
Title Impact of priority assignment on optimistic concurrency control
in distributed real-time databases

Author(s) Lam, Kamyiu; Lee, Victor CS; Hung, Sheunglun; Kao, Benjamin
CM

Citation Proceedings Of The International Workshop On Real-Time
Computing Systems And Applications/Rtcsa, 1996, p. 128-134

Issued Date 1996

URL http://hdl.handle.net/10722/45571

Rights Creative Commons: Attribution 3.0 Hong Kong License

Impact of Priority Assignment on Optimistic Concurrency Control
in Distributed Real-time Databases

Kam-yiu Lam, Victor C.S. Lee and Sheung-lun Hung Benjamin C.M. Kao
Department of Computer Science

City University of Hong Kong
83 Tat Chee Avenue, Kowloon

HONG KONG

Abstract
In the studies of real-time concurrency control

protocols (RT-CCPs), it is always assumed that earliest
deadline first (EDF) is employed as the CPU scheduling
algorithm. However, using purely (ultimate) deadline for
priority assignment may not be suitable for distributed
real-time database systems (DRTDBS) in which there
exist different kinds of transactions, such as global and
local transactions. In order to improve the performance,
different priority assignment heuristics have to be used.
In this paper, we have investigated the performance of
dvferent priori& assignment heuristics for sub-
transactions in DRTDBS with optimistic concurrency
control (OCC) protocol. It is found that the heuristics,
which are suitable for distributed real-time systems, are
not suitable for DRTDBS. We $nd that our proposed
heuristic, which considers both deadline constraint and
data contention, can give the best performance.

1 Introduction

The research on real-time database systems
(RTDBS) has received much attention in recent years.
RTDBS are generally defined as the database systems in
which the transactions have constraints on their comple-
tion times (usually are expressed as their deadlines) [1 1,
131. The performance and the correctness of RTDBS are
highly dependent on how well these deadlines are met. If
the database in a RTDBS is partitioned in different sites,
whch are connected by communication links and logi-
cally related, it is called a distributed real-time database
system (DRTDBS) [7]. It is more difficult to meet the
transaction deadlines in DRTDBS. A number of factors
can introduce unpredictability in transaction response
times and the deadline constraints of the transactions are
always very different.

Department of Computer Science
The University of Hong Kong

Pokfklam Road
HONG KONG

In recent years, a lot of work has been devoted to the
study of concurrency control protocols for RTDBS and
DRTDBS [13]. The objectives are to design an algorithm
which can minimize the number of deadline missing
transactions and at the same time can maintain the
database consistency. The protocols are called real-time
concurrency control protocols (RT-CCPs). In RT-CCPs,
higher priority transactions are given preferences in
using the data items. Most of the proposed RT-CCPs are
based on locking and optimistic concurrency control
(OCC) [2]. One well-known real-time locking protocol is
High Priority Two Phase Locking (H2PL) [l] in which
lock conflicts are resolved by restarting lower priority
transactions. However, recent work has found that OCC
is more suitable than locking for RTDBS [4].

The performance of RT-CCPs can be seriously
affected by priority assignment methods as they deter-
mine which transaction should go first and which trans-
action should be blocked or restarted in resolving data
conflicts [3, 5, 9, 121. In the study of RT-CCPs, most of
the work assumes that the importance and the character-
istics of the transactions are similar. They use Earliest
deadline first (EDF) for CPU scheduling and the priori-
ties of the transactions are defined by their deadlines.
Although EDF has been shown to be optimal and widely
used in task scheduling in real-time systems [6], using
deadlines as priorities may not be very suitable for
distributed real-time systems and DRTDBS as the
deadline constraints of the transactions or the tasks in the
systems can be very different [3,5]. In [5], the problems
in distributed real-time system have been discussed and
new methods have been suggested. However, their studies
have not included the impact of data synchronization on
the performance of dBerent priority assignment heuris-
tics.

