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Abstract 
A n  important aspect of inspection planning involves deter- 
mining camera poses  based on some cri ter ion.  W e  seek 
to find camera poses where the effects  of displacement and 
quantization errors are minimal .  The mean squared error 
as formulated,  including all dependencies,  and minimized to 
determine an  optimal camera pose that satisfies the sensor 
constraints of resolution, focus, field-of-view, and visibility. 
Dimensional tolerances for line entities are also formulated 
and exploited to  determine the acceptability of a given cam- 
era pose for all entities observed. 

1 Introduction 
Upon using a camera as a sensor, i t  is important to know 
how t o  position and orient the camera (often called the 
sensor setting or the camera pose)  to most effectively and 
efficiently inspect desired object entities, such as circular 
profiles of holes or dimensions of edges. The  criterion for 
effectiveness include having the entity resolvable, in focus, 
within the field of view, and unoccluded. Efficiency, on 
the other hand, deals with how quickly information can be 
obtained, such as finding the minimum number of sensor 
settings required to visually inspect each important entity. 
Often a tradeoff exists between effectiveness and efficiency. 

Effectiveness and efficiency are achieved through the Vi- 
sual Inspection Planning with Error Reduction (VIPER) 
system, which is summarized by the flowchart shown in 
Figure 1 .  The scope of this paper is to  determine optimal 
camera poses and t o  satisfy tolerance criteria. 

Several researchers have previously worked on the vision 
sensor planning topic. The V I 0  (Vision Illumination Ob- 
ject) system by Niepold, e t  a1 [4], the HEAVEN system 
by Sakane, et a1 [5], and the ICE (Illumination Control 
Expert) system by Yi, et a1 [IO] determine a camera posi- 
tion on a geodesic dome or tessellated sphere surrounding 
the object, and orient the camera toward an object refer- 
ence point. Cowan and Kovesi [2] formulate the resolution, 
focus, and field-of-view constraints independent of orien- 
tation. The  MVP (Machine Vision Planner) system by 
Tarabanis, et al, formulates the resolution, focus, and field- 
of-view constraints with respect to  the orientation [GI, de- 
velops algorithms for determining unoccluded regions (vis- 
ibility constraints) [7], and chooses a camera pose in the 
Euclidean center of the constraints. 

Yang, et a1 [9] modeled the errors involved with camera 
displacement and quantization for line entities to determine 

I 

Figure 1: Flowchart embodying Visual Inspection Plan- 
ning with Error Reduction (VIPER) system. T h e  focus 
here  is to determine optimal camera  poses and  to satisfy 
tolerance criteria. 

the camera's capability in observing each entity. Griffin and 
Villalobos [3] have also modeled illumination errors. 

However, unlike the previous works, the VIPER system 
determines an optimal camera pose based on the inherent 
inspection errors of displacement and quantization within 
given resolution, focus, field-of-view, and visibility con- 
straints. Furthermore, unlike previous works, we formulate 
the probability that these errors are within the desired di- 
mensional tolerances, which is necessary in evaluating the 
accuracy of the inspection. 

In summary, the main contributions of this work are the 
following: 

Formulate the mean squared error of the combined dis- 
placement and quantization errors for line entities, tak- 
ing into account all dependencies. 
Develop a method for obtaining camera poses where 
the minimum mean squared error (MMSE) is obtained 
within the sensor constraints of resolution, focus, field- 
of-view, and visibility. 
Analytically derive the characteristic function for the to- 
tal error. This function is used to determine if the prob- 
ability of errors being in an acceptable range meets or 
exceeds a required threshold. The  acceptable range is 
b,zsed on specified dimensional tolerances. 
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2 Modeling Errors 
Two important errors that  cannot be avoided are displace- 
ment and quantization errors, both defined as the difference 
between the observed and actual lengths of the observed en- 
tities. The  total error, E is the  sum of the  quantization and 
displacement errors. 

