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Abstract 
Bayesian methods provide formalism for 

reasoning about partial beliefs under conditions of 
uncertainty. Given a set of exhaustive and mutually 
exclusive hypotheses, one can compute the 
probability of a hypothesis for given evidence using 
the Bayesian inversion formula. In the Bayesian 
inference, the evidence could be a single atomic 
proposition or multi-valued. For multi-valued 
evidence, these values could be dscrete, continuous, 
or fuzzy. For continuous-valued evidence, the density 
functions used in the Bayesian inference are difficult 
to be determined in many practical situations. 
Complicated laboratory testing and advance 
statistical techniques are required to estimate the 
parameters of the assumed type of distribution. 
Using the proposed fuzzy Bayesian approach, 
formulation is derived to estimate the density 
function from the conditional probabilities of the 
fuzzy-supported values. It avoids the complicated 
testing and analysis, and it does not require the 
assumption of a particular type of dmibution. The 
estimated density function in our approach is proved 
to conform to two axioms in the theorem of the 
probability. Example is provided in the paper. 

1. Introduction 
Bayesian theorem is an effective tool for 

reasoning under the condition of uncertainty. 
Evidences are multi-valued in some situations and the 
values may be discrete, continuous, and fuzzy. 
Propositions are given numerical parameters 
representing their degree of beliefs under some body 
of knowledge, these parameters are then combined 
and manipulated based on the rules of probability 
theory. P(Hle) represents the subjective belief in the 
hypothesis, H, given the knowledge of the evidence, 
e. 

To compute the probability of a single 
evidence, e, by conditioning e on a set of exhaustive 
and mutually exclusive hypotheses HJ (i = 1, 2, ..., 
m), we use the following formula: 

This formalism states the belief in the evidence, e, is 
a weighted sum over the beliefs in all the distinct 
ways that e might be reahzed given the knowledge of 
the hypotheses, H,. 

The Bayesian inversion formula is utilized to 
compute the posterior probability of a hypothesis H, 
upon the evidence e, P(H,le), by multiplying the prior 
probability, PolJ), to the likelihood, P(elHJ), and 
divided by P(e): 

P(e) is computed using Equation (1). The Bayesian 
inversion formula is regarcled as a normative rule for 
updating beliefs in response to evidence. 

In some situations, the evidence is multi-valued 
instead of a single atomic proposition. The values 
could be discrete, continuous, or fuzzy. For example, 
length may have multiple dliscrete values (length (cm) 
= {loo, 110, 120, ..., 200}), or continuous values 
(length = [100,200]), or fuzzy values (length = 

{short, medium, long}). 

1.1 Discrete Values or Fwzy Values 
Given that e has n discrete values or fuzzy 

values, e = el, e2, . . ., %, amd there are m hypotheses, 
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HI, Hz, . . . , IE, the posterior probability of H, with 
evidence e, is computed as follow: 

(3) 

1.2 Continuous Values 
Given that e has continuous values, e =[a,b], and 

there are m hypotheses, HI, Hz, . . . , H,, the posterior 
probability of H, can be computed as follow: 

j=1 

(4) 

where f(elHJ) is the likelihood density and e is a value 
between a and b . 

In this paper, a methodology is presented to 
estimate the likelihood density function of the 
continuous valued evidence from the likelihood 
probabilities of the fuzzy valued evidences. It is 
shown that the estimated density functions conform 
to two axioms of the probability theory. Using the 
estimated likelihood density functions and the prior 
probabilities, we can determine the posterior 
probabilities for a given continuous valued evidence. 

2. Related Work in Fuzzy Bayesian Approach 
Fuzzy Bayesian approach has been adopted to 

enhance the probability updating process with fuzzy 
evidences by utilizing the conditional probability 
densities and the membership functions of the 
evidence's values. This approach has been widely 
applied in structural reliability to access the safety of 
the constructed projects [1,31. 

A fuzzy set is characterized by a membership 
function, ~ ( x ) ,  which assigns each value of x for the 
evidence, e, a grade of membership ranging from 0 to 
1. For example, an evidence, e, has n fuzzy values, 
el, ez, ..., %. 

Given that the value of the evidence is q, the 
llkelihood P(e,lHJ) is computed in [1,3]: 

where f(xlH,) is the likelihood density function 
evaluated at value x given the hypothesis, H,. We 
can compute the posterior probability using 
Equations (I), (2), and ( 5 )  as follows: 

One can use this approach to determine the 
likelihood probability for a given fuzzy value from 
the l ikel ihd density function and then determine 
the posterior probability. However, the likelihood 
density function is not easy to be determined. In 
many of its applications [1,3], the density functions 
are approximated as a particular type of Qstribution 
such as Guassian and Weibull, and the parameters of 
the apximated  distributions are estimated by 
laboratory testing and statistical methodology. These 
estimation is complicated and time consuming. 
Moreover, it is a waste of effort to determine the 
l ikel ihd probability for the fuzzy valued evidence 
once we have the likelihood density function for the 
continuous valued evidence. It is more appropriate to 
determine the likelihood density function for the 
continuous valued evidence from the Ilkelhood 
probability for the f k z y  valued evidence. In the next 
section, the approach to estimate the likehhood 
density function of the continuous valued evidence 
from their likelihood probability of the fuzzy valued 
evidence is introduced and these likelihood 
probabihties are then utilized to determine the 
posterior probabilities. 