In DRTDBS, it is common to find transactions with
different characteristics and deadline constraints in a

0-8186-7626-4196 $5.00 0 1996 IEEE
128

system [5, 91. For some transactions, a number of sub-
transactions have to be created as their required data
items are distributed in different sites. They are called
global transactions. The others may only require to
access the data items located in their site of origination
(where the transactions are initiated). They are called
local transactions. The deadline constraints of global
transactions can be very different from local transactions.
Although the deadlines of global transactions are usually
longer than that of local transactions, the total time
required to process a global transaction is also much
longer than a local transaction. The use of deadlines as
transaction priorities will make the system bias to local
transactions. New methods have to be designed for
priority assignment of sub-transactions of global transac-
tions so that the probability of meeting the deadline
constraints of the global transactions can be increased.

In [9], the heuristics suggested in [5] are re-
examined in DRTDBS with H2PL as the concurrency
control protocol. Surprisingly, these heuristics which
have been found suitable for traditional distributed real-
time systems are not suitable for DRTDBS. Different
priority assignment methods can have a very significant
impact on the performance of H2PL in DRTDBS. They
s e c t the probability of lock conflicts and the probability
of priority inversion. If a poorly designed priority as-
signment method is used, the systems will be suffered
from the problem of cyclic transaction restarts and may
result in deadlocks.

As OCC protocols have been found more suitable for
RTDBS than locking protocols and it uses a completely
different method to detect and resolve data conflicts, it is
interesting to investigate the impact of different priority
assignment methods on its performance and the relation-
ship between them. The rest of this paper is organized as
follows. In Section 2, we review the benefit of using OCC
protocols for RTDBS and how they can be used for
DRTDBS. In Section 3 we discuss a number of priority
assignment heuristics. Section 4 describes our DRTDBS
model and the workload model. The results of the
simulation experiments comparing the various assign-
ment heuristics is in Section 5. Finally, we conclude the
paper in Section 6.

2 Optimistic Concurrency Control

In OCC protocols, the execution of a transaction is
divided into three phases: (1) the read phase, (2) the
validation phase, and (3) the write phase. During the
read phase, the operations of a transaction or a sub-
transaction will be processed one by one. The processing
of an operation requires the access of data items in the
database. The data items are read into the main memory.

Computations based on the values of these data items are
performed. If the operation is a write operation, new
values are computed. They are not written into the
database immediately. When all operations of a transac-
tion have been processed, the transaction enters the
validation phase in which the conflicts with other trans-
actions which are in their read phase will be checked. If
there are data conflicts, based on the conflict resolution
method used, either the validating transaction or the
other conflicting transactions will be restarted. Finally, if
the validating transaction is not selected to restart, it
enters the write phase in which updated data items are
written back to the database from its private workspace.

If OCC protocols are extended to DRTDBS, two
additional issues have to be catered: validation in a
distributed environment and atomic commitment of
transactions. Validation in DRTDBS is much more
complex than that in a single-site RTDBS. In [SI, a
circular validation method based on locking is suggested.
In the method, a lock table is defined in each site for the
data items in that site. When a transaction wants to
access a data item, it will set a lock in the lock table. The
purpose of this lock is to indicate which transactions are
accessing the data item. All the locks are compatible. In
order to prevent distributed deadlock, the sites in the
system are ordered. Validation of a transaction is started
at the site with the highest order. In the validation at a
site, the lock table will be examined. When validation at
all the sites have been done, the transaction enters the
write phase in which atomic commitment will be per-
formed in addition to the permanent update of the
database.

3 Priority Assignment Heuristics

In this section, several priority assignment heuristics
will be introduced. They are divided into two groups. The
first group considers only transaction deadlines. The
second group considers both deadlines and the effect of
data contention.