To determine an optimal camera pose tha t  minimizes 
the effects of these errors, the  mean-squared error (MSE) 
is formulated and minimized. This formulation for a line 
entity is based on the derivation of Yang, et aZ[9]. 

2.1 Displacement Error 
We need to relate the camera pose to  the world coordinate 
system. Suppose the position of the camera in the world 
coordinate system is given by t‘ = ( t s , t , , t z ) ,  and its ori- 
entation is given by the  parameters ( d , B ,  4).  Assuming 
that  d’ = ( d s ,  d y ,  d , )  provides the position of the origin 
of the world coordinates i? the camefa coordinate system, 
the relationship between d and t i s  d = -RC where R is 
a 3 x 3 rotation matrix between the camera and world co- 
ordinate system. Using homogeneous coordinates, a world 
coordinate ( x ,  y, z )  is related to  an image plane coordinate 
( U ,  v) by (l), where P is a typical perspective matrix. 

The  displacement error in the  horizontal and vertical di- 
rections of a single point as defined by Yang, e t  al [9] are 
given in (7), where Ah for h = 1 , .  . . , 2 1  are listed in (8). 
We would like to  find the means, variances, and covariances 
of € d ,  and E d , .  Unfortunately, these properties cannot be 
expressed in closed fornn. However, if we consider the repre- 
sentation of (9), the  moments of the Gaussian numerators 
and denominators are determined exactly, and an  approx- 
imation t o  the moments of E d ,  and Edv can be  obtained. 

A1 = fC1Cz 
1 3  = f G z ( C 3  - f )  

A9 = -fC1Cz 
A I 1  = 0 A12 = f(f  - C 3 )  ( 8 )  

A2 = f[(f - C 3 ) C 3  - c:] 
A* = f ( f  - C 3 )  

A10 = fCl(f - C 3 )  

As = 0 
A7 = 0 

A6 = fcl 
A6 = f [c,’ - (f - c 3 ) c 3 ]  

A l a  = 0 

Unfortunately, we can never get the robot arm exactly 
where we want. There are errors in the  positioning of 
each of the six degrees of freedom. Define the differen- 
tial matrix of (2).  The  elements of the differential ma- 
trix, d x ,  d y ,  d z ,  d d ,  d e ,  and d$ are independent random 
variables, typically modeled as Gaussian distributions with 
zero mean. The  transformation that  accounts for the errors 
is Q’ = Q + A Q ,  and the new relationship between the  
coordinate frames becomes (3) .  

-dB d$ 0 d z  
0 0  

A =  

(3) 

By defining the camera coordinates as in (4), we can 
solve for ( U ,  v) and (U‘, v‘), which are given in (5) and (6). 

ci = T i i X  -k T i 2 9  d- T 1 3 Z  -k d, 
cz = T Z I X  -t T z z y  + T 2 3 2  + d,  (4) 
C 3  = 2 3 1 2  + T 3 2 Y  + ~ 3 3 . 2  + d ,  

U =  

v = f C z  
f --c3 

(5) 

(9) 
Ed,  = ‘ 

X 
E Ed,  = 

Define M6 and c6 t o  be the mean vector and covariance 
matrix for the  six degrees of freedom, and define JS be the 
Jacobian matrix relating these errors to  each of the  random 
variables C, 6, and x. T h e  means of C, (, and x are 0, 0, 
and X21, respectively, and are used to construct the  mean 
vector M d i v .  Their covariance matrix is C d i ,  = J6c6J:.  

Applying a second order Taylor series expansion to 
g(z, y )  = z/y about t,he means (9=, rlY), where qr = 0 
and 9, > 0,  we can estimate the mean 9g and variance 
U: by (10). 

Define the Jacobian, J d i u r  relating the  inputs C, [, and x 
to  the outputs E d ,  and c d ,  by taking all partial derivatives 
of the relations in (9) for each entity endpoint, and eval- 
uating a t  the  means in M d , , .  For E d ,  and E d , ,  the  mean 
vector, Mu,, is constructed from ( lo) ,  and the  covariance 
matrix is c,, = J d i v c d i u J & , ,  which is equivalent t o  a 
second order Taylor series expansion. 

