
Title Efficient parallel mining of association rules on shared-memory
multiple-processor machine

Author(s) Hu, Kan; Cheung, David W; Xia, Shaowei

Citation Proceedings Of The Ieee International Conference On Intelligent
Processing Systems, Icips, 1998, v. 2, p. 1133-1137

Issued Date 1998

URL http://hdl.handle.net/10722/45585

Rights Creative Commons: Attribution 3.0 Hong Kong License

1997 IEEE International Conference on Intelligent Processing Systems October 28 - 31. Bei~tng. China

Efficient Parallel Mining of Association Rules
on Shared-Memory Multiple-Processor Machine

Kan Hut David W. Cheungl Shaowei Xiat

t Department of Automation, Tsinghua University, Beijing 100084, China.
Email: hukan@cs.hku.hk, swxia8mail.tsinghua.edu.cn.

Department of Computer Science, The University of Hong Kong, Hong Kong.
Email: dcheung@cs.hku.hk.

China

Abstract - In this paper we consider the problem
of parallel mining of association rules on a shared-
memory multiprocessor system. Two efficient algo-
rithms PSM and HSM have been proposed. PSM
adopted two powerful candidate set pruning techniques
distributed p r u n i n g and global p r u n i n g to reduce the size
of candidates. HSM further utilized an 1 / 0 reduc-
tion strategy to enhance its performance. We have
implemented PSM and HSM on a SGI Power Chal-
lenge parallel machine. The performance studies show
that PSM and HSM out perform CD-SM, which is a
shared-memory parallel version of the popular Apriori
algorithm.

I. INTRODUCTION

Mining associiition rules in large databases has attracted
a lot of attention in data mining research [l, 2, 4, 81.
The mining process needs to scan all the transactions
in the database, which introduces a significant amount
of I/Os. In addition, it has to search through a large
number of candidates for large itemsets which demands a
lot of CPU computation. Therefore, the development of
parallel algorithms for mining association rules is an im-
portant problem. In this work, we attempt to solve this
problem on shared-memory multiple-processor machines
such as the SGI Power Challenge.

Most proposals in parallel mining have been focused
on distributed or shared-nothing model [5, 6, 7, 9, lo].
In those models, the database is partitioned and dis-
tributed in the local disk of the processors. The memory
limitation and I/O cost are the dominating performance
factors. The shared-memory multiprocessor parallel ma-
chine is another important computing model. But very
few parallel mining works have been carried out on this
model. A direct extension of the Apriori algorithm to the
shared-memory model has been presented in [ll]. Some
important characteristics of the candidate sets in a parti-
tioned database have been discovered [5]. They have been
used to design two effective two pruning techniques, the
distributed pruning and global pruning, which can reduce
the amount of candidates effectively in the distributed or

0-7803-4253-4/97/$10.00 0 1997 IEEE

parallel environment.
One of the first parallel algorithm in shared-nothing

model is the CD (Count Distribution) algorithm [3]. For
comparison purpose, we have realized the CD algorithm
on a SGI Power Challenge shared-memory multiprocessor
machine. This version of CD is called CD-SM (CD on
Shared-memory Model).

In this work, we propose two efficient algorithms on the
shared-memory multi-processor machine. The first algo-
rithm is PSM (Parallel mining on Shared-memory Model)
which adopts the two pruning techniques to reduce the
number of candidates in each iteration. PSM remedies
the problem of large number of candidate sets in the CD-
SM algorithm. So PSM consumes less computing time
than the CD-SM. However, PSM still needs to perform
the same number of scannings on the database. In gen-
eral, the number of candidates after iteration two would
reduce drastically. Therefore, we have reduced the num-
ber of scannings by combining the computations of all
the iterations after iteration two. This enhanced version
is the HSM (Hybrid parallel mining on Shared-memory
Model) algorithm. Therefore, HSM can reduce the 1/0
cost at most situations (i.e., when need to mine more
than two iterations in CD-SM), and has less CPU cost
compared with CD-SM.

We have implemented the above algorithms on a SGI
Power Challenge shared-memory muti-processor machine
with 8 processors. All algorithms base on the framework
of common candidate partitioned database. One single
candidate hash tree or Trie is used by all the processors,
while the database is partitioned among them. Each pro-
cessor traverses its local database and stores the support
for itemsets separately on the shared hash tree. Finally, a
master process computes the large itemsets according to
the given threshold. Extensive performance studies have
been carried out. It was observed that both PSM and
HSM performed faster than CD-SM. In particular, HSM
enjoys a very good reponse time due to its 1/0 reduction.
The performance studies also showed that PSM and HSM
have better speed up property than CD-SM.

