
Title Efficient algorithms for finding disjoint paths in grids

Author(s) Chan, WunTat; Chin, Francis YL

Citation Proceedings Of The Annual Acm-Siam Symposium On Discrete
Algorithms, 1997, p. 454-463

Issued Date 1997

URL http://hdl.handle.net/10722/45568

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37884379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient Algorithms for Finding Disjoint Paths in Grids *
(Extended Abstract)

Francis Y.L. Chin t Wun-Tat Chan t

Abstract
The reconfiguration problem on VLSI/WSI processor arrays
in the presence of faulty processors can be stated as the
following integral multi-source routing problem [16]: Given
a set of N nodes (faulty processors or sources) in an m x n
rectangular grid where m, n < N, the problem to be solved
is to connect the N nodes to distinct nodes at the grid
boundary using a set of “disjoint” paths. This problem can
be referred to as au escape problem [5] which can be solved
trivially in O(mnN) time.

By exploiting all the properties of the network, planarity
and re larity of a grid, integral flow, and unit capacity
source 7 sink/flow, we can optima& comuress the size of the
grid from O(mn) to O(m) and solve the uroblem in
iI(dm h’ -. ’ w ere d is the maximum number of disjoint
paths found, for both the edge-disjoint and vertex-disjoint
cases. In the worst case, d, m, n are O(N) and the result is
O(N2.5). Note that this routing problem can also be solved
with the same time complexity even if the disjoint paths
have to be ended at another set of N nodes (sinks) in the
grid instead of the grid boundary.

1 Introduction.

The combinatorial problem to be discussed in this paper
is motivated by the problem of developing efficient
algorithms for reconfiguring VLSI/WSI processor arrays
in the presence of faulty processors [4, 15, 161. This is
called reconfiguration problem and can be stated as the
following discrete multi-source routing problem [16]:

Given a set of N nodes (faulty processors or
sources) in an m x n rectangular grid, the
problem to be solved is to connect the N nodes
to distinct nodes (sinks) at the grid boundary
using a set of “disjoint” paths (compensation
paths).

If non-faulty processors are allowed to reconfigure
along the grid lines by “single-track” switches, then
the disjoint (compensation) path connecting a faulty
processor to a non-faulty boundary processor should
contain no faulty processors, and be limited to vertical
or horizontal straight lines. An O(N2) algorithm was
first proposed in [16], and later improved to O(N log N)

“The research is partially supported by an RGC grant
338/065/0022.

tDepartment of Computer Science, The University of Hong
Kong. E-mail:{ wtchon, chin} @es. hku. hk

in [l], to find a set of non-intersecting straight lines
if a solution to this reconfiguration problem exists;
otherwise the algorithm would provide no solution. The
optimization problem of finding the maximum number
of nodes that can be connected to the boundary by non-
intersecting straight lines was studied and an O(N3)
algorithm was first presented in [3], and later improved
to O(N2 1ogN) in [12].

If the array of processors on a rectangular grid
are equipped with “multi-track” switches, then the
compensation paths would not be limited to straight
lines. There are two interpretations of “disjoint” paths,
edge-disjoint paths or vertex-disjoint paths. A set of
paths are called edge (vertex) disjoint if no edge (vertex)
is shared by more than one path. For the fault-
tolerant reconfiguration problem, vertex-disjoint paths
are required. This problem has been mentioned in [16]
and was referred to as the escape problem in [5]. In this
paper, both forms of problems, finding vertex-disjoint
and edge-disjoint paths, are studied.

This reconfiguration problem can be viewed as a
vertex-disjoint or edge-disjoint routing problem in a pla-
nar graph [8,9,11,14,17]. Most of these papers are con-
cerned with the problem of finding disjoint paths where
each path connects two specified vertices in the graph.
A more relevant result is the optimal linear-time algo-
rithm [14], an improvement on the O(plogp) result [18]
to find the maximum number of vertex-disjoint (s,t)-
paths for an O(p)-size planar graph. Unfortunately, the
techniques used in these two algorithms cannot be ap-
plied to our problem of improving the time complexity
in finding vertex-disjoint paths for the source nodes.