3.1 Deadline Based Heuristics
It is assumed that a global transaction T consists of

m sub-transactions, TI, T2, ... , T,, to be executed in
series. The first i-I sub-transactions are completed and
sub-transaction T, is ready for execution. Thus, a priority
(i.e., a deadline) has to assign to T,.
(1) Ultimate Deadline (UD)

The simplest way to assign a deadline to a sub-
transaction is to adopt the deadline of its transaction. The
first heuristic is called Ultimate Deadline (UD) in whch
the deadline of a sub-transaction is set to be the deadline
of its transaction :

129

dl(TJ = dip)
where d l (3 is the deadline of X which is a transaction or
a sub-transaction

This is the priority assignment method used in most
studies on RT-CCPs [l, 71 The problem of UD is that it
does not consider the amount of time that has to be
reserved for the execution of the following sub-
transactions (?",+,, ,T,) of the transaction. It gives the
scheduler incorrect information about how much time
sub-transaction T, can be delayed in its execution without
causing the transaction T to miss its deadline
(2) Effective Deadline (ED)

The second strategy corrects this misinformation by
computing the Effective Deadline (ED) of the sub-
transaction TI. Under ED, the deadline of the sub-
transaction TI is the ultimate deadline minus the total
predicted execution time of the sub-transactions of T
following TI. That is,

m
dl(T1) = dl(T)- Cpex(T/)

J=I+l

where p e x p) is the expected execution time of X .
The problem of UD and ED is that they allocate all

the remaining slack of the global transaction to the
current executing sub-transaction. Subsequently, the
following sub-transactions (T,+,, . . . , T,) may not have
sufficient slack for their executions.
(3) Equal Slack (EQS)

A fair heuristic should distribute the slack among the
sub-transactions. There are two slack distribution
schemes The first scheme is called Equal Slack (EQS) in
which the slack is evenly distributed among the remain-
ing sub-transactions

dl(T4 = ar(T9 i- pex(T4 i- [dl(T) - ar(T1)

- ; p e x o / / (m - I i- I)
j=z

where a r p) is the arrival time ofX. It is assumed that a
transaction or a sub-transaction will be ready for execu-
tion when it is arrived. The third term on the right hand
side of the equation calculates how much slack should be
distributed to TI.
(4) Equal Flexibility (EQF)

The second scheme of distributing transaction slack
is called Equal Flexibiliv {EQF) in which the distribu-
tion of the slack to the sub-transactions is proportional to
their predicted execution time. The "flexibility" of a
transaction T is defined as the ratio of the amount of
slack of X to the amount of execution time of T:

dl(Tt) = ar(E) i- pex(T1) i- [dl(T) - ar(E)
m m

- Pexfi)] pexpd 1 CPexPJ)
J = I J = I

In EQS and EQF, the deadline assignment is dy-
namic which means that it is determined at run time just
before sub-transaction T, is submitted for execution. The
total slack being distributed (the term in the square
brackets) is the amount of slack global transaction T has
with respect to the current time.

In [5] , it has been shown that EQS and EQF perform
much better than UD and ED in a distributed real-time
system in terms of meeting global task deadlines. The
reason is that by assigning to sub-task deadlines that can
faithfully represent their degrees of urgency, EQS and
EQF successfully monitor the progress of sub-tasks. This
in turn avoids unwise delay to certain sub-tasks
(especially those that are the first couple of stages of
some global tasks) which are mistaken to have large
amount of phantom slack. A higher percentage of task
deadlines can thus be met.

Although EQS and EQF enjoy good performance in
distributed real-time systems [5] , they suffer major
setbacks in DRTDBS using H2PL in [9]. The biggest
problem in this kind of system is that EQS and EQF do
not click with the traditional real-time concurrency
control protocols. For example, while a transaction T is
waiting, its slack decreases with time. Consequently,
according to EQS and EQF, the priorities of T's sub-
transactions will become higher relative to the sub-
transactions of the executing transaction (lets say T J .
The scheduler is thus likely to swing the CPU to a
waiting transaction (0 whenever a sub-transaction (of T')
is done. This interleaving, although ensures that transac-
tions are progressing at pace, vastly increases the prob-
ability of data conflict as more unfinished transactions
are holding locks at the same time.