The  displacement errors in the horizontal and vertical 
directions of a line entitmy as defined by Yang, et a1 [9] are 
given by (11), where ( 2 1 1 1 ~ ~ 1 )  and ( 2 1 2 , ~ ~ )  are entity end- 
points. T h e  moment matrices, Msy and Cxy, are given in 
(12). The  Jacobian, J,,,, embodying (11) is exact, since 
the  relationships are linear. 
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(11) 

(12) 

E d ,  = - ‘du2 
E d y  = - 

Mzy = JuuMuv 

czy = J~~C,~.J , ’ ,  
The  angle between the  line entity and horizontal axis of 

the  image plane is defined by 7 in (13) and is depicted by 
Figure 2. The  resultant displacement error, E d ,  is geornetri- 
cally approximated by Yang, et al as (14).  Using Jacobian 
JIy to  describe (14), the  mean and covariance matrices, M d  

and c d ,  respectively, are shown in (15). 

(13) 
‘U1 - ‘U2 t a n y  = - 
U1 - U2 

E cosy 4 

Figure  2: Graphica l  depiction of t h e  approximat ion  rep- 
resenting t h e  displacement e r ro r ,  E d ,  for a line en t i ty  L. 
This  approximat ion  assumes t h a t  nominal and displaced 
enti t ies a r e  approximate ly  parallel. (F igure  not  to scale. 
Ed, a n d  E d ,  are mucR smaller.) 

T h e  total displacement error is the sum in (16), where 
k is the  number of line entities to  observe. The  mean and 
variance of Ed are obtained by summing all of the elements 
of h f d  and c d ,  respectively. These moments and the dis- 
placement MSE are shown in (17). 

k 

E d = x E d J  (16) 
3 = 1  

2.2 Quantization Error 
For the quantization error, the density functions for a line 
entity in two dimensions have been derived by Yang, et  
a1 [9]. For a single line entity in two dimensions, the 
actual and observed lengths are L = d m  and 
L ,  = ,/-, respectively. Define I ,  and I ,  
as the number of pixels completely covered by the line 
components, and denote the pixel dimensions as T, by 

T,. The  means, variances, and covariances are given in 
(18). If E ~ ,  = L,, - L,  and E,, = L,, - L,, then 
E[eq,] = E [ E , ~ ]  = 0 ,  E[E:,] = :T: and = k r i .  

Geometrically approximating cq  in a manner analogous 
to  Figure 2 ,  as in (19), the  mean and variance of the quan- 
tization error is (20). These results agree with [9]. 

E q  cq, cosy  + cq,  sin y (19) 

(20) 
E[€,] zz 0 
E[€:] zz $ (T: cos’ y + T’, sin’ y) 

For k line entities, the total  quantization error is given 
in (21), where each of the errors, c q j ,  are independent. The  
moments of the total quantization error are determined by 
(22). Note tha t  since q r q  = 0, then E[E~,] = uzp. 

k 

2.3 Combining Errors 
The  combined displacement and quantization error for a 
line is determined by E = Ed + E ~ .  Thus, the total  MSE is 
(23), since Ed and E ,  are independent. 

E[E’] = E [ E ~ ]  + E[€:] (23) 

3 Sensor Constraints 
Define r‘o and v’to represent the  position and viewing direc- 
tion of the  camera, respectively. We will need the  convcr- 
sions of (24) to  relate with the transformation matrix in (1). 
Also, let a be the lens aperture diameter, d be the  distance 
from the image plane and the  back nodal point of the lens 
(effective focal length), f be the  lens focal length (intrinsic 
focal length). From Abrams, et  a1 [I], d can be determined 
from the focus constraint a s  (25), using the  caniera posi- 
tion (Fo)  as  well as the  closest and furthest entity vertices 
along the viewing direction (FC and F j ,  respectively). 

