
Title Impact of priority assignment on optimistic concurrency control
in distributed real-time databases

Author(s) Lam, Kamyiu; Lee, Victor CS; Hung, Sheunglun; Kao, Benjamin
CM

Citation Proceedings Of The International Workshop On Real-Time
Computing Systems And Applications/Rtcsa, 1996, p. 128-134

Issued Date 1996

URL http://hdl.handle.net/10722/45571

Rights Creative Commons: Attribution 3.0 Hong Kong License



Impact of Priority Assignment on Optimistic Concurrency Control 
in Distributed Real-time Databases 

Kam-yiu Lam, Victor C.S. Lee and Sheung-lun Hung Benjamin C.M. Kao 
Department of Computer Science 

City University of Hong Kong 
83 Tat Chee Avenue, Kowloon 

HONG KONG 

Abstract 
In the studies of real-time concurrency control 

protocols (RT-CCPs), it is always assumed that earliest 
deadline first (EDF) is employed as the CPU scheduling 
algorithm. However, using purely (ultimate) deadline for 
priority assignment may not be suitable for distributed 
real-time database systems (DRTDBS) in which there 
exist different kinds of transactions, such as global and 
local transactions. In order to improve the performance, 
different priority assignment heuristics have to be used. 
In this paper, we have investigated the performance of 
dvferent priori& assignment heuristics for sub- 
transactions in DRTDBS with optimistic concurrency 
control (OCC) protocol. It is found that the heuristics, 
which are suitable for distributed real-time systems, are 
not suitable for DRTDBS. We $nd that our proposed 
heuristic, which considers both deadline constraint and 
data contention, can give the best performance. 

1 Introduction 

The research on real-time database systems 
(RTDBS) has received much attention in recent years. 
RTDBS are generally defined as the database systems in 
which the transactions have constraints on their comple- 
tion times (usually are expressed as their deadlines) [ 1 1, 
131. The performance and the correctness of RTDBS are 
highly dependent on how well these deadlines are met. If 
the database in a RTDBS is partitioned in different sites, 
whch are connected by communication links and logi- 
cally related, it is called a distributed real-time database 
system (DRTDBS) [7]. It is more difficult to meet the 
transaction deadlines in DRTDBS. A number of factors 
can introduce unpredictability in transaction response 
times and the deadline constraints of the transactions are 
always very different. 
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In recent years, a lot of work has been devoted to the 
study of concurrency control protocols for RTDBS and 
DRTDBS [13]. The objectives are to design an algorithm 
which can minimize the number of deadline missing 
transactions and at the same time can maintain the 
database consistency. The protocols are called real-time 
concurrency control protocols (RT-CCPs). In RT-CCPs, 
higher priority transactions are given preferences in 
using the data items. Most of the proposed RT-CCPs are 
based on locking and optimistic concurrency control 
(OCC) [2]. One well-known real-time locking protocol is 
High Priority Two Phase Locking (H2PL) [l] in which 
lock conflicts are resolved by restarting lower priority 
transactions. However, recent work has found that OCC 
is more suitable than locking for RTDBS [4]. 

The performance of RT-CCPs can be seriously 
affected by priority assignment methods as they deter- 
mine which transaction should go first and which trans- 
action should be blocked or restarted in resolving data 
conflicts [3, 5, 9, 121. In the study of RT-CCPs, most of 
the work assumes that the importance and the character- 
istics of the transactions are similar. They use Earliest 
deadline first (EDF) for CPU scheduling and the priori- 
ties of the transactions are defined by their deadlines. 
Although EDF has been shown to be optimal and widely 
used in task scheduling in real-time systems [6], using 
deadlines as priorities may not be very suitable for 
distributed real-time systems and DRTDBS as the 
deadline constraints of the transactions or the tasks in the 
systems can be very different [3,5]. In [5], the problems 
in distributed real-time system have been discussed and 
new methods have been suggested. However, their studies 
have not included the impact of data synchronization on 
the performance of dBerent priority assignment heuris- 
tics. 