3.2 Data Conflict Based Heuristics
In order to counteract the effect of intensifying data

contention brought along by EQS and EQF, we need to
inject transaction data requirements into the assignment
of sub-transaction priorities. Here, we introduce three
new heuristics.
(5) Static Equal Slack (SEQS)

To make the priority of the sub-transactions less
dynamic, we can use a static method to distribute the
slack of a transaction to its sub-transactions. In SEQS,
the deadlines of all the sub-transactions are assigned
once and for all when the global transaction arrives.

i

k=l
dl(Ti) = ar(T) + pt?X(Tk) + [dl(T) - ar(T)

m

In EQS, if the priority of a sub-transaction, TI,^ is
smaller than another sub-transaction, TzJ, the priority of

130

the sub-transactions following TzJ will become higher as
the slack of T2 becomes smaller while TZJ is waiting for
scheduling. However, in SEQS, the priority of a sub-
transaction will not be increased due to the waiting of the
sub-transactions before it in its parent transaction as its
priority is using the slack when its parent transaction
arrives at the system. Thus, the degree of interleaving in
transaction execution is smaller in SEQS as compared
with EQS.
(6) Number of Data Items (NL)

Two important factors affecting the probability of
data conflict in OCC protocols is the number of data
items accessing by different transactions and the duration
of using the data items. One way to reduce the data
conflict probability is to give higher priority to the
transactions which are accessing more data items. In
Number of Data Items (NL), the priority of a sub-
transaction T, is assigned according to the number of data
items accessing by its parent transaction T (i.e., all data
items used by TI, T,, ... , T, count towards the priority):

p(TJ = number of data items accessing by T
By assigning the highest priority to the transaction

which is accessing the largest number of data items, the
transaction can complete faster. This greatly reduces the
probability of data conflicts and the number of transac-
tion restarts. The priority of a sub-transaction is follow-
ing the priority of its parent transaction.

Strategy NL focuses on reducing data contention
while UD, ED, EQS and EQF focus on determining the
milestones (sub-deadlines) monitoring the progress of
transactions.
(7) Mixed Method:

We inject the idea of NL to the deadline-cognizant
heuristics (in section 3.1): sub-transaction priorities can
be assigned based on a function which includes both
transactions' real-time constraints and the number of data
items accessing by the transaction. We call this approach
the Mixed Method @fM):

I
dl(Td = ar(T) + Cpex(Tk) + [dl(T) - ar(T)

k = l
m

- ZpeX(TJ)] x lock- factorv)
/ = I

where lock factor(T) = 1 - (number of data items
accessing by 7") / (total number of data items to be
accessed by 2')

The idea of MM is to artificially advance the dead-
line of a global transaction T (for scheduling purpose
only) according to the number of data items it is access-
ing. The larger the number of data items T accessing, the
smaller is the lock factor, and the earlier is Ts artificial
deadline (i.e., a higher prionty). By raising the priority
of a transaction which is accessing more data items, it is

hope that the transaction can complete earlier and the
degree of data contention in the system can be reduced.
The priority of a sub-transaction is following the priority
of its parent transaction. MM thus considers both the
deadline requirement of the transactions as well as the
data contention issue.

4 TheModel

In this section, the DRTDBS model and the work-
load model, which are used to study the impact of differ-
ent priority assignment heuristics on the performance of
OCC in DRTDBS, are described. In the OCC protocol,
the broadcast commit method [4] is used for solving data
conflicts.

4.1 Distributed Real-time Database Model

Mabase site

~ c a t i c n line .

Figure 1: The DRTDBS model.
At each site, the transaction generator generates

transactions independently according to Poisson distri-
bution. Two types of transactions are considered in the
model: global and local. While a local transaction only
accesses local data items, a global transaction consists of
a series of sub-transactions. If a sub-transaction requests
a remote data item (a data item located other than its site
of origination), it will be transmitted to a remote site
through the communication network, and be processed
there.