(24) 
70 = t x t + 1 , ~ + t , l ; t  

U’ = T 3 1 T - k  T32?+ T 3 3 i  

d = 2 D m a , f ( D m a , - - D ~ )  
2 D m a z ( D m a z  - f -Dj)+D, 

(25) 
where 

Dmaz = (7j - T O ) . ;  
D j  = (Ff - F c ) .  v’ 

The  resolution and focus constraints are formulated by 
Tarabanis, et a1 [ C ] ,  while the  field-of-view constraint is 
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reformulated. The  planes defining the visibility constraints 
are extracted from an Entity-Based Aspect Graph (EAG), 
developed by Yang, e t  a1 [SI. All of the constraints are 
dependent on To, and all but the  visibility constraints are 
also dependent upon v'. Furthermore, each constraint can 
be defined for a set of entities. 

The  resolution constraint is formulated as (26), where 
7'~ and 7'~ are the position vectors of the  line entity ver- 
tices, < i s  the unit vector between them, 1 is the  length of 
the minimum entity to  be resolved, and w is the minimum 
required length of the image of the line. For each entity, 
there will be one resolution constraint. 

The  focus constraints are defined by (271, where T' and 
7'f are the position vectors of the closest and farthest entity 
vertices from 7'0 along the viewing direction, D1 and DZ are 
the far and near limits of the depth-of-field, respectively, 
given in (as),  and c is the radius of the blur circle. There 
will always be only two focus constraints for a set of entities. 

The  field-of-view constraint is reformulated as (29), 
where T,,, is the entity endpoint with the largest angle with 
G, (Y is the field-of-view angle given in (30), and Imin is the  
minimum dimension of the image plane. There will always 
be one field-of-view constraint for any quantity of entities. 

(Y = 2 tan-'(Im,,/2d) (30) 

The  visibility constraints are extracted from an EAG of 
the object. Each node in the EAG contains a subset of 
desired entities and is bounded by several planes of visibil- 
ity. Hence, there would be several linear constraints (call 
them g40, Q46, . . . ) corresponding to  each set of entities, 
depending on the EAG node. 

4 Optimal Sensor Settings 
To determine an optimal camera pose, the minimum mean 
squared error (MMSE), E[E'],  is desired. Note that  the 
mean and variance of the error are functions of the six 
degrees of freedom. Therefore, E[ez]  is a function of the  
six degrees of freedom as well. The  sensor constraints are 
also defined by these parameters. We need to  find a camera 
pose with an MMSE satisfying the sensor constraints. 

constraints, E [ c 2 ]  can be minimized numerically so that  
resolution, field of view, focus, and visibility criteria are 
satisfied. This is formulated as (31), where I;  represents 
the number of entities, m is the number of half spaces in 

Using methods of nonlinear programming with nonlinear 

the visibility constraint, and N ( i )  represents the i th letter 
of the alphabet' ,  

minimize E[€'] = f ( t 2 ,  t,, t,, 4,8, ~) 
subject to glN(,) 5 0 (resolution) for i = 1 to  k 

g2Q 5 0 (focus) 
g2b 5 0 
g3 5 0 (field-of-view) 

g ' lN( , )  5 0 (visibility) for i = 1 to m 

5 Dimensional Tolerances 
Due to imperfections i n  the inspection process, it is very 
possible tha t  the  length L of an entity may deviate slightly 
from its nominal value. This deviation is modeled by a 
tolerance of &AL. We would like to determine the  proba- 
bility tha t  the  error is %within a specified deviation, and to  
compare this probability with an acceptable threshold. In 
other words, if the  error of an entity is e, then we need to 
determine if (32) holds, where f L ( c )  is the probability den- 
sity function of the  inspection error for a single line entity. 

+AL LAL J~=(E) d r  2 Threshold (32) 

Consider the  characteristic function, a,(,), related to 
fc(c) by (33). Reformulating (32) in terms of the  char- 
acteristic function, (3411 is obtained. To use these results, 
we must first determine the characteristic functions for the 
displacement and quantization errors. 