In DRTDBS, it is common to find transactions with 
different characteristics and deadline constraints in a 
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system [5, 91. For some transactions, a number of sub- 
transactions have to be created as their required data 
items are distributed in different sites. They are called 
global transactions. The others may only require to 
access the data items located in their site of origination 
(where the transactions are initiated). They are called 
local transactions. The deadline constraints of global 
transactions can be very different from local transactions. 
Although the deadlines of global transactions are usually 
longer than that of local transactions, the total time 
required to process a global transaction is also much 
longer than a local transaction. The use of deadlines as 
transaction priorities will make the system bias to local 
transactions. New methods have to be designed for 
priority assignment of sub-transactions of global transac- 
tions so that the probability of meeting the deadline 
constraints of the global transactions can be increased. 

In [9], the heuristics suggested in [5 ]  are re- 
examined in DRTDBS with H2PL as the concurrency 
control protocol. Surprisingly, these heuristics which 
have been found suitable for traditional distributed real- 
time systems are not suitable for DRTDBS. Different 
priority assignment methods can have a very significant 
impact on the performance of H2PL in DRTDBS. They 
s e c t  the probability of lock conflicts and the probability 
of priority inversion. If a poorly designed priority as- 
signment method is used, the systems will be suffered 
from the problem of cyclic transaction restarts and may 
result in deadlocks. 

As OCC protocols have been found more suitable for 
RTDBS than locking protocols and it uses a completely 
different method to detect and resolve data conflicts, it is 
interesting to investigate the impact of different priority 
assignment methods on its performance and the relation- 
ship between them. The rest of this paper is organized as 
follows. In Section 2, we review the benefit of using OCC 
protocols for RTDBS and how they can be used for 
DRTDBS. In Section 3 we discuss a number of priority 
assignment heuristics. Section 4 describes our DRTDBS 
model and the workload model. The results of the 
simulation experiments comparing the various assign- 
ment heuristics is in Section 5. Finally, we conclude the 
paper in Section 6. 

2 Optimistic Concurrency Control 

In OCC protocols, the execution of a transaction is 
divided into three phases: (1) the read phase, (2) the 
validation phase, and (3) the write phase. During the 
read phase, the operations of a transaction or a sub- 
transaction will be processed one by one. The processing 
of an operation requires the access of data items in the 
database. The data items are read into the main memory. 

Computations based on the values of these data items are 
performed. If the operation is a write operation, new 
values are computed. They are not written into the 
database immediately. When all operations of a transac- 
tion have been processed, the transaction enters the 
validation phase in which the conflicts with other trans- 
actions which are in their read phase will be checked. If 
there are data conflicts, based on the conflict resolution 
method used, either the validating transaction or the 
other conflicting transactions will be restarted. Finally, if 
the validating transaction is not selected to restart, it 
enters the write phase in which updated data items are 
written back to the database from its private workspace. 

If OCC protocols are extended to DRTDBS, two 
additional issues have to be catered: validation in a 
distributed environment and atomic commitment of 
transactions. Validation in DRTDBS is much more 
complex than that in a single-site RTDBS. In [SI, a 
circular validation method based on locking is suggested. 
In the method, a lock table is defined in each site for the 
data items in that site. When a transaction wants to 
access a data item, it will set a lock in the lock table. The 
purpose of this lock is to indicate which transactions are 
accessing the data item. All the locks are compatible. In 
order to prevent distributed deadlock, the sites in the 
system are ordered. Validation of a transaction is started 
at the site with the highest order. In the validation at a 
site, the lock table will be examined. When validation at 
all the sites have been done, the transaction enters the 
write phase in which atomic commitment will be per- 
formed in addition to the permanent update of the 
database. 

3 Priority Assignment Heuristics 

In this section, several priority assignment heuristics 
will be introduced. They are divided into two groups. The 
first group considers only transaction deadlines. The 
second group considers both deadlines and the effect of 
data contention. 