- 1133 -

The rest of this paper is organized as follows. Sec-
tion 2 overviews the parallel mining of association rules.
Two candidate pruning techniques, distributed pruning
and global pruning are described in Section 3. In Section
4, we present the PSM and HSM algorithms. Section 5
reports the result of the performance study. Finally we
conclude in Section 6.

11. PA4RALLEL MINING OF ASSOCIATION RULES

A . Assotzataon Rules

Let I = {il, i2, . . . , im} be a set of items and D be a
database of transactions, where each transaction T con-
sists of a set of items such that T GI. An associatzon rule
is an implication of the form X j Y , where X 5 I , Y c I
and X n Y = 4. An association rule X =+- Y has support
s in D if the probability of a transaction in D contains
both .X and Y is s. The association rule X + Y holds
in D with confidence c if the probability of a transaction
in D which contains X also contains Y is c. The task
of mining association rules is to find all the association
rules whose support is larger than a given minimum sup-
port threshold and whose confidence is larger than a given
minimum confidence threshold. For an itemset X, we use
X sup to denote its support count in database D , which is
the number of transactions in D containing X. An item-
set X s I is large (or frequent) if X sup 2 minsup x lDJ,
where m i n s u p is the given minimum support threshold.
For the purpose of presentation, we sometimes just use
support to stand for support count of an itemset.

It has been shown that the problem of mining associ-
ation rules can be decomposed into two subproblems [l]
: (1) find all large itemsets for a given minimum support
threshold, and (2) generate the association rules from the
large itemsets found. Since (1) dominates the overall cost,
the current research has been focused on how to efficiently
solve the first subproblem.

itemsets L k are computed independently by each proces-
sor. CD repeats steps 1 - 4 until no more candidate is
found.

1) C k = apriori-gen(Lk-1);
2) scan partition D, to find the local support count

X s u P (%) for all S E C k ;
3) exchange {X s u p (i) 1 X E Ck} with all other processors

to get global support counts X s u p , for all X E C k ;

4) L k = {X E Cn. I X s u p 2 minsup x IDl}

Fig 1. Count Distribution Algorithm

111. CANDIDATE PRUNING TECHNIQUES

Suppose the entire database D is partitioned into D1,
D2, ..., D, and distributed over n processors. Let X
be an itemset and X s u p be the support of X in D. We
call X sup the global support of X. Also, we use'X S u p (r)

to denote the local support of X at processor i , which is
the support of X in D,. X is globally large if X,,, 2
minsup x ID(. Similarly X is locally large at processor
i if X s u p (t) 2 rninsup x ID,/. We also call X gl-large
at processor 2, if X is globally large and locally large at
processor i. For convenience, we use the term k-itemset
to stand for size-k itemset, and use L k , GLb(,) to denote
the set of all globally large k-itemsets and the set of all
gl-large k-itemsets n t processor i, respectively.

CD only applies tunction aprzorz-gen on the set L k - 1

to generate the candidate sets Ck in the Ic-th iteration. In
fact, after the support counts exchange in the (k - 1)-th
iteration, each processor can find out not only the large
itemsets L k - 1 in CkPl but also the processors at which
an itemset X is gl-large for any X E L k P l . By using this
information, many candidates in C k can be identified to
be small and hence pruned away before the next scan of
the database.

B. Count Distribution Algori thm f o r Parallel Mining A . Distributed pmning

Aprion' is the most well known serial algorithm for min-
ing association rules [2]. It relies on the cspriori-gen func-
tion to generate the candidate sets at each iteration. CD
(Count Distribution) is a parallel version of Apriori for
parallel mining basing on shared-nothing multiprocessor
[3]. The database D is partitioned into D1, D2,. . + , D,
and distributed across n processors. The program frag-
ment of CD at processor i, 1 5 i 5 n, for the Ic-th it-
eration is outlined in Fig. 1. In step 1, every proces-
sor computes the same candidate set C k by applying the
aprior-gen function on L k - 1 , which is the set of large
itemsets found at the (k - 1)-th iteration. In step 2, local
support counts of candidates in Ck are found. In steps
3 & 4, local support counts are exchanged with all other
processors to get global support counts and globally large