3. Fuzzy Bayesian Inference from Fuzzy Valued 
Evidence to Continuous Valued Evidence 

Given the likelihood probability of the fuzzy 
valued evidence, an approach to estimate the 
likelihood density function of the corresponding 
continuous evidence is developed. The likelihood for 
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fuzzy valued evidence is observed from professional 
experiences. Each fuzzy value, e, covers a range of 
the continuous values ,and the size of the range is 
W ( a .  The grade of membership for a particular 
value in the fuzzy value is measured by the 
membership functions. Using the membership 
functions and the likelihood probabilities of the fuzzy 
values, we can estimate the likelihood density 
functions as follow: 

where 

In this formulation, it is imposed that the size of the 
interval divided by the area of the membership 
function for each fuzzy value is the same and is equal 
to e. 

The estimated likelihood for continuous valued 
evidence is computed as the weighted sum of the 
likelihood of the fuzzy valued evidence. The weight 
is proportional to the corresponding degree of 
belonging obtained by the membership function and 
is inversely proportional to the corresponding size of 
the interval of fuzzy value. 

Figure 1. Computing the likelihood probability for 
fuzzy valued evidence by Equation ( 5 )  and 
computing the likelihood density function for 
continuous valued evidence by the proposed 
approach using Equation (6). 

It is also proved that the likelihood density 
function developed in Equation (6) conform to the 
axioms of probability theory. For any density 
function f(x), the first axiom requires 

and the second axiom requires 

Proof of Axiom 1 

Proof of Axiom 2 

=1 

Using the estimated likelihood for the 
continuous valued evidence, one can compute the 
posterior probability using Equation (4) and (6). 
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4. Example 
In this section, a steakaoking example is 

utilized to illustrate the fuzzy Bayesian approach 
presented in Section 3. Let's assume that there are 
three hypotheses, (i) the steak is bumt @), (ii) the 
steak is well-done (W), and (iii) the steak is not done 
yet (N). There are five fuzzy values for the evidence, 
temperature of the stove, low (L), m d u m  low (Mi,), 
medmm (M), medum high (MI-€), and high (H). 
Using the formulation in Section 3, one can 
determine the posterior probability, e.g. the 
probability of the steak is bumt given the temperature 
of the stove is high. 

The membership functions for the fuzzy values 
are as follow: 

1 
50 

pL(e)=--e+5 200 I e I 250 

200 I e I 250 

250 I e I300 

250 5 e I300 

300 I e I 3 5 0  --e+7 

300 I e I 350 

[7;::8 350IeS400 

350 I e I 400 1 
50 

1 

P M  (e) = 

1 

PMH (e) = 

p H  (e) = - e - 7 

Table 1 provides the likelihood probabilities, 
P(e,lH,) such as P(LIB), for the fuzzy values and 
Table 2 provides the prior probabilities of the 
hypotheses, P(H,) such as P@). 

200 250 300 350 400 

Figure 2. Membership functions for the values of the 
evidence are low, medium low, medium, 
medium high, andhigh. 

Table 1. The likelihood probabilities of the steak- 

Table 2. The prior probabilities of the steak-cooking 

Using the membership functions and the likt ihooc 
probabilities in Table 1, we can compute the 
likelihood density functions using Equation (6). 
Let's assume e = 283. 

0.05 (283) +----pa 100 (283) + 

0.10 0.20 0.65 
- p M  100 (283)+-pu,, 100 (283) +-pjy 50 (283) 

Since c = 2, k(283) = 0, ~ ( 2 8 3 )  = 0.34, u 2 8 3 )  = 

0.66, M 2 8 3 )  = 0, and M283) = 0, 

f(2831B) = 0.00166. 

2710 



Similarly, 

f 
100 100 

= 0.00528 

100 
= 0.00268 

We find that the probability of the temperature of the 
stove is 283 given that the steak is well done is the 
hlghest (=0.00528), and the probability of the 
temperature is 283 given that the steak is burnt is the 
lowest (=0.00166). The probability of the 
temperature is 283 given that the steak is not done is 
the second highest (4.00268). The probabilities are 
small (less than 0.01) because the evidence 
(temperature) has continuous value. 

Using the estimated likelihood density functions 
and the prior probabilities, we can determine the 
posterior probability. 

P(B I 283) 

f * (283 I B)P(B) 
f * (283 I B)P(B) + f * (283 I W)P(W) + 

f * (283 I ”v 
(0.00 166)(0.20) 

(0.00166)(0.20) + (0.00528)(0.60) + (0.00268)(0.20) 
- 0.000332 

0.00403 6 
= 0.082 

Similarly, 

- 

P(W 1283) 

(0.00528M0.60) 
(0.00166)(0.20) + (0.00528)(0.60) + (0.00268)(0.20) 

P(N 1283) 

= 0.785 

(0.00268)(0.20) 
(0.00166)(0.20) + (0.00528)(0.60) + (0.00268)(0.20) 

= 0.133 

As a result, given the temperature is 283, the 
probability of well done for the steak is the highest 
which is 0.785 and the probability of burnt is the 
lowest which is 0.082, the probability of not done is 
0.133. (The total of these probabilities is 1.00.) We 
find that the probability of the steak is well done is 
almost ten times of the probability of the steak is 
burnt given that the temperature of the stove is 283. 

5. Conclusion 
The fuzzy Bayesian inference presented in this 

paper provides a mechanism for determining the 
posterior probabilities g m n  a value of the continuous 
evidence, provided that the fuzzy likelihood 
probabilities and the prior probabilities are known. 
In the previous work, mechanism has been developed 
to determine posterior probabilities given the fuzzy 
value of the evidence. However, the likelihood 
density functions are approximated by tedious and 
complicated laboratory work. Example is presented 
to illustrate the mechanim. Moreover, proofs are 
provided to show that the formulation conform to the 
axioms of theory of probability. 
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