3.1 Deadline Based Heuristics 
It is assumed that a global transaction T consists of 

m sub-transactions, TI,  T2, ... , T,, to be executed in 
series. The first i-I sub-transactions are completed and 
sub-transaction T, is ready for execution. Thus, a priority 
(i.e., a deadline) has to assign to T,. 
(1) Ultimate Deadline (UD) 

The simplest way to assign a deadline to a sub- 
transaction is to adopt the deadline of its transaction. The 
first heuristic is called Ultimate Deadline (UD) in whch 
the deadline of a sub-transaction is set to be the deadline 
of its transaction : 
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dl(TJ = dip) 
where d l ( 3  is the deadline of X which is a transaction or 
a sub-transaction 

This is the priority assignment method used in most 
studies on RT-CCPs [l, 71 The problem of UD is that it 
does not consider the amount of time that has to be 
reserved for the execution of the following sub- 
transactions (?",+,, ,T,) of the transaction. It gives the 
scheduler incorrect information about how much time 
sub-transaction T, can be delayed in its execution without 
causing the transaction T to miss its deadline 
(2) Effective Deadline (ED) 

The second strategy corrects this misinformation by 
computing the Effective Deadline (ED) of the sub- 
transaction TI.  Under ED, the deadline of the sub- 
transaction TI is the ultimate deadline minus the total 
predicted execution time of the sub-transactions of T 
following TI.  That is, 

m 
dl(T1) = dl(T)-  Cpex(T/)  

J=I+l 

where p e x p )  is the expected execution time of X .  
The problem of UD and ED is that they allocate all 

the remaining slack of the global transaction to the 
current executing sub-transaction. Subsequently, the 
following sub-transactions (T,+,, . . . , T,) may not have 
sufficient slack for their executions. 
(3) Equal Slack (EQS) 

A fair heuristic should distribute the slack among the 
sub-transactions. There are two slack distribution 
schemes The first scheme is called Equal Slack (EQS) in 
which the slack is evenly distributed among the remain- 
ing sub-transactions 

dl(T4 = ar(T9 i- pex(T4 i- [dl(T) - ar(T1) 

- ; p e x o /  / (m - I i- I )  
j=z 

where a r p )  is the arrival time ofX. It is assumed that a 
transaction or a sub-transaction will be ready for execu- 
tion when it is arrived. The third term on the right hand 
side of the equation calculates how much slack should be 
distributed to TI. 
(4) Equal Flexibility (EQF) 

The second scheme of distributing transaction slack 
is called Equal Flexibiliv {EQF) in which the distribu- 
tion of the slack to the sub-transactions is proportional to 
their predicted execution time. The "flexibility" of a 
transaction T is defined as the ratio of the amount of 
slack of X to the amount of execution time of T: 

dl(Tt) = ar(E) i- pex(T1) i- [dl(T) - ar(E) 
m m 

- Pexfi)] pexpd 1 CPexPJ) 
J = I  J = I  

In EQS and EQF, the deadline assignment is dy- 
namic which means that it is determined at run time just 
before sub-transaction T,  is submitted for execution. The 
total slack being distributed (the term in the square 
brackets) is the amount of slack global transaction T has 
with respect to the current time. 

In [ 5 ] ,  it has been shown that EQS and EQF perform 
much better than UD and ED in a distributed real-time 
system in terms of meeting global task deadlines. The 
reason is that by assigning to sub-task deadlines that can 
faithfully represent their degrees of urgency, EQS and 
EQF successfully monitor the progress of sub-tasks. This 
in turn avoids unwise delay to certain sub-tasks 
(especially those that are the first couple of stages of 
some global tasks) which are mistaken to have large 
amount of phantom slack. A higher percentage of task 
deadlines can thus be met. 

Although EQS and EQF enjoy good performance in 
distributed real-time systems [ 5 ] ,  they suffer major 
setbacks in DRTDBS using H2PL in [9]. The biggest 
problem in this kind of system is that EQS and EQF do 
not click with the traditional real-time concurrency 
control protocols. For example, while a transaction T is 
waiting, its slack decreases with time. Consequently, 
according to EQS and EQF, the priorities of T's sub- 
transactions will become higher relative to the sub- 
transactions of the executing transaction (lets say T J .  
The scheduler is thus likely to swing the CPU to a 
waiting transaction (0 whenever a sub-transaction (of T') 
is done. This interleaving, although ensures that transac- 
tions are progressing at pace, vastly increases the prob- 
ability of data conflict as more unfinished transactions 
are holding locks at the same time. 