'

The distributed pruning technique is derived from the ob-
servation that all subsets of any large itemsets must be
gl-large simultaneously on at least one processor. For ex-
ample, suppose the database is partitioned into D1 and
Dz on processors 1 and 2. Further assume that both A
and B are two size-1 globally large itemsets. In addition,
A is gl-large at processor 1 but not processor 2, and B
is gl-large at processor 2 but not processor 1. It can be
shown that AB E C2 can never be globally large. If AB
is globally large, it must be globally and locally large (gl-
large) at some processor. Assume it is gl-large at proces-
sor 1, then B must also be gl-large at processor 1, which
is contradictory to the assumption. Similarly, AB cannot
be gl-large at processor 2. Hence AB cannot be globally
large at all. In other words, if AB was globally large,

- 1134 -

then A and B must be gl-large at the same time on pro-
cessor 1 or processor 2 or both of them. This observation
can be genera1i.zed to the k-th iteration. Therefore, the
candidates can be generated by applying function apri-
ori-gen on each GLk-l(i), (1 5 i 5 n) , independently.
The set of size-k candidates generated with this technique
is equal to CGg = UY=lCGg(i), where CGg(i) = apri-
ori..gen(GLk-l(i)). Note that the function apriori-gen is
the same as that in the Apriori algorithm, but it is ap-
plied on subsets of Lk-1 rather than the whole Lk-1.
Due to the combinatorial effect, the size of Cg = apri-
ori-gen(lk-1) could be much larger than that of CGg.
The above observation can be summarized by the follow-
ing theorem proved in [5] .

Theorem 1 For k > 1, the set of all globally large k -
iternsets Lk is a subset of CGk = UY=lCGk(i), where
CGk(,) = apriori-gen(Gll,-l(,)).

Based on Theorem 1, we can prune away any size-k
candidate such that there does not exist any processor a t
which all its size-(& 1) subsets are gl-large. This pruning
technique is called distributed pruning.

B. Global Pruning

In the counting process, each processor keeps its local
support counts for etery candidates. The local support
counts are exchanged or shared after each iteration. As a
result, the local support counts X F n p (t) , for all processor
i , (1 5 i 5 n) , are also available at every other pro-
cessor. With this information, another powerful pruning
technique called global pruning can be developed.

Let X be a candidate k-itemset. .4t each processor i,
X s u p (r) 5 Ysup(z) , where Y c X . Therefore X s . u p (l) is
bounded by thci value rnin{YSTLp(%) I Y c X, and IYl =
k - 1). Hence the value

n

x m a z s u p = m a z s u p (t)
t= 1

where X rnazsup(z) = min{YsUp(%) I Y C X, IYI = k - 1)
is an upper bound of the global support of X. If X <
minsup x ID/, then X can be pruned away. This technique
is called global prunzng. Note that global pruning requires
no additional information except the local support counts
resulted from count exchange or sharing in the previous
iteration. We can apply global pruning to the survivals of
candidates after going through the distributed pruning to
get the smaller candidate itemsets. That is, if the upper
bound of an itemset X is found to be smaller than the
support threshold, X cannot be globally large and should
be removed from the set of candidate sets.

IV. PSM AND HSM ALGORITHMS

A . Parallel Maning on Shared-Memory Model Algorithm
P S M)

The PSM is an enhancement of CD-SM. The main differ-
ence between them is that both the distributed pruning
and global pruning are incorporated in the PSM algorithm
to reduce the candidate set size.

The first iteration of PSM is the same as CD-SM. Each
processor scans its partition to find out local support
counts of all size-1 itemsets and the master process is
in charge of computing the global support counts. At the
end, in addition to L1, each processor also find out the
gl-large itemsets GLl(,), for 1 5 i 5 n.

For the k-th iteration of FPM, k > 1, the program
fragment at processor i , 1 5 i 5 R, is described in Fig. 2.

1) compute candidate sets CGL(,) = Aprioii_gen(GLr_l(,));

2) prune candidates in CGk(,) by global pruning;
3) build CGq:) into the common hash tree HI"(,);
4) scan partition D, to find the local support

5) compute GLgc,) = { X E HT(k) I X s u p 2 minsup x 1D1,

6) return Lk = Ur=lGLk(z).

