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SEQUENTIAL BAYESIAN LEARNING OF 
CDHMM BASED ON FINITE MIXTURE 

APPROXIMATION OF ITS 
PRIOR/P OSTERIOR DENSITY 

Hui Jiangt, Keikichi Hiroset and Qiang Huoz 
+Department of Information and Communicatioin 

Engineering, University of Tokyo, Japan 
ATR Interpreting Telecommunications Research Labs., 

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, .Japan 

Abstract - In this paper, we propose a sequential Bayesian learning 
strategy of CDHMM based on finite mixture approximation of its pri- 
or/posterior density. The initial prior density of CDHMM is; assumed 
to  be a finite mixture of natural conjugate prior pdf’s of the complete- 
data density. With the new observation data, the true posterior pdf is 
approximated by the same type of finite mixture pdf’s which retain the 
required most significant terms in the true posterior density according to 
their contribution to the corresponding Bayesian predictive dlensity by 
using an N-best beam search algorithm. Then the updated mixture pdf 
is used in VBPC method to deal with unknown mismatches in robust 
speech recognition. The experimental results on a speaker-indlependent 
recognition task of isolated Japanese digits confirm the viability and the 
usefulness of the proposed method. 

1. INTRODUCTION 
In order to deal with unknown mismatches between training and testing 

conditions, we have investigated a Bayesian predictive classification (BPC) 
approach in [2, 3, 4, 51 for robust speech recognition. We observed that an 
appropriate prior probability density function (pdf) is crucial for B;PC based 
robust speech recognition. Motivated by the works in [I, 2, 3, 41, in this pa- 
per, we aim at improving the BPC performance by adopting and sequentially 
adapting a more accurate prior/posterior distribution of the HMM parame- 
ters in a Gaussian mixture continuous density HMM (CDHMM) based speech 
recognition system. The initial prior density of CDHMM is assumed to be a 
finite mixture of natural conjugate prior pdf’s of the complete-data density. 
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With the new observation data, the true posterior pdf is approximated by 
the same type of finite mixture pdf's which retain the required most signifi- 
cant terms in the true posterior density according to their contribution to  the 
corresponding Bayesian predictive density by using an N-best beam search 
algorithm. The above Bayesian adaptation strategy has been applied to  a 
speaker-independent recognition task of isolated Japanese digits to deal with 
two types of mismatch between training and testing conditions: i) the mis- 
match caused by additive white Gaussian noise, ii) cross-gender mismatch. 
The experimental results confirm the viability and the usefulness of the pro- 
posed method. 

2. Sequential Bayesian Learning of CDHMM 
We model each speech unit (referred to as word heretofore) with an N -  

state CDHMM with parameter vector A = (7r,A,6), where 7r is the initial 
state distribution, A is the transition matrix, and 6 is the parameter vector 
composed of mixture parameters 6i = { W i k ,  m i k ,  r i k } k = 1 , 2 ,  ...,K for each state 
i, with the mixture coefficients W i k ,  the mean vectors m i k  , and the preci- 
sion (inverse covariance) matrices r i k .  Assume our initial knowledge about 
CDHMM parameters A of word W is contained in a priori  pdf p(A1W). Given 
independent observation samples Xn = {XI, x 2 , .  + .  , x n } ,  the formal sequen- 
tial Bayesian learning is performed as follows: 

where Cl denotes an admissible region of the parameter space and f(x,lA, W )  
is the likelihood function. Starting the calculation fromp(AIXo, W )  = p ( A l W ) ,  
we can obtain a sequence of prior/posterior densities p(AIX1, W ) ,  p ( A ( X 2 ,  W ) ,  
and so forth, with gradually increased accuracy. However, there is no closed 
form solution to the above sequential learning procedure for CDHMM. In 
practice, some approximations are needed. In this paper, we study a sequen- 
tial Bayesian learning strategy for CDHMM based on finite mixture approx- 
imation of its prior/posterior density. 

3. Finite Mixture Approximation of Posterior PDF 

observing an data x, 
Let's examine the likelihood function of CDHMM A of word W after 

where the summations are taken over all possible state path s and mixture 
component label sequence 1. For convenience, we name a combination of s 
and 1 as a path L. The path space T consists of all possible L. Therefore, the 
posterior pdf after observing x can be computed by eq.(l) as 
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f (xlW) = P(AIW * f(xlA, W )  dA 

P(Alw) . f(x, L I 4  W )  dA = a ( x l L ,  W )  (4) 

I 
= 21 LbT 

where a ( x l ~ ,  W )  = Jp(AlW) . f(x, L /A,  W )  dA. a ( x l ~ ,  W )  denotes the com- 
ponent part of predictive density corresponding to the path L in T , which can 
be easily computed via Viterbi BPC (VBPC) algorithm in [5]. 