3.2 Data Conflict Based Heuristics 
In order to counteract the effect of intensifying data 

contention brought along by EQS and EQF, we need to 
inject transaction data requirements into the assignment 
of sub-transaction priorities. Here, we introduce three 
new heuristics. 
(5) Static Equal Slack (SEQS) 

To make the priority of the sub-transactions less 
dynamic, we can use a static method to distribute the 
slack of a transaction to its sub-transactions. In SEQS, 
the deadlines of all the sub-transactions are assigned 
once and for all when the global transaction arrives. 

i 

k=l  
dl(Ti) = ar(T) + pt?X(Tk) + [dl(T) - ar(T) 

m 

In EQS, if the priority of a sub-transaction,  TI,^ is 
smaller than another sub-transaction, TzJ, the priority of 
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the sub-transactions following TzJ will become higher as 
the slack of T2 becomes smaller while TZJ is waiting for 
scheduling. However, in SEQS, the priority of a sub- 
transaction will not be increased due to the waiting of the 
sub-transactions before it in its parent transaction as its 
priority is using the slack when its parent transaction 
arrives at the system. Thus, the degree of interleaving in 
transaction execution is smaller in SEQS as compared 
with EQS. 
(6) Number of Data Items (NL) 

Two important factors affecting the probability of 
data conflict in OCC protocols is the number of data 
items accessing by different transactions and the duration 
of using the data items. One way to reduce the data 
conflict probability is to give higher priority to the 
transactions which are accessing more data items. In 
Number of Data Items (NL), the priority of a sub- 
transaction T, is assigned according to the number of data 
items accessing by its parent transaction T (i.e., all data 
items used by TI, T,, ... , T, count towards the priority): 

p(TJ = number of data items accessing by T 
By assigning the highest priority to the transaction 

which is accessing the largest number of data items, the 
transaction can complete faster. This greatly reduces the 
probability of data conflicts and the number of transac- 
tion restarts. The priority of a sub-transaction is follow- 
ing the priority of its parent transaction. 

Strategy NL focuses on reducing data contention 
while UD, ED, EQS and EQF focus on determining the 
milestones (sub-deadlines) monitoring the progress of 
transactions. 
(7) Mixed Method: 

We inject the idea of NL to the deadline-cognizant 
heuristics (in section 3.1): sub-transaction priorities can 
be assigned based on a function which includes both 
transactions' real-time constraints and the number of data 
items accessing by the transaction. We call this approach 
the Mixed Method @fM): 

I 
dl(Td = ar(T) + Cpex(Tk) + [dl(T) - ar(T) 

k = l  
m 

- ZpeX(TJ)] x lock- factorv)  
/ = I  

where lock factor(T) = 1 - (number of data items 
accessing by 7") / (total number of data items to be 
accessed by 2') 

The idea of MM is to artificially advance the dead- 
line of a global transaction T (for scheduling purpose 
only) according to the number of data items it is access- 
ing. The larger the number of data items T accessing, the 
smaller is the lock factor, and the earlier is Ts artificial 
deadline (i.e., a higher prionty). By raising the priority 
of a transaction which is accessing more data items, it is 

hope that the transaction can complete earlier and the 
degree of data contention in the system can be reduced. 
The priority of a sub-transaction is following the priority 
of its parent transaction. MM thus considers both the 
deadline requirement of the transactions as well as the 
data contention issue. 

4 TheModel 

In this section, the DRTDBS model and the work- 
load model, which are used to study the impact of differ- 
ent priority assignment heuristics on the performance of 
OCC in DRTDBS, are described. In the OCC protocol, 
the broadcast commit method [4] is used for solving data 
conflicts. 

4.1 Distributed Real-time Database Model 

Mabase site 

~ c a t i c n  line . 

Figure 1: The DRTDBS model. 
At each site, the transaction generator generates 

transactions independently according to Poisson distri- 
bution. Two types of transactions are considered in the 
model: global and local. While a local transaction only 
accesses local data items, a global transaction consists of 
a series of sub-transactions. If a sub-transaction requests 
a remote data item (a data item located other than its site 
of origination), it will be transmitted to a remote site 
through the communication network, and be processed 
there. 