The processing of operations in both local transac-
tions and sub-transactions is similar. It requires the use
of the CPU and the access of the data items in the data-
base. For simplicity, it is assumed that both local trans-
actions and sub-transactions have similar CPU and data
requirements. In particular, they access the same number
of data items, and the execution times of the database
operation are the same. Since main memory database
systems can better support real-time applications, it is
assumed that the databases are residing in the main
memory. With the use of main memory database, the
impact of different I/O scheduling on the system per-
formance can be eliminated.

At each site, transactions and sub-transactions are
scheduled to the CPU by the scheduler based on their

13 1

priorities. Transactions and sub-transactions that are
ready for execution are enqueued in the ready queue
according to their priorities. In the OCC protocol, when a
transaction accesses a data item in the read phase, the
data item will be marked by setting a lock in the lock
table to indicate that it is being used by the transaction.
When all the operations of a transaction have been
processed, the transaction enters the validation phase.
Circular validation is started at the site with the highest
site order. Data conflicts are checked by looking at the
lock table in each site. In the model, we use the broad-
cast commit method for conflict resolution in which any
conflicting transaction with the validating transaction
will be restarted [4]. After the completion of the valida-
tion phase, the transaction enters the write phase in
which two phase commit protocol [2] and permanent
updates of the write operations will be performed. If all
the sub-transactions (for global transactions only) are
about to commit, the parent transaction will decide to
commit. After all the sub-transactions and the parent
transaction have committed, the transaction is completed.

We assume that the transactions are associated with
firm deadlines [l]. Before a transaction is allocated the
CPU, the scheduler checks its deadline. If it has already
missed the deadline, the transaction is aborted immedi-
ately.

Database size / site
Number of database sites
TI"?'

4.2 Workload Model and Measures
The arrival rates of global and local transactions in a

site are Aglobol and A I ~ ~ ~ I respectively. Each global trans-
action consists of m sub-transactions. We use the same
model for both local transaction and sub-transaction,
which requires Noper number of database operations. Each
operation involves locking of a data item (which takes
Tiock amount of time) and processing of the data (which
takes Tprocess amount of time). Therefore, the total
processing time for a local or sub-transaction is (TlOck +
Tprocess) x Noper, and for a global transaction, m times that
amount. The total system load is thus (Alocal + Aglobal x m)
x Noper x (Tlock + Tprocess) of which a fraction of AIocal /
(j l ~ ~ ~ ~ ~ + &lobo[x m) 1s contributed by local transactions.
We denote this latter fraction, frac-local. In addition, a
sub-transaction may access data items in a remote site, in
which case, a communication delay of Tcomm amount of
time is incurred before its execution

The deadline of a local transaction, Xiocal, is gener-
ated according to the following formula:

Deadline = adxlocac) + (TiOck + Tprocess)

x Noper x (1 + sfl
where SF is the slack factor which is a random variable
uniformly chosen from a range (see Table 1 below).

For a global transactions, Xglobnl , the deadline
formula is modlfied to include the network delay:

200 data items
4
2 msec

~

132

Deadline = ar(Xgiobac)+ ((Tiock+ Tprocess) x Noper x
+ Tcomm x Ntronsit x (1 + sfl

where Ntronslt is the number of transit across the network
required to access all the remote data.

In our model, a small database is used to create a
high data contention environment. This helps us in
understanding the interaction between the priority
assignment strategies and the concurrency control
protocols. The small database also allows us to study the
effect of hot-spots, in which a small part of the database
is accessed frequently by most of the transactions. Table
1 summarizes the model parameters and their baseline
values. . .

Parameter 1 Baseline Value
CPU Scheduling I EDF

I Concurrencv Control I occ I

34 msec

[1.0, 5.51 for system with
short globals /
[2.5, 13.751 for system

Table 1 : Baseline setting
The primary performance measure is the percentage

of missed deadlines (or miss rate, MR) which is defined
as the fraction of deadline missing transactions over the
total number of transactions generated. As we divide the
transactions into locals and globals, in the simulation, we
collect statistics of the two types of transactions indi-
vidually. We use MRglobal (A4Rloco~) to denote the fraction
of global (local) transactions that missed their deadlines.
For example, MRglobal = 0.1 means that every one out of
ten global transactions are tardy (the deadline is missed).