We notice that the true posteriori pdf (3) is a finite mixture function, which 
consists of numerous homogeneous terms. Each term in turn corresponds 
to a path in T. It is reasonable to pick up the M most significant terms 
among T, based on their contribution to the predictive density, i.e. a ( x l ~ ,  W ) ,  
to  approximate the true posterior pdf and truncate others in order to  keep 
computation and memory under control. That is, 

s ( ~ )  = argmax LBT ( M ) a ( x l ~ )  (5) 

where argmadM) denotes the operation to  choose the M largest items, $ M )  
denotes the set of the M most significant terms. Then the approximate 
posterior pdf can be expressed as 

w ( X  L,W where wL = and  AIL, x, W )  denotes natural conjugate 

prior of the complete-data density given L ,  whose form will be explained later. 
. < s ( M )  w ( x I L , w )  ' 

4. N-Best based Implementation 
As a first step, we only consider the uncertainty of the mean vectors in 

CDHMM. Assuming that we have observed training data X("-l), ithe current 
prior/posterior pdf follows eq.(6) and can be shown as 
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where T:;? and p:;j are hyperparameters. The above equation also gives the 
form of natural conjugate prior pdf of the complete-data density given ~1 when 
only mean vectors of CDHMM are random. When a new data x, becomes 
available, the current likelihood function can be approximately calculated by 
N-best VBPC algorithm and also expressed as a summation of M mixtures, 
i.e. 

where 

m 

t=l 

i=l k=l d=l  t=l 

According to eq.(l), the new posterior pdf p(AlX", W )  includes M 2  terms 
(denoted as the set E ( M 2 ) ) ,  each of which corresponds to a combination of 
each ~1 in Z i M )  and each ~2 in = . a M ) .  We denote it as L, i.e. L = ~1 @I ~ 2 ,  and 

p(hlXn, W )  C( w(x,/X("-') ,  L,  W )  .p(hlXn, L , W )  (12) 
l & ( M 2 )  

where 

and p(AIXn, L ,  W )  has the same form as p(AlX("-l), ~ 1 ,  W )  in eq.(7), with 
the adapted hyperparameters r$h and pitd given as follows: 
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In order to reduce the computational 2nd storage overhead, we ;still choose 
the A4 most significant terms from Z ( M  ) based on a(~,lX(~-l), L, W ) ,  i.e. 

distribution p(AIXn, W )  by these M terms: 
p w  = argmaxL6Z(MZ) ( M )  a(~,lX(~-'), L,  W ) ,  and approximate the posterior 

5. Viterbi Bayesian Predictive Classification (VEIPC) 

incoming data, denoted as y, via VBPC approach as follows: 
After updating the posterior pdf p(AIXn, W ) ,  we can recognize any new 

I@ = argmaxmax / f(y, s, ZjA, W )  .p(AIXn, W )  dA (17) w s,l 

A detailed recursive search algorithm to implement eq.(17) can bne found in 
~51. 

6. Implementation Issues 
One issue is the hyperparameter estimation of the initial prior pdf, i.e., 

how to design a suitable prior pdf from available parameters of the pre-trained 
CDHMM's before we observe any new data. Like in [2, 31, we use the initial- 
ization method proposed in [I] as follows: pj i i  = m i k d ,  .,!:i = € . T i k d  . C i k ,  

where > 0 is a weighting coefficient, and c i k  is a weight count accumulated 
for the k-th mixture component of the state i during training of CDHMM's 
parameters. 

Another issue is related to  the choice of top N mixands in the finite mixture 
approximation. In practice, if the chosen mixands are too similar to each oth- 
er (it is the case especially when the mixands are derived from N-best pathes 
as in the above N-Best implementation), the finite mixture approximation of 
the posterior pdf can not provide more information than a unimod,d approxi- 
mation. A heuristic solution to mitigate the problem is to merge those similar 
mixands during the N-best approximation process as described below. Let 
the mixands f(x,, L ~ I A ,  W )  in eq.(8) be indexed by L~ , L~ , . . . , L : ! ~ ) ,  which 
correspond to the lst,  2nd, . . a ,  M-th most significant mixands in re- 

(1) (2) 

spectively. The dissimilarity measure, ~ ( L T ) ,  ( (  L:)), between two imixands is 
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simply defined and computed by directly checking the path difference between 
two pathes of L:”) and L?). 