The processing of operations in both local transac- 
tions and sub-transactions is similar. It requires the use 
of the CPU and the access of the data items in the data- 
base. For simplicity, it is assumed that both local trans- 
actions and sub-transactions have similar CPU and data 
requirements. In particular, they access the same number 
of data items, and the execution times of the database 
operation are the same. Since main memory database 
systems can better support real-time applications, it is 
assumed that the databases are residing in the main 
memory. With the use of main memory database, the 
impact of different I/O scheduling on the system per- 
formance can be eliminated. 

At each site, transactions and sub-transactions are 
scheduled to the CPU by the scheduler based on their 
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priorities. Transactions and sub-transactions that are 
ready for execution are enqueued in the ready queue 
according to their priorities. In the OCC protocol, when a 
transaction accesses a data item in the read phase, the 
data item will be marked by setting a lock in the lock 
table to indicate that it is being used by the transaction. 
When all the operations of a transaction have been 
processed, the transaction enters the validation phase. 
Circular validation is started at the site with the highest 
site order. Data conflicts are checked by looking at the 
lock table in each site. In the model, we use the broad- 
cast commit method for conflict resolution in which any 
conflicting transaction with the validating transaction 
will be restarted [4]. After the completion of the valida- 
tion phase, the transaction enters the write phase in 
which two phase commit protocol [2] and permanent 
updates of the write operations will be performed. If all 
the sub-transactions (for global transactions only) are 
about to commit, the parent transaction will decide to 
commit. After all the sub-transactions and the parent 
transaction have committed, the transaction is completed. 

We assume that the transactions are associated with 
firm deadlines [l]. Before a transaction is allocated the 
CPU, the scheduler checks its deadline. If it has already 
missed the deadline, the transaction is aborted immedi- 
ately. 

Database size / site 
Number of database sites 
TI"?' 

4.2 Workload Model and Measures 
The arrival rates of global and local transactions in a 

site are Aglobol and A I ~ ~ ~ I  respectively. Each global trans- 
action consists of m sub-transactions. We use the same 
model for both local transaction and sub-transaction, 
which requires Noper number of database operations. Each 
operation involves locking of a data item (which takes 
Tiock amount of time) and processing of the data (which 
takes Tprocess amount of time). Therefore, the total 
processing time for a local or sub-transaction is (TlOck + 
Tprocess) x Noper, and for a global transaction, m times that 
amount. The total system load is thus (Alocal + Aglobal x m ) 
x Noper x (Tlock + Tprocess) of which a fraction of AIocal / 
( j l ~ ~ ~ ~ ~  + &lobo[ x m ) 1s contributed by local transactions. 
We denote this latter fraction, frac-local. In addition, a 
sub-transaction may access data items in a remote site, in 
which case, a communication delay of Tcomm amount of 
time is incurred before its execution 

The deadline of a local transaction, Xiocal, is gener- 
ated according to the following formula: 

Deadline = adxlocac)  + (TiOck + Tprocess) 

x Noper x (1 + sfl 
where SF is the slack factor which is a random variable 
uniformly chosen from a range (see Table 1 below). 

For a global transactions, Xglobnl ,  the deadline 
formula is modlfied to include the network delay: 

200 data items 
4 
2 msec 

~ 
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Deadline = ar(Xgiobac)+ ((Tiock+ Tprocess) x Noper x 
+ Tcomm x Ntronsit x (1 + sfl 

where Ntronslt is the number of transit across the network 
required to access all the remote data. 

In our model, a small database is used to create a 
high data contention environment. This helps us in 
understanding the interaction between the priority 
assignment strategies and the concurrency control 
protocols. The small database also allows us to study the 
effect of hot-spots, in which a small part of the database 
is accessed frequently by most of the transactions. Table 
1 summarizes the model parameters and their baseline 
values. . . 

Parameter 1 Baseline Value 
CPU Scheduling I EDF 

I Concurrencv Control I occ I 

34 msec 

[1.0, 5.51 for system with 
short globals / 
[2.5, 13.751 for system 

Table 1 : Baseline setting 
The primary performance measure is the percentage 

of missed deadlines (or miss rate, MR) which is defined 
as the fraction of deadline missing transactions over the 
total number of transactions generated. As we divide the 
transactions into locals and globals, in the simulation, we 
collect statistics of the two types of transactions indi- 
vidually. We use MRglobal (A4Rloco~) to denote the fraction 
of global (local) transactions that missed their deadlines. 
For example, MRglobal = 0.1 means that every one out of 
ten global transactions are tardy (the deadline is missed). 