The edge-disjoint paths problem can be solved by
reducing it to a multiple-source, multiple-sink flow
problem [lo] on a grid network, where all the N nodes
are sources with unit supply, all the boundary vertices
in the grid are sinks with unit demand, and every
grid edge has unit capacity. As the grid is planar, it
can be shown [lo] that this multiple-source, multiple-
sink problem on an O(p)-size planar network can be
solved in O(p413 logp) time (or O(N8i3 1ogN) time
for the reconfiguration problem if m,n are O(N)) by
using fast shortest-path algorithm for planar graphs [7’l.

454

455

(a) A set of 3 dis- (b) An augmenting (c) A set of 4 disjoint
joint paths. path in auxiliary grid. path.

Figure 1: Example of finding of an augmenting path in auxiliary grid.

However, this algorithm [lo] can only find a feasible
solution if it exists and cannot find a solution with the
maximum number of edge-disjoint paths. Alternatively,
a multiple-source, multiple-sink problem can be reduced
to a single-source, single-sink MAX-FLOW problem by
connecting the sources to a super-source and sinks to
a super-sink. However, this reduction may destroy the
planarity of the graph. Solving the edge-disjoint paths
problem as a unit-capacity MAX-FLOW problem [13]
provides O(p”l”) time complexity. The vertex-disjoint
paths problem can be solved by “splitting” a vertex
into two and connecting them by an edge with unit
capacity which ensures that only one path can traverse
a vertex 121. This reduction also destroys the planarity
property of the grid but results in a simple network [13]
with unit capacity which leads to an O(p1.5) (or O(N3)
for the reconfiguration problem if m, n are O(N)) time
algorithm for the vertex-disjoint routing problem.

In fact, the O(mnd) time bound where d is the
maximum number of disjoint paths, i.e., O(N3) time
bound for an O(N) x O(N) grid with N source nodes,
can also be achieved easily with the standard FORD-
FULKERSON algorithm [6], by connecting the sources
to a super-source and sinks to a super-sink and find-
ing the augmenting paths from the super-source to the
super-sink in the network. In the ith iteration, the ex-
istence of an augmenting path guarantees the existence
of a set of i edge-disjoint paths from i source nodes to
i boundary vertices. An auziliary grid in the ith it-
eration is the residual network whose edges are with
unit capacity. Alternatively, assume there are i disjoint
paths from the super-source to super-sink. The auxil-
iary grid is the m x n grid with each undirected edge
on any of the i paths be replaced by a directed edge
in an opposite direction to the path. The search for

an augmenting path starting from the super-source to
super-sink can be performed by a breadth-first search
(BFS) on the auxiliary grid. For example, Figure l(a)
shows the grid with 3 edge-disjoint paths. Figure l(b)
indicates an augmenting path for source node D on the
auxiliary grid.

The new set of edge-disjoint paths for Figure l(b)
is presented in Figure l(c), which contains one more
edge-disjoint path than the original set shown in Fig-
ure l(a). Thus, after each iteration the number of edge-
disjoint paths csn be increased by one. The algorithm
terminates when no augmenting paths in the auxiliary
grid remain, and at the same time, this algorithm also
finds the maximum number d of source nodes that can
be connected to the boundary. As each iteration might
take O(mn) time to search for an augmenting path, this
algorithm takes O(mnd) time.

In this paper, we present efficient and practical al-
gorithms for edge-disjoint and vertex-disjoint reconfigu-
ration problems based on the FORD-FULKERSON al-
gorithm, determining the maximum number of disjoint
paths. As the m x n grid has only N source nodes, we
observe the sparity of source nodes in the grid and com-
press the grid by isolating source-node-free rectangular
blocks. This compression reduces the size complexity of
the grid from O(mn) to a graph of size O(da), i.e.,
from O(N2) to O(N’.5) if m,n are O(N), and retains
all the properties of the original grid. This compression
is optimal in the sense that the size of the graph cannot
be further reduced, and it enables us to find an aug-
menting path in O(da) time and solve the problem
in O(ddz) time. The crux of our algorithm is to
retain the connectivity information on the compressed
graph and to find an augmenting path efficiently at each
iteration.