IF 

where we assume m < n and ~1 is a preset threshold; 
THEN we merge mixand LP) with ~ ! j~ ) ,  i.e. to remove the mixand LP) 

and update weight of L;”) as 

where ~2 > 0 is another preset constant to control the merging. By choosing 
the control parameters ~1 and ~2 appropriately, we can obtain the needed 
mixture approximation of the posterior pdf. 

7. Experiments and Discussions 

To examine the viability of the above algorithm, it was applied to  a 
speaker-independent (SI) recognition task of isolated Japanese digits where 
the unknown mismatch exists between training and testing conditions. We 
have studied two types of mismatch: i) the mismatch caused by additive white 
Gaussian noise, ii) cross-gender mismatch. The speech data is selected from 
ATR Japanese Speech Database. It contains 0-9 Japanese digit utterances 
from 60 speakers (half male, half female). The speech was recorded in a quiet 
environment at sampling rate of 20kHz with 16bit quantization. Each digit is 
modeled by a left-to-right 4-state CDHMM without state skipping and each 
state has 6 Gaussian mixture components with diagonal covariance matrices. 
Each feature vector consists of 16 LPC-derived cepstral coefficients. 

7.1. Noisy Speech Recognition 

A simple special case of mismatch situation is encountered when the test- 
ing signal is corrupted by various additive noises, while the training data 
are clean. While SI training is performed on clean speech data, computer- 
generated Gaussian white noise is added to the testing and adaptation data 
with the same level of intensity prior to the preprocessing. 

denotes that we use plug-in MAP decision rule in speech recognition and an 
on-line Bayesian learning algorithm (see [I] for details) to  adapt CDHMM- 
s’ parameters, and where “VBPC+Adp-Mixl” , “VBPC+Adp-Mix3” , and 
“VBPC+Adp-Mix5” denote that VBPC decision rule is used in speech recog- 
nition and the prior/posterior pdf of CDHMM is approximated by one, three, 
and five mixture density respectively in each step of adaptation. It is shown 
that the performance of VBPC can be improved via incremental adaptation 
of the prior/posterior pdf with new data. It is also observed that VBPC con- 
sistently outperforms the conventional plug-in MAP decoding in this case. 
Given the same amount of adaptation data, a better performance of VBPC 

The experimental results are shown in Figure 1, where “Plug-in-MAP+Adp” 
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Figure 1: Performance comparison of noisy speech recognition at 
SNR = 2O(dB) as a function of amount of adaptation data among methods in 
which sequential Bayesian learning is combined with plug-in MAE’ decoding 
or VBPC (with mixture number M = 1,3,5) 

can be achieved by using three mixture components in the prior/posterior pdf 
than a unimodd pdf if the pdf mixands are appropriately pruned x:nd merged 
as described above in every adaptation step. Only a slight improvement has 
been observed when we further increase mixture number from three to  five. 

7.2 Cross-gender Speech Recognition 

We have also examined a more general mismatch caused by gender difference. 
In the cross-gender experiments, we train the CDHMMs with all ,the female 
speech data. The male speech data are divided into two sets. One is used 
for adaptation and another for testing. The experimental results are shown 
in Figure 2. A similar learning behavior is observed here as the one in noisy 
speech recognition. But in this case, a bigger improvement has been observed 
when we replace unimodal pdf with three-mixture pdf. It suggests that mix- 
ture approximation helps more when dealing with a more complex mismatch 
situation. 

8. Final Remarks 
The experimental results show that it is helpful to use a finite mixture approx- 
imation in both Bayesian learning and BPC calculation. The improvement 
greatly depends on how properly the true pdf is pruned. The sequential es- 
timation of a mixture distribution, which has no sufficient statistics with a 
fixed dimension, seems to  be a quite challenging problem. Although the for- 
mal Bayesian learning theoretically converges to the optimal solution under 
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Figure 2: Performance comparison of cross-gender speech recognition as a 
function of amount of adaptation data among methods in which sequential 
Bayesian learning is combined with plug-in MAP decoding or VBPC (with 
mixture number M = 1,3) 

the condition of unlimited memory and calculation, some suboptimal methods 
are needed in practice. The N-Best implementation studied here is sensitive 
to mixands pruning, selection, and merging in the sequential adaptation pro- 
cedure. 
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