We also measure the restart rates for both local and 
global transactions. They are defined as the number of 
restarts of local transactions (or global transactions) over 
the total number of local transactions (or global transac- 
tions) completed before their deadlines. 

5 Performance Results 

In this section we summarize the results of our 
simulation experiments comparing the performance of 
the heuristics mentioned in Section 3. From the study, we 
observed that the performance of ED is similar to that of 



UD and that of EQF is similar to that of EQS under most 
of the system configurations. In order to make the 
performance graphs more legible, in the following 
discussion, we do not show the performance of ED and 
EQF. 

The simulator is built using OPNET [lo] which is a 
proprietary graphical simulation package. Each simula- 
tion experiment (generating one data point) consists of 4 
simulation runs, each lasting 300 simulation time units 
(around 10,000 transactions per run, many more for high 
load experiments). The 95% confidence interval is k 0.5 
percentage point for the missed deadlines figures shown 
in later sections. 

Figure 2 shows the result in which MRglobol and 
MRlocol under the five heuristics are plotted against &,bo/ 

under the baseline setting. From the figure we see that 
when the loading is light, the miss rate of local transac- 
tions is higher than that of globals. Given a low data 
contention environment and a relatively tight slack, local 
transactions may not have enough slack time to complete 
before the deadlines. On the other hand, global transac- 
tions have much more slack time if they can commit in 
the first execution cycle without being restarted. How- 
ever, when the loading is increased and resulted in a 
relatively high data contention environment, global 
transactions suffer a much higher miss rate than locals do 
if no remedial measures are taken such that long global 
transactions are given certain preference. 

From the figure, we see that slack distribution heu- 
ristics (EQS and SEQS) improve the performance of the 
global transactions slightly compared with UD. The bad 
performance of UD is due to the fact that assigning the 
same ultimate deadline of a global transaction to all of its 
sub-transactions fails to capture the urgency of each sub- 
transaction. For instance, the first couple of sub- 
transactions of a global transaction is delayed extensively 
by the scheduler because of their erroneous slack. High 
hh?g/oba/ thus ensues. For EQS and SEQS, distributing the 
slack among the sub-transactions allows the sub- 
transactions to proceed at a similar pace as local transac- 
tions. However, this pace-keeping feature is followed by 
the increase in data conflict. As can be seen in Figure 3, 
both EQS and SEQS cause more restarts than UD does. 
This is because these heuristics keep global transactions 
progressing in puce. If conflicting transactions are 
allowed to proceed together, it is likely that the losers 
(the restarted transactions) are close to finishing, and 
thus have already consumed much system resources. The 
cost of restarting them will be very high. Also, the 
committing transaction may have suffered extensive 
delay (due to the presence of its competitors) and misses 
its deadlines. Thus, it may result in a lose-lose situation. 
As a result, only a slight improvement can be observed. 

On the other hand, the price for saving global transac- 
tions is a higher local transaction miss rate, 

Although MM and NL also pay the same price, they 
perform much better. To improve on meeting global 
transaction deadlines, MM and NL hoist the sub- 
transactions' priorities and expedite their executions. As 
shown in Figure 2, the results are a nice balance between 
MRglobn/ and MRloCal. They save a tremendous number of 
global transaction deadlines without losing too many 
local ones. For MM, the miss rate of the global transac- 
tions is almost 1/2 that of UD. Even better is NL, the 
miss rate of the global transactions is magically kept at a 
very low level. 

From Figure 3, we see that the restart rates are low 
(less than 18%). To study the system behavior under 
high data contention situation, we increase the global 
transaction size to 12 sub-transactions. More data items 
are thus requested by global transactions, creating more 
severe data conflict. The transaction miss rates when 
long globals are present are shown in Figure 4. We see 
that the limited benefit offered by EQS and SEQS 
vanishes and the performance gets worse in this scenario, 
indicating that the adverse effect of data contention 
elevated by EQS and SEQS is taking its toll on system 
resources. Only a few global transactions make it to the 
validation phase before being restarted by the shorter 
local transactions. Also, from the experiment data, we 
observe that by forcing despondent global transactions to 
proceed along with locals, EQS and SEQS waste system 
resources as well as intense data conflict. This argu- 
ment is supported by Figure 5 ,  which shows that the 
system suffers from a significant restart rate. For exam- 
ple, under both EQS and SEQS, for /2g/oba/ > 0.3, on 
average each transaction is restarted more than once. 