In Section 2 we propose an optimal algorithm to
isolate sourcenode-free rectangular blocks in a grid. Its
routing through a source-node-free rectangular block
will be discussed in Section 3. A necessary and suffi-
cient condition for feasible routing, as well as the con-
dition for reachability in a rectangular block, will be
provided. Section 4 will discuss how a grid of 0 mn)
size can be compressed into a graph of size 0(A mnN)
and how the reachability information can be retained in
the compressed graph. Section 5 reviews the overall al-
gorithm by discussing how an augmenting path be found
in O(da) time, how disjoint paths be identified in
the original grid, and how the edge-disjoint paths prob-
lem be solved in 0(&/a) time, i.e., O(N2e5) time
if d,m and n are O(N). By tilting the grid by 45”,
we show in Section 6 that the same technique can be
modified and used to solve the vertex-disjoint problem.
Section 7 concludes this paper.

2 Isolation of Rectangular Blocks.

Assume that the grid is m x n in size, where m, n < N.
(Appendix A shows a simple O(N) preprocessing step
which reduces the size of the grid to min(N,m) x
min(N,n) for any m,n.) A time-optimal O(mn)
algorithm to isolate source-node-free rectangular blocks
in an m x n grid in an “optimal” fashion is presented.
The rectangular blocks should be free of any source
nodes, and totally disjoint from each other, i.e., their
boundaries do not share any common grid vertices
or edges (Figure 2). We shall show in the following
subsection that the number of vertices and edges that
are not covered by rectangular blocks is @(da) or
8(N1m5) if m, n are O(N), an asymptotically “optimal”
isolation of rectangular blocks.

Figure 3: A step in Procedure RB-ISOLATION.

(1P)

2.2 Performance Analysis of the Algorithm.
Let T(N, m, n) be the number of uncovered ce2ls (a cell
is the smallest square region in the grid), where N is the
number of source nodes in an m x n grid, with n 2 m.
Furthermore, let N& and NR be the number of source
nodes in Gr., an mL x nL grid, and Gn, an mR x nR
grid, respectively. According to the procedure RB-
ISOLATION, we have the following conditions, NL +
NR = N,NL 2 O,NR 2 O,~L 2 &.,nR B mR, ad
mL,mR f min(m,l+J>, ad nL,nR < m+m,l$J>,
and the recurrence,

ISOLAT!ON (Appendix B). Without loss of generality,
assume m < n. The grid is then partitioned into 3 sub-
grids Gt , GM, GR of the same height (Figure 3), where
(1) GL,.GM,GR represents the left, middle and right
rectangular subgrids, (2) Gt and GR individually share
a common boundary with GM, (3) GM should cover
the middle grid column and (4) GM contains no source
node except at its right and/or left boundaries. Note
that Gr. and Gn can be null while GM always exists.
If Gr, or Gn exists, they will be handled recursively. If
GM is more than three grid columns wide, then GM
will become an isolated rectangular block after remov-
ing its leftmost and rightmost grid columns. Otherwise,
no middle rectangular block can be isolated.

k--‘%+%A--+--GR~

(ml) (ma)

4 Rectangular blocks

(24

0
if N = 0 or

TW,m,n) d

i

m= 1,
TWL, w, w,.>
+T(NR,~R,~R)+~~

otherwise

where the number of uncovered cells are at most 2m
when G is partitioned into 3 subgrids. We can prove by
induction on N that

Figure 2: The isolation of rectangular blocks.
(2.2) T(N,m,n) < (klfi - kz)@

2.1 Algorithm for the Isolation of Rectangu- for N > 0 and some constants ki, k2 > 0. Thus, from
lar Blocks. The isolation of the rectangular blocks the number of uncovered nodes and edges is
in the grid G is done recursively by procedure RB- i.e., O(N’.5) if m and n are O(N).