(distributed pruning)

count S s u p (r) for any X E H T p) ;

X s u p (r) 2 7 n Z 7 L S U p x 1D,1}, for all i, 1 5 i 5 16;

Fig. 2. The PSM Algorithm

The PSM algorithm is designed on the model of com-
mon candidate hash tree and partitioned database. Every
processor can visit the shared hash tree for looking up the
candidates while the database split among them. Local
counter airay with length of ICkl is kept by every pro-
cessor to record the local support counts. At the end of
each iteration, these local counter arrays are shared by
all processors. The data structure of the common hash is
exactly same as used in Apriori 121.

B. Hybrid Parallel Mining on Shared-Memory Model
Algorithm(HSM)

Although PSM has much less candidates than CD-SM,
they have the same 1/0 cost, i.e., they scan database with
the same number of passes. Under the shared-memory
computing model, most machines only have serial I/o
ability up to now. However, we have to face the hugh
volume database in the data mining task. Thus the cost
of 1/0 becomes the bottleneck.

The HSM algorithm is designed to reduce the 1/0 cost.
HSM retains the pruning techniques in PSM. In details,
the first and second iterations of HSM is the same as
PSM. Then we can get the results of L1, Lz. Obviously
C3 can be generated by using Apriori-gen and pruning
techniques on Lz. The subsequent steps are different from
that in PSM. We continue to generate C4 from C3 by

- 1135 -

using Apriori-gen only and from C, to C5 and so on,
until no candidate is generated. A Trie as described in [4]
is used to store the support counts after each processor
performs one scan on its partition. Therefore, with only
one pass, we can compute all large itemsets of size larger
than two.

Since HSM only scan database at most three passes, it
incures much less 1/0 comparing with CD-SM. The other
more flexible strategy in HSM is to assign a threshold for
the C k . When the size of C k is less than the threshold,
the algorithm then switchs from the hash tree approach
to the Trie approach.

1 -

0 8

0 8

0 4

0 2

0

V. PERFORMANCE EVALUATION

All the experiments were performed on a 8-node SGI
Power Challenge shared-memory multiprocessor. Each
node is a MIPS RlOOOO processor. There is a total of
512MB of main memory. All processors run IRIX 6.2.

* * -

-

- -

- *

- -
____..----

A . Synthetic Databases Generation

We use the synthetic test data generator introduced in
[2]. The database partition of each node is about 33MB
in size, and the number of partitions is 8, i.e., n = 8.
The number of items N = 1000 and the number of maxi-
mal potentially large itemsets ILI = 1000. Table 1 shows
the databases used and their properties. In it, D, is the
number of transactions in each partitions, T is the av-
erage size of the transactions, and I is the average size
of the itemsets. The minimum support threshold is 1%
while 2% at the last two cases. We ran all CD-SM, PSM
and HSM on the 5 databases. Experiments were repeated
multiple times to obtain stable values.

Table 1. DATABASE PROPERTIES

Name I Dj (T I 1
Dl000K.T5.12 1 lOOOK 1 5 1 2
D700K.Tl0.12 I 700K 1 10 1 2
D700K.Tl0.14 1 k00K I 10 I 4 . - I \ - - 1

D40OK.T20.14 I 400K I 20 1 4
D400K.T20.16 I 400K I 20 I 6

B. Relative Performance

Fig. 3 shows the response times for the three parallel al-
gorithms on the five databases. Both HSM and PSM are
faster than CD-SM in all cases. It seems that the response
time of the HSM is near a constant value. But this is a
mere coincidence due to the adjustment on the experi-
ment parameters including transaction number, transac-

Fig. 4 shows the pruning effects. It is the ratio of the
number of candidate sets with pruning over that gener-
ated by Apriori-gen only. There are much less candidate

. tion average size and the minimum support threshold.

Relalw- Performans. ("-8)
6000

CD-SM c
PSM ---
HSM 0

,000 ,a.___.__._____ ___.....___...... m _._..,.._..-.... Q1

0 I
D1000K.T5.IZ D700K.T10.12 D70OK.T10.14 D400K.TZ0.14 D4OOK.T20.IB

Detebsses

Fig. 3. Relative Performance

itemsets generated when distributed pruning and global
p run ing techniques are used. It is obviously that the
pruning effect is related to the data distribution among
the database partitions. The expected results is that the
more data skewness among the partitions, the better the
pruning effect. For an extreme example, let 2 database
partitions for 2 processors, if itemsets AB, AC, BC are
all gl-large at both 2 processors, then neither distributed
prun ing nor global pruning can prune the itemset ABC
out. Extensive studies on the skewness as a parameter
on the pruning effect has been performed and will be re-
ported in the future.