For EQS and SEQS, losing their performance edge 
to UD due to long global transactions is in sharp contrast 
to its behavior under a data-contention-free environment. 
To make this fate reversal more dramatic, we reduce the 
fraction of local transactions contributed to the system. 
Figures 6 and 7 show the miss rates and restart rates 
whenfrac-local is reduced from 0.75 to 0.25. From the 
figures, we see that the performance of EQS and SEQS 
are much worse than UD. More globals (a smaller 
frac-local), therefore, gives higher chances of data 
conflicts and greater waste of system resources due to 
transaction restarts. 

On the other hand, the other two heuristics which 
take data requirements into account give consistent and 
better performance in these harsh conditions. From 
Figures 4 and 6,  we see that NL again gives the lowest 
MR,l,b,l among the heuristics The reason is that global 
transactions require more data items than locals do. 
Under NL, the more data items a transaction is accessing, 
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the higher is its priority. Global transactions therefore 
enjoy higher priorities under NL and miss fewer dead- 
lines. This improvement on MRglobal , however, is offset 
by a signlficant increase in MRlocor. The offset is even 
larger when frac-local is reduced to 0.25. This poor 
performance suggests that considering only transaction 
data requirements alone is far from adequate. A good 
strategy needs to consider transaction timing require- 
ments as well. 

From Figures 4 and 6 ,  we see that MM gives a 
smaller MRglobal than UD does. Although this improve- 
ment is not as great as that provided by NL, the penalty 
for having a lower MRglobal using MM is light: relatively 
fewer local transactions missed deadlines. Comparing 
with EQS and SEQS, MM misses significantly fewer 
global transaction deadlines. The major difference is that 
MM considers not only the real-time constraints but also 
transaction data requirements. By giving high priorities 
to transactions that are accessing more data items, h4M 
helps these transacQons to breeze through their execu- 
tions and reduces undesirable restarts. This observation is 
supported by Figures 5 and 7, in which the restart rates 
for MM are seen to be lower than that of EQS and SEQS. 

Thus, MM has the best overall performance over a 
wide spectrum of system characteristics. The advantage 
of MM lies in its ability to cope with the two conflicting 
factors: transaction timing and data requirements, which 
exert opposing demands on the priority assignment 
strategy. 

6 Conclusions 

The performance of real-time concurrency control 
protocols is heavily affected by the method used in 
assigning the priorities of the transactions. In this study 
the application of various sub-transaction priority as- 
signment heuristics on DRTDBS using optimistic con- 
currency control (OCC) protocol is exammed. We have 
found that the purely deadline-driven approaches, namely 
UD, ED, EQS, and EQF do not interact well with the 
concurrency control protocol. Although EQS and EQF 
perform well when there are relatively few and short 
global transactions, they fail miserably when the data 
contention is high due to severe data conflict and trans- 
action restarts. 

To reduce data contention, heuristics that consider 
transaction data requirements are applied. Our results 
show that NL, which gives higher priorities to transac- 
tions that access more data items, reduces global transac- 
tion miss rate significantly. T h ~ s  gain, however, i s  
obtained at the price of missing large number of local 
transaction deadlines. Heuristic MM, which considers 

both transaction real-time constraints and the impact of 
data contention, gives the best overall performance. In 
fact, MM outperforms the other heuristics under different 
loading conditions. It exhibits the pace-keeping property 
of the deadline-driven approaches and takes care of the 
data-contention consideration. The results also show that 
MM is a well balanced priority assignment strategy in 
terms of meeting both local and global transaction 
deadlines. 
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Figure 2: Transaction miss rates 
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Figure 3: Restart rates 
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Figure 4: Transaction miss rates (m=12) 
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Figure 5: Restart rates (m=12) 
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Figure 6: Transaction miss rates (m=12, 
frac-local=0.25) 
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Figure 7: Restart rates (m=12, frac-local=0.25) 
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