457

2.3 Lower Bound of the Uncovered Cells. We
shall show that the number of uncovered cells in an m x n
grid with N source nodes is at least fI(da) even
when the source-node-free blocks to be isolated are not
necessarily rectangular.

THEOREM 2.1. As long as the blocks (free of source
nodes) to be isolated do not contain any holes and
m < n < mN, then the number of uncovered cells is
at least S2(&GX) f or an m x n grid with N source
nodes.

Proof. (Sketch) Consider the N source nodes dis-

tributed evenly on an m x n grid as an @X&E

P-dimensional array, the distance between any pair of
source nodes, or between any source node and the grid
boundary, will then be at least m (1 + m -’ cells
apart. The minimum weight spanning tree joining all N
source nodes and the boundary must be of cost at least
Q(lhGaiQ.

3 Edge-Disjoint Paths in the Rectangular
Blocks.

An augmenting path from the super-source to the super-
sink (or a boundary vertex) can be found by a breadth-
first search through the auxiliary grid. Since the rectan-
gular blocks are free of any source nodes, the breadth-
first search step does not have to consider all the grid
vertices or edges in the rectangular block in finding
an augmenting path as long as the reachability infor-
mation between any pair of boundary grid vertices is
known. A necessary and sufficient reachability condition
on the boundary grid vertices of a rectangular block, and
an asymptotically optimal algorithm to find the edge-
disjoint paths in the rectangular block, will be given in
the next two subsections.

3.1 Necessary and Sufficient Condition. Given
a rectangular p x q block denoted by [l :: p] x [I :: q],
vertices in the block can be represented by (i, j) where
1 < i < p and 1 < j < q. The boundary of the block
consists of the set of vertices Z? = { (i,j)] i = 1, i =
P, j = 1 or j = q1. C = {(l,l),(l,q),(P,l),(P,q)}
denotes the set of corner vertices of the block. S consists
of all sources and 7 all sinks on the boundary of the grid.
A set of edge-disjoint paths satisfies S and 7 if there are
exactly IS] = 171 edge-disjoint paths completely inside
the block and each path is joining (or pairing up) a
vertex in S with a vertex in ‘7.

A cut (edge cut) is defined as a set of block
edges whose removal will partition the block into two
components. In particular, h-c&(i) is a horizontal cut
which denotes the ith row of block edges and v-c&(j)

is a vertical cut which denotes the jth column of block
edges. h-cap(i) and v-cup(i) is defined as the capacity
(number of edges) of h-cut(i) and v-cut(j) respectively.
The demand of a cut represents the least number of
paths needed to pass through the cut in order to satisfy
S and 7. In particular, I&em(i) and v-dem(j) denote
the least number of edge-disjoint paths needed to pass
through the edges, from top to bottom, and from left to
right, in h-cut(i) and v-cut(j) respectively. For instance,
h-dem(i) or v-dem(j) = ICI - k2 where kl and k2 are
number of boundary vertices above the (i + 1)st row or
on the left of the (j + l)st column of the rectangular
block and in S and 7 respectively . We say, a cut
is saturated if its absolute value of demand equals its
capacity and overflowed if its absolute value of demand
is larger than its capacity. The conditions for the
existence of edge-disjoint paths given in the following
lemma is similar to those given in [9].

LEMMA 3.1. Given a rectangular p x q block and two
sets of boundary vertices S and 7 with IS(= 171, there
exists a set of edge-disjoint paths satisfying S and 7 if
and only if all the h-cut(i) for 1 < i < p-l and v-cut(j)
for 1 < j < q - 1 do not overflow.

3.2 Paths Construction. Lemma 3.1 provides
the condition which ensures the existence of a set
of edge-disjoint paths satisfying S and 7. Such a
set of edge-disjoint paths can be identified inside the
rectangular grid by considering each block vertex as
well as its adjacent edges one by one, row by row
from top to bottom. When vertex (i, j) is considered,
the flows (paths with direction) through its right edge
((i, j), (i, j + 1)) and its down edge ((i, j), (i + 1, j)) will
be determined. Throughout the algorithm, we ensure
that (1) the flow at each vertex is conserved, i.e., amount
of inflow equals amount of outflow at each vertex, and
(2) the new h-cut(i) and v-c&(j) in the remaining block
do not overflow. This ensures that a set of edge-disjoint
paths in the remaining block still exists.