We also measure the restart rates for both local and
global transactions. They are defined as the number of
restarts of local transactions (or global transactions) over
the total number of local transactions (or global transac-
tions) completed before their deadlines.

5 Performance Results

In this section we summarize the results of our
simulation experiments comparing the performance of
the heuristics mentioned in Section 3. From the study, we
observed that the performance of ED is similar to that of

UD and that of EQF is similar to that of EQS under most
of the system configurations. In order to make the
performance graphs more legible, in the following
discussion, we do not show the performance of ED and
EQF.

The simulator is built using OPNET [lo] which is a
proprietary graphical simulation package. Each simula-
tion experiment (generating one data point) consists of 4
simulation runs, each lasting 300 simulation time units
(around 10,000 transactions per run, many more for high
load experiments). The 95% confidence interval is k 0.5
percentage point for the missed deadlines figures shown
in later sections.

Figure 2 shows the result in which MRglobol and
MRlocol under the five heuristics are plotted against &,bo/

under the baseline setting. From the figure we see that
when the loading is light, the miss rate of local transac-
tions is higher than that of globals. Given a low data
contention environment and a relatively tight slack, local
transactions may not have enough slack time to complete
before the deadlines. On the other hand, global transac-
tions have much more slack time if they can commit in
the first execution cycle without being restarted. How-
ever, when the loading is increased and resulted in a
relatively high data contention environment, global
transactions suffer a much higher miss rate than locals do
if no remedial measures are taken such that long global
transactions are given certain preference.

From the figure, we see that slack distribution heu-
ristics (EQS and SEQS) improve the performance of the
global transactions slightly compared with UD. The bad
performance of UD is due to the fact that assigning the
same ultimate deadline of a global transaction to all of its
sub-transactions fails to capture the urgency of each sub-
transaction. For instance, the first couple of sub-
transactions of a global transaction is delayed extensively
by the scheduler because of their erroneous slack. High
hh?g/oba/ thus ensues. For EQS and SEQS, distributing the
slack among the sub-transactions allows the sub-
transactions to proceed at a similar pace as local transac-
tions. However, this pace-keeping feature is followed by
the increase in data conflict. As can be seen in Figure 3,
both EQS and SEQS cause more restarts than UD does.
This is because these heuristics keep global transactions
progressing in puce. If conflicting transactions are
allowed to proceed together, it is likely that the losers
(the restarted transactions) are close to finishing, and
thus have already consumed much system resources. The
cost of restarting them will be very high. Also, the
committing transaction may have suffered extensive
delay (due to the presence of its competitors) and misses
its deadlines. Thus, it may result in a lose-lose situation.
As a result, only a slight improvement can be observed.

On the other hand, the price for saving global transac-
tions is a higher local transaction miss rate,

Although MM and NL also pay the same price, they
perform much better. To improve on meeting global
transaction deadlines, MM and NL hoist the sub-
transactions' priorities and expedite their executions. As
shown in Figure 2, the results are a nice balance between
MRglobn/ and MRloCal. They save a tremendous number of
global transaction deadlines without losing too many
local ones. For MM, the miss rate of the global transac-
tions is almost 1/2 that of UD. Even better is NL, the
miss rate of the global transactions is magically kept at a
very low level.

From Figure 3, we see that the restart rates are low
(less than 18%). To study the system behavior under
high data contention situation, we increase the global
transaction size to 12 sub-transactions. More data items
are thus requested by global transactions, creating more
severe data conflict. The transaction miss rates when
long globals are present are shown in Figure 4. We see
that the limited benefit offered by EQS and SEQS
vanishes and the performance gets worse in this scenario,
indicating that the adverse effect of data contention
elevated by EQS and SEQS is taking its toll on system
resources. Only a few global transactions make it to the
validation phase before being restarted by the shorter
local transactions. Also, from the experiment data, we
observe that by forcing despondent global transactions to
proceed along with locals, EQS and SEQS waste system
resources as well as intense data conflict. This argu-
ment is supported by Figure 5 , which shows that the
system suffers from a significant restart rate. For exam-
ple, under both EQS and SEQS, for /2g/oba/ > 0.3, on
average each transaction is restarted more than once.