(33) 
I + m  

f c ( c )  = 5; / @c(w)e3w' dw 
-m iltm cP,(w:)sinwAL 

= -ca 
dw 2 Threshold (34) 

W 

Due to the complexity of the  displacement error, i t  is 
advantageous to approximate i ts  density with a simpler 
distribution. Recall thLat the horizontal and vertical er- 
rors for a point are defined as a ratio of two Gaussian RVs, 
g (x ,y )  = x/y, where 9% = 0 and q, = (f - C3)', 
where f is the focal length, and the  camera coordinates 
Cl, C2, and C3 are defined in (4). As C3 approaches f, 
the density approaches a Cauchy distribution. However, 
due to  the focus constraints, the closest and furthest dis- 
tances between the  camera and the entity is C3 = DZ 
and C3 = D1, where D1 and D2 are given in (28) For 
any given C3 within this range, we can define a range for 
the horizontal and vertical camera coordinates C' and Cz 
based on the  perspectiv(e projection of an  image plane ver- 
tex onto the world coordinate frame, given in (35). These 
ranges prevent a Cauch:y distribution from being realized. 

x = U o  
vtl-., 

f Y =  (35) 

We have determined that  within this range, the  density 
of the ratio of two Gaussians may be effectively approxi- 
mated with a Gaussian distribution. This is achieved by 

'I.e. N ( 1 )  = a, N ( 2 )  = b,  etc., so that 9 4 ~ ( 1 )  = 9 4 Q ,  g 4 ~ ( Z )  = 
946, etc. 
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using the approximation in (10). When the mean and vari- 
ance are applied to  a Gaussian distribution model, actual 
density and its Gaussian approximate are indistinguish- 
able, within these ranges. This has been verified by a num- 
ber of simulations and plots. Thus,  for our application, the 
ratio of Gaussian RVs may be approximated by another 
Gaussian RV. 

Since all other random variables in the  displacement er- 
ror formulation are linearly related, the resultant displace- 
ment error will also have a Gaussian distribution. Express- 
ing the displacement error of an entity with a Gaussian dis- 
tribution, the characteristic function is given in (36), where 
7) ,d and uqd are components of M d  and c d  from (15). 

Yang, et a1 [9] determined the distribution of the  quan- 
tization error, based on uniformly distributed endpoint er- 
rors in both the  horizontal and vertical directions. T h e  
characteristic functions for the horizontal and vertical 
quantization errors in a line amdetermined to  be ( 3 7 ) .  

Using (19), the  final characteristic function of the  quan- 
tization error is given in (38). The  combined characteris- 
tic function is simply the product of (36) and (38),  given 
in (39). Numerical integration of (34) then determines 
the probability tha t  the inspection error of a line entity 
is within the  tolerance of &AL. 

For each entity, the corresponding AL is determined 
based on the required accuracy and the  length of the corre- 
sponding line segment projected onto the  image plane using 
the assigned sensor setting. Given the coordinates of the 
entity's endpoints, the focal length, and the translational 
and orientational parameters of the sensor, the length of 
the projected line segment on the image plane, L ,  is com- 
puted. The  tolerance, AL,  should be assigned based on L 
and the minimum requirement of accuracy in the measure- 
ment. The  tolerance is computed as described in (40). 

(40) & L  = (1 - accuracy)l  

6 Experimental Results 
Experiments were performed on the object in Figure 3 ,  
where each dimension is in decimeters ( i . e .  4 -+ 400 nim). 
T h e  optimizations in the experiments were performed by 
the GRG2 nonlinear programming package. The  experi- 
ments use the following da ta  as sensor and constraint pa- 
rameters. The  rotations were performed in the order 4 
about z ,  B about y ,  and 11, about z', with respect to  the 
current coordinate axes. 

F igure  3: Objec t  t o  inspect,  including t h r e e  line enti- 
t ies W11, H12, a n d  W10, a n d  the i r  world coordinates in 
decimeters.  All exper iments  refer to these  entities. 