THEOREM 3.1. Given a rectangularp x q block and two
sets of boundary vertices S and 7 with ISI = 171, and
all the h-cut(i) for 1 6 i < p - 1 und v-cut(j) for
l<j<d- 1 not overflowed, a set of edge-disjoint
paths in the grid satisfying S and 7 can be found in
O(pq) time.

4 Construction of Reachability Graphs.

In this section, we shall show how the reachability
information of an auxiliary grid in a rectangular block is
retained, and how this information is used to accelerate
the finding of the augmenting path. This reachability
information is represented by a reachability graph R

- Directed edges in both direction of
m&ability graph

(a) (b) cc>
Figure 4: Reachability graphs for the Cases a, b and c.

which replaces the part of the auxiliary grid inside a
rectangular block.

Define an inflow function I(U), for u E a, to be the
number of sources at u minus the number of sinks at u.
In particular, I(U) is valid if

I(u) =
-2,-1,0,1,2 if 21 EC
-l,O, 1 ifuEl3-C

and c I(U) = 0
UEB

In general, I(U) > 0 if u E 5, < 0 if u E T and otherwise
= 0. Note that a set of edge-disjoint paths that satisfies
I(U) is equivalent to the set of edge-disjoint paths that
satisfies S and 7. The inflow function I(u) is called
solvable if none of h-cut(i) for 1 < i < p - 1 and v-
cut(j) for 1 6 j 6 q - 1 are overflowed.

LEMMA 4.1. Given any rectangular block with a valid
and solvable inflow function I(u), let a new valid inflow
function I’(u) be defined as

I(u)+1 ifu=x,
I’(u) = I(u) - 1 ifu = y, wherex,yEB

I(4 otherwise.

Case a: Neither of the h-cut(i) and ,v-cut(j) is
saturated. An augmenting path should exist between
any pair of boundary vertices as long as I’(u) remains
valid. An example is given Figure 4(a).

Case b: Either h-cut(i) or v-cut(j) (not both)
is saturated. The block is partitioned into components
by its saturated cuts, and the reachability information of
each component is similar to Case a and is represented
by a star graph. An example of this case is given in
Figure 4(b).

Case c: Both saturated h-cut(i) and v-cut(j)
exist. The rectangular block is partitioned by the set
of saturated cuts h-cut(i) and v-cut(j) into components.
The reachability information of each of these boundary
components will be represented by a star graph, in the
same way as Cases a and b. An example is given in
Figure 4(c).

It can be proved that the reachability information
for all cases can be properly represented by a reachabil-
ity graph of size O(p + q).

5 Overall Algorithm.

Integrating the results in the previous sections, we can
describe the overall algorithm as follows.

Then there exists an augmenting path from x to y in the
auxiliary grid corresponding to the set of edge-disjoint (1)
paths satisfying I(u) if and only if I’(u) is solvable.

(2)

Based on the above lemma, we are able to determine

Preprocess the grid (Appendix A).

Isolate a set of source-node-free rectangular blocks
in the grid (Section 2 and procedure RB-
ISOLATION in Appendix B). the reachability information of each boundary vertex

of a rectangular block to others based on 1(u). The (3)
instances of the inflow functions 1(u) are divided into
3 cases. In each case, we shall show how to construct
the reachability graph R to represent the reachability
of the boundary vertices of the rectangular block such
that, for any two boundary vertices x and y, there is a
path in R from x to y if and only if I’(u) is valid and
solvable.

Repeat

(i) Based on the set of edge-disjoint paths found
so far, construct the auxiliary grid and replace
each rectangular block with its reachability
graph (Section 4).

(ii) Apply a breadth-first search to find an aug-
menting path from the super-source to the

459

(4) The set of edge-disjoint paths can be completed
by constructing the paths which satisfies the inflow
function in