For EQS and SEQS, losing their performance edge
to UD due to long global transactions is in sharp contrast
to its behavior under a data-contention-free environment.
To make this fate reversal more dramatic, we reduce the
fraction of local transactions contributed to the system.
Figures 6 and 7 show the miss rates and restart rates
whenfrac-local is reduced from 0.75 to 0.25. From the
figures, we see that the performance of EQS and SEQS
are much worse than UD. More globals (a smaller
frac-local), therefore, gives higher chances of data
conflicts and greater waste of system resources due to
transaction restarts.

On the other hand, the other two heuristics which
take data requirements into account give consistent and
better performance in these harsh conditions. From
Figures 4 and 6, we see that NL again gives the lowest
MR,l,b,l among the heuristics The reason is that global
transactions require more data items than locals do.
Under NL, the more data items a transaction is accessing,

133

the higher is its priority. Global transactions therefore
enjoy higher priorities under NL and miss fewer dead-
lines. This improvement on MRglobal , however, is offset
by a signlficant increase in MRlocor. The offset is even
larger when frac-local is reduced to 0.25. This poor
performance suggests that considering only transaction
data requirements alone is far from adequate. A good
strategy needs to consider transaction timing require-
ments as well.

From Figures 4 and 6 , we see that MM gives a
smaller MRglobal than UD does. Although this improve-
ment is not as great as that provided by NL, the penalty
for having a lower MRglobal using MM is light: relatively
fewer local transactions missed deadlines. Comparing
with EQS and SEQS, MM misses significantly fewer
global transaction deadlines. The major difference is that
MM considers not only the real-time constraints but also
transaction data requirements. By giving high priorities
to transactions that are accessing more data items, h4M
helps these transacQons to breeze through their execu-
tions and reduces undesirable restarts. This observation is
supported by Figures 5 and 7, in which the restart rates
for MM are seen to be lower than that of EQS and SEQS.

Thus, MM has the best overall performance over a
wide spectrum of system characteristics. The advantage
of MM lies in its ability to cope with the two conflicting
factors: transaction timing and data requirements, which
exert opposing demands on the priority assignment
strategy.

6 Conclusions

The performance of real-time concurrency control
protocols is heavily affected by the method used in
assigning the priorities of the transactions. In this study
the application of various sub-transaction priority as-
signment heuristics on DRTDBS using optimistic con-
currency control (OCC) protocol is exammed. We have
found that the purely deadline-driven approaches, namely
UD, ED, EQS, and EQF do not interact well with the
concurrency control protocol. Although EQS and EQF
perform well when there are relatively few and short
global transactions, they fail miserably when the data
contention is high due to severe data conflict and trans-
action restarts.

To reduce data contention, heuristics that consider
transaction data requirements are applied. Our results
show that NL, which gives higher priorities to transac-
tions that access more data items, reduces global transac-
tion miss rate significantly. T h ~ s gain, however, i s
obtained at the price of missing large number of local
transaction deadlines. Heuristic MM, which considers

both transaction real-time constraints and the impact of
data contention, gives the best overall performance. In
fact, MM outperforms the other heuristics under different
loading conditions. It exhibits the pace-keeping property
of the deadline-driven approaches and takes care of the
data-contention consideration. The results also show that
MM is a well balanced priority assignment strategy in
terms of meeting both local and global transaction
deadlines.

References

[l] Abbott, R., and Garcia-Molina, H., "Scheduling Real-time
Transactions: A Performance Evaluation," ACM Transac-
tions on Database Systems, vol. 17, no. 3, pp. 513-60, 1992.

[2] Bernstein, P.A., Hadzilacos, V. and Goddman, N., Concur-
rency Control and Recovery in Database Systems, Addison-
Wesley, Reading, Mass., U.S.A., 1987.

[3] Y.W. Chen and Le Gruenwald, "Effects of Deadline
Propagation on Scheduling Nested Transactions in Distrib-
uted Real-time Database Systems," Information Systems, vol.
21, no. 1, pp. 103-124, 1996.

[4] Haritsa, J. R., Livny, M., Carey, M. J., "On Being Optimis-
tic about Real-Time Constraints," Proceedings of the Pth
ACM Symposium on Principles of Database Systems, 1990.

[5] Kao, B., and Garcia-Molina, H., "Deadline Assignment in a
Distributed Soft Real-Time System," Proceedings of 13th
Intemational Conference on Distributed Computing Systems,

[6] Liu, C.L. and Layland, J.L., "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,"
Journal ofACM, vol. 20, no. 1, pp. 46-61, 1973.

[7] Lam, Kam-yiu and Hung, Sheung-lun, "Concurrency
Control for Time-constrained Transactions in Distributed
Databases Systems," The Computer Journal, vol. 38, no. 9,
1995.

[8] Lam, Kwok-wa, Lee, Victor C.S., Lam, Kam-yiu and Hung,
Sheung-lun, "Distributed Real-time tmistic Concurrency
Control Protocol," Proceedings of 4 International Work-
shop on Parallel and Distnbuted Real-time Systems, pp.
122-125, 1996.

191 Lee, Victor C. S., Lam, Kam-yiu, Kao, Benjamin C. M.,

pp. 428-37, 1993.

9. ' '

Lam, Kwok-wa, and Hung, Sheung-lun, "Priority Assignment
for Sub-transaction in Distributed Real-Time Databases,"
Proceedings of 1st Int. Workshop on Real-Time Databases:
Issues and Applications (RTDB '96), pp. 101-106, California,
March, 1996.
01 OPNET Modeling Manual, Release 2.5, MIL 3, Inc.,
Washington, DC, 1996.
11 Ozsoyoglu, G. and Snodgrass, R.T., "Temporal and Real-
Time Databases: A Survey." IEEE Transactions on Knowl-
edge and Data Engineering, vol. 7, no. 4, pp. 513-532,1995.

121 Sivasankaran, R. M., Stankovic, J. A., Ramamritham, K.,
Towsley D. and F"etla, B., "Priority Assignment in Real-
Time Active Databases," Joumal of W B , vol. 5 , no. 1, pp.

131 Yu, P. S., Wu, K. L., Lin, K. J., and Son, S. H., "On Real-
Time Databases: Concurrency Control and Scheduling,"
Proceedings of IEEE, vol. 82, no. 1, pp. 140-57, 1994.

19-34, 1996.

134

Miss Rate

O'* F UD +?- EQS * SEQS -0 NL * MM ,

Miss Rate

. --__ plobal tr

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

hglobal

Figure 2: Transaction miss rates

Restart Rate

UD 8 EQS -x SEQS + NL * MM

0.12 i':
0.02~+/7H0~------

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

I

hglobal

Figure 3: Restart rates

Miss Rate

UD f EQS * SEQS Q NL * MM

- local Er
-----globslh

0.6

f

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

hglobal

Figure 4: Transaction miss rates (m=12)

i ,OS 0.1 0.15 0.2 0.25 0.3 0.35 0.4

hglobal

Figure 5: Restart rates (m=12)

Miss Rate

' r U D 8EQS *SEQS U N L *MM
, / 4%

/ /

- local N
-----global h:

0.6

0.2 0.4 0.6 0.8 1 .o 1.2

hglobal

Figure 6: Transaction miss rates (m=12,
frac-local=0.25)

Restart Rate

0.2 0.4 0.6 0.8 1 .o 1.2

hglobd

Figure 7: Restart rates (m=12, frac-local=0.25)

135