C. Parallel Performance

We have investigated the performance speedup on a fixed
size database with increasing number of processors and
partitions. The database D700K.Tl0.14 was chosen as the
dataset withthe minimum support threshold 1.0%. Fig. 5
presents the relative speedup. The result is very encour-
aging. Both HSM and PSM performed better speedup
than CD-SM. Especially, HSM has achieved a superlin-
ear speedup. The reason is that the pruning effect is
augmented when the number of partitions is increased.
Although there was the same pruning effect in PSM al-
gorithm, it didn't present a superlinear property because
there is no optimization on 1/0 reduction.

Another phenomenon in Fig. 5 is that speedup of the
three algorithms are not linear. The reason is that the

- 1136 -

Fig. 5. Speepup

1/0 mechanism of SGI Power challenge is not parallel.
The 1/0 contention among processors increase when the
number of processor increases, and hence has a negative
impact on the performance.

VI. CONCLUSIONS

In this paper, we proposed two parallel algorithms PSM
and HSM for mining association rules on the SGI Power
Challenge shared-memory multi-processor. PSM is in-
corporated with two candidate pruning techniques, dis-
tributed pruning and global pruning. HSM further en-
hances PSM by utilizing an 1/0 reduction strategy. The
experiments showed that both algorithms performed bet-
ter than CD-SM. In the future work, we are interested in
using dynamic candidates generation approach to further
reduce the 1/0 cost and adopt an asynchronous mecha-
nism on shared-momory parallel system to speedup the
response time.

[3] R. Agrawal and J.C. Shafer. Parallel mining of as-
sociation rules: Design, implementation and experi-
ence. Special Issue in Data Mining, IEEE Trans. on
Knowledge and Data Engineering, IEEE Computer
Society, V8, N6, December 1996, pp. 962-969.

[4] S. Brin, R. Motwani, J. Ullman, S. Tsur. Dynamic
itemsets counting and implication rules for market
basket data. In Proc. of 1997 ACM-SIGMOD Int.
Conf. On Management of Data, 1997.

[5] D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, Y. Fu.
A fast distributed algorithm for mining association
rules. In Proc. of 4th Int. Conf. on Parallel and Dis-
tributed Information Systems, Miami Beach, Florida,
December, 1996, pp. 31-43.

[6] D. W. Cheung, V. T. Ng, A. W. Fu, and Y. Fu. Ef-
ficient Mining of Association Rules in Distributed
Databases. Special Issue in Data Mining, IEEE
Trans. on Knowledge and Data Engzneering, IEEE
Computer Society, V8, N6, December 1996, pp. 911-
922.

[7] E. Han, G. Karypis and V. Kumar. Scalable parallel
data mining for association rules. In Proc. of 1997
ACM-SIGMOD Int. Conf. On Management of Data,
1997.

[8] J. S. Park, M . S. Chen, and P. S. Yu, An effective
hash-based algorithm for mining association rules. In
Proc. of 1995 ACM-SIGMOD Int. Conf. on Manage-
ment of Data, San Jose, CA, May 1995, pp. 175-186.

[9] J. S. Park, M. S. Chen, and P. S. Yu, Efficient parallel
mining for association rules. In Proc. of the 4th Int.
Conf. on Information and Knowledge Management,
Baltimore, Maryland, 1995, pp. 31-36.

References

R. Agrawal, T. Imielinski, and A. Swami. Min-
ing association rules between sets of items in large
databases. In Proc. of 1993 ACM-SIGMOD Int.
Conf. On Management of Data, Washington, D.C.,
1993, pp. 207-216. Systems, 1996.

R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In Proc. of the 20th VLDB
Conference, Santiago, Chile, 1994, pp. 487-499.

[lo] T. Shintani, M. Kitsuregawa. Hash based parallel al-
gorithms for mining association rules. In Proc. of 4th
Int. Conf. on Parallel and Distributed Information

[I11 M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li,
Parallel data mining for association rules on shared-
memory multi-processors. Supercomputing '96, Pitts-
burg, PA, Nov 17-22, 1996.

- 1137 -