T,  = 0.01 mm (horizontal pixel dim.) 
r Y  = 0.013 mm (vertical pixel dim.) 

f = 2 5 m m  

a = - = 1.5625 mm 
16 

c = r2 (smallest pixel dim.) 

f 

I,,, = 5127, (smallest image plane dim.) 

I,,, = 4807, (largest image plane dim.) 

w = d m  (diagonal of pixel) 
I = l m m  

U, 2 2 2  = CT,, = uz = 0.03 mmz 

U: = C T ~  = U$ = 0.0003 rad' 

Experiment 6.1 An experiment was performed for the 
single entity H 1 2  of Figure 3 t o  test the  effectiveness of the 
procedure described in this paper as applied t o  generating 
sensor settings. The  results are given in Table 1, where the 
camera pose ordering is (t,, t,, i,, 4, B,4). The  experiment 
completed after 108 iterations of the nonlinear program 
solver. 

This experiment shows that  the results agree with intu- 
ition. Notice that  H12 is readily visible from this position 
and viewing direction, since the camera is pointing toward 
the inside of the  pocket. Thus,  the success of the optimiza- 
tion is validated. 

Experiment 6.2 To experiment with observing multiple 
entities from a single sensor setting, an experiment using 
both entities H12 and W10 of Figure 3 was performed, 
with the results given in Table 2 .  T h e  shown results were 
obtained after 349 iterations. A plot of the  tolerance, AL,  
against the probability for H I 2  and W10 are given in Fig- 
ure 4, both using 100 integrations of (34). 

This experiment shows tha t  the final results make intu- 
itive sense. As we might expect, the  final MSE for observ- 
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Table 1: Exper imenta l  results for inspecting en t i ty  H12. 
Before O p t i m i z a t i o n :  

Pose: (-550, 375, -900, 0,  0 ,  0) 

After O p t i m i z a t i o n :  
Pose: (-535.33, 397.53, -870.66, 0.11197, 0.41397, 0.2050) 

MSE: 1.734526 x 
v’: (0.414106, -0.158307, 0.896357) 

Table  2: Exper imenta l  results for inspecting bo th  H12 - 
a n d  W10, simultaneously. 

Pose: (-1500, 750, -1700, -1.5708, 0,  -0.78540) 
Before Optimization: 

Y’: (0.707107, 0,  0.707107) 
MSE: 0.000212734 

After O p t i m i z a t i o n :  
Pose: (-724.74, 206.43, -481.53, -0.0060154, -2.3948,-3.1436) 

MSE: 3.641912 x 
Y’: (0.679287, -0.00607215, 0.733847) 

ing both H 1 2  and W10 exceeds tha t  of observing only H 1 2  
from Table 1. 

H12 // ,/ 

~ 

0 0 002 0 ow 0 006 0 008  0 01 0 . 0 1 2  

Figure 4: Plot  of tolerance,  AL, versus probabili ty t h a t  
t h e  total  inspection e r ro r  is within f A L  for enti t ies H12 
a n d  W10. 

7 Conclusion 
Dimensional inspection seeks to  determine whether a man- 
ufactured object can be adequately inspected based on 
the dimensional tolerance specifications within a required 
threshold. I t  is important to  determine a camera pose that  
reduces the impact of inherent errors, thus increasing the 
accuracy of such an inspection. In the VIPER system, we 
formulate the displacement error and quantization errors, 
taking into account all dependencies. By formulating and 
minimizing the mean squared error of the combined er- 
rors, we determine an optimal camera pose to  best view 
the desired entities of an object. To obtain an effective 

camera pose, each observed entity must be resolvable, in 
focus, within the field of view, and unoccluded. Once these 
constraints are satisfied, we exploit the distribution of the 
sensing errors to  determine the  probability that  the  errors 
are within the specified tolerance. A comparison of this 
probability and the  required threshold enables us to  ascer- 
tain the acceptability and accuracy of the  computed opti- 
mal camera pose. An expression for this probability has  
also been derived. 
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