO, as well as any job in C, 
during the period of time (t’, t). The amount of 
work scheduled with YS is at least that with FR. 
This is because at t, Wys(Jo) = WFR( JO) and 

Wys(J) = WFR( J) = 0 for every job J in C; and 
at t’, IVys (J) 2 WFR(J) for every job J. 

overheads. 

We partition the time period from T to t according 
to the processor share FR allocates to JO. For each 
0 < i 5 m, we denote Zi as the total length of time 
periods during which FR allocates i/m of a processor 



629 

Algorithm 1 FR 
1: Update mode(J) for each job J. 
2: Simulate YS. 
3: for all jobs J which YS schedules k 2 1 processors to work on J do 
4: if mode(J)= full then 
5: Schedule J to one processor, using processors other than Pt if possible. 
6: else 
7: Schedule J to k/m of 9. 
8: while some processor other than F’f is not used and some full mode job is not scheduled do 
9: Schedule the job with the earliest deadline among these jobs to that processor. 

10: if Pl is not fully used and some full mode job is not scheduled then 
11: Schedule the job with the earliest deadline among these jobs to all remaining share of A. 
12: Preset an interrupt to occur at the earliest of the following: an interrupt preset by YS, the first time when a job would 

complete, and the first time when a job would change mode. 

to Jo. The amount of work FR scheduled on JO up to 
time t is Cz”=, s(i/m)zi. By (l), this is strictly less than 
t - T = Cz”=, xi. We thus obtain an upper bound on the 
amount of time when FR uses one full processor for JO. 

m-1 

(5-l) (s - 1)x, <c 1-z xi 
i=o ( > 

On the other hand, we observe that FR has a 
tendency to allocate a full processor to JO and thus x, 
has a sufficiently large lower bound, contradicting the 
upper bound above. 

For 0 5 j < JR(, define rj as the first time 

after r when j or more jobs have been releases. For 
IRI + 1 2 j 5 m - 1, we define rj to be t. Note that 
TO = T. Denote xi,j as the total length of time periods in 
(rj, rj+i) during which FR allocates i/m of a processor 
to Jo. Note that zi = CT=, “if. In the following 
discussion, we inductively show for 4 = m - 1 down 
to 0 a relation concerning the period of time (T+, t): 

(5.2) 2 (I.- g) 2Zi,j 5 (~-l)yxm,j. 

i=o j=4 j=& 

When I$ = 0, (5.2) leads to: 

g (l- Z) xi < (s - l)xm. 

We thus have a contradiction with (5.1). This shows 
that JO does not exist and Lemma 5.1 holds. cl 

The inductive proof of (5.2) goes from the trivial 
case where 4 = m - 1, in which all xi,m-i are zero 
(since /El 2 m - 2). Assuming that (5.2) holds for 

40 5 m - 1, we consider the case for 40 - 1. We add 
up (5.2) for all 4 2 &, to produce 

(5.3) 

m-l 

c 
I=0 

40 + l)Xi,j 

m-l 

5 (S - 1) C (j - 40 + l)Xm,j. 

j=&-1 

We analyze how much work YS has performed on all 
jobs, i.e. {Je}URUC, during the time period (~-+~-i,t). 
With respect to this period of time, let we and wi be the 
amount of work done for jobs in C with YS when JO runs 
on a partial and full processor respectively according to 
FR. By (3), the amount of work done for JO with YS 
is at least that with FR, i.e. cc”=, ~~=.-& s(i/m)si,j. 
The amount of work done with YS for jobs in C 
is we + wi. For a job in R released at rj on or 
after r@O -r, exactly t - Tj work is done since the job 
is not under-worked at t. Similarly, for a job in R 
released before r+,-i , at least t - r+,-i work is done. 
This leads to at least Cc”=, ~~=-,& jxi,j work done 
for jobs in 72. On the other hand, YS can do at most 

m(t - ~+l) = m Cz>i-l xi,j work during the period 
of time, producing the following relationship. 

m m-l . m m-l 

(5.4) c c 
i=O j=&-1 

zXi,j + C C jXi,j 
i=O j=&-1 

+wo+wl <rng mc Xij 

i=O j=&-1 

We obtain another relationship concerning the time 

period (rbO-i, t) when we study the work on C with 
FR. Whenever FR uses less than one processor for JO, 
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no processor can be idle (since Jc is still in full mode). 
Between rj and Tj+l , only jobs released on or before Tj 

can be scheduled since other jobs are released on or 
after rj . So only j processors can be used for jobs in R. 
Exactly i/m processors are used for Jo for a period 
of length 2i.j. All the remaining processors must be 
scheduled for executing jobs in C. By definition, FR 
ensures that whenever k processors is used for a job 
with YS, at least k/m processors are used for that job 
in FR. Therefore, for the time when one processor is 
scheduled for JO, at least (s/m)vi work is scheduled 
for C. On the other hand, we know from (3) that the 
amount of work done on C by FR does not exceed that 
by YS (i.e. wg + ~1). Therefore, 

(5.5) S *$ *$(m -j - i)Xi,j + ;UQ 

j=@o-I i=O 

5 wo + Wl. 

Together with the fact that s 2 2 - A and 

wo _< c:;’ c,-& xi, we obtain the following lower 

bound for CT=.,!i-i Zm,j after eliminating wc and w1 
from (5.3)-(5.5). 

m-l 

< (S - 1) C Xm,j 

j=&-1 

This completes the inductive proof of (5.2), since 
the extra term on the left of the inequality above is 
never negative. 

5.2 Trade-off between speed and processor In 
this section we sketch the effect when m + p processors 
are available to the FR algorithm (when we know that 
the job set is feasible using only m processors). Note 
that the algorithm is still well defined. Although p extra 
processors are available to FR, we still use YS without 
any extra processor as the yardstick. 

With more processors, FR achieves optimality with 
less speedy machines. More precisely, we show that FR 
is optimal when given m + p speed-s processors, where 
s>2- 2(m-l)+mp 

(m+l)(m-l)+mp' The proof is similar to 55.1. In 
particular, we show Lemma 5.1 under this setting, by a 
contradiction between inequalities (5.1) and (5.2). 

Note that (l)-(3) still hold. Since inequalities (5.1), 
(5.3) and (5.4) d o not involve the amount of work done 
by FR for jobs other than JO: these inequalities also hold 
under this setting. 

To complete the inductive proof of (5.2), we im- 
prove (5.5) as follows. -4gain we study the work done 
on C with FR. Whenever FR schedules less than one 
processor for JO, no processor can be idle. Since p more 
processors are available, this implies that there are more 
processors remaining which must be scheduled for exe- 
cuting jobs in C. This results in the following inequality: 

.._ _ .._ _ 
(5.6) SC c (mfp-j- 

i=O j=&-I 

i)Xi,j + :Wl 

I WO-tWl. 

Together with the fact that s 2 cm~ln;$~~;tP,p 

and the bound wc 5 Czi’ C,“>’ xi,j; we obtain from 
(5.3), (5.4) and (5.6) the foliowing lower bound for 

Cy=;i-l Xm,j- 

772-l m-l , . \ m-1 

C “m,j 
j=oo--I 

where 

(s - 1)(2m + p - 2) 
T = (m - $0 - s + l)(m - l)*(m +p - 1) 

(i((m - l)(m+p-2)-j(m+p-1))fjmp) 

Comparing with (5.2), we have an extra term T 
on the left of the inequality. T is never negative, 
completing the inductive proof of (5.2) and thus the 
proof of Lemma 5.1. 

5.3 Number of migrations To bound the num- 
ber of migrations, FR need to be more careful when 
it chooses a processor for each scheduled job. In the 
previous discussion, the scheduling of the processor PI 
is completely determined. Jobs allocated to other pro- 
cessors are always allocated a full processor. We show 
that the following simple allocation strategy for pro- 
cessors other than Pl would guarantee that only O(n) 
migrations are required, where n is the number of jobs 
released. -4fter the algorithm is invoked and the set of 
jobs to be executed is determined, it compares the jobs 
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to be executed in processors other than PI before and 
after the invocation. For jobs which is allocated a pro- 
cessor both before and after the algorithm is invoked, it 
simply stays in the same processor. The remaining jobs 
are allocated arbitrarily in the remaining processors. 

Now we bound the number of migrations required OPT I;.. . ..I..’ : ‘. 

by the algorithm for jobs. Jobs in reduced mode always 3 

work on the same processor and thus need no migration. A X 

Each job may change to reduced mode only once, so in 
total we have at most n migrations when jobs change 
mode. For full mode jobs, FR always schedules the 
m - 1 earliest deadline jobs which are in full mode in 
the processors other than Pl. Therefore the schedule in 
the first m - 1 processors is exactly the same as an EDF 
schedule in which 

X 

Figure 3: Lower bound example when m = 3. The job lists f and 
l m- l processors are available. ICI are illustrated, together with a possible schedule by an off-line 

algorithm. 
l The number of jobs, release times and deadlines of 

all jobs are exactly the same as that of the input 
for FR; Proof. Consider a collection of feasible job sets which 

l The processing time of each job is the amount of are identical except the deadlines; the deadlines, though 

work for the job which is scheduled to processors having different values, have the same relative order- 

other than Pl in FR; ing. The behavior of a deadline-ordered algorithm is 
the same for any of such job sets. Our lower bound ar- 

The number of migrations needed by this EDF schedule gument exploits the this feature of deadline-ordered al- 

is O(n). Therefore, in FR, jobs working in the first gorithms. We construct the following job set denoted L, 

m - 1 processors need only O(n) migrations. Finally, which is characterized by a small positive constant c. 

full mode jobs may need to migrate to or from Pl, 

but there can only be one such migration per release l One job for each 0 5 k < m - 1; release time: 0, 

and mode change, amounting to at most 2n migrations. required work: 1, deadline (m/(m - l))m-l + kc; 

Adding up all these, the number of migrations is O(n). 
l One job for each 1 5 k 2 m - 1; release time: 0, 

6 Lower bound result for deadline-ordered 
required work: (m/(m - l))k, deadline (m/(m - 

algorithms 
l))“-1 + (m - 1 + k)c 

Both EDF and FR are deadline-ordered algorithms, Since all jobs have the same release time and have 

with which the scheduling of jobs depends only on the deadlines before (m/(m - l))“-l, an optimal off-line 

relative order of job deadlines instead of their exact algorithm may simply schedule each job in turn, using 

values. For such kind of algorithms, we obtain new up the period of time from 0 to (m/(m - l))m-’ of a 
lower bound results on the amount of extra speed and processor before considering the next processor. Since 

processors to achieve optimality: the total amount of work is m + CT=<‘(m/(rn - l))k = 
m(m/(m-l))n-l, m processors suffices to complete all 

THEOREM 6.1. No deadline-ordered algorithm is opti- 
jobs without missing any deadline. 

ma1 if only p extTa pTocessoTs are given and all proces- For each 0 5 j 2 m - 1, consider the following job 
SOTS are speed-s, where set Lj: 

. 
I 

s < 1_ (cgL)m + $(~)??a-1 . 
l One job for each 0 5 k 5 m - 1; release time: 0, 

required work: 1, deadline (m/(m - l))j + kc; 
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. 

BY 

One job for each 1 5 Ic 5 j; release time: 0, 

required work: (m/(m - 1))‘; deadline (m/(m - 
1))j + (m - 1 + k)E. 

One job for each j + 1 5 k 5 m - 1; release 

time: 0, required work: (m/(m - l))“, deadline 

2hl(m - l))m-’ + (7-n - I + k)E. 

an argument similar to the feasibility of C, the 
first m + j jobs can all be completed by (m/(m - 
l))j by an off-line optimal algorithm. The remaining 
jobs can be scheduled exactly as .L starting at time 
(m/(m - l))m-1. Thus Lj is feasible. See Figure 3 
for an example. 

Note that the collection of two jobs (L, .Cj} satis- 
fies the requirements set at the beginning of the proof, 
and thus are scheduled exactly the same by a deadline- 
ordered on-line algorithm. Since the algorithm is opti- 
mal, the first m + j jobs must all be completed before 
the deadline of the (m + j)-th job in Lj, i.e. before,time 
(m/(m - 1))j + (m - 1-t j)E. 

This implies that, during the execution of the 
deadline-ordered on-line algorithm for .C, only m-j jobs 
remain in the system, and thus at least j processors 
must sit idle, after time (m/(m - l))j + (m - 1 + 
j)~. By using a small enough E, the sum of non-idle 
time of all processors can be made arbitrarily close to 
p + (m - 1) + m(m/(m - l))‘+‘. In these time the 
algorithm must completes all jobs, which total work is 
m(m/(m - l))“-I- Dividing these two quantities gives 
the desired lower bound for the speed requirement of a 
deadline-ordered on-line algorithm. 0 

Putting s = 1 in Theorem 6.1, we obtain a lower 
bound for the number of speed-l processors to achieve 
optima&y. 

COROLLARY 6.1. Using speed-l processors, a deadline- 

ordered algon-thm needs at least m - I extra processors 
to be optimal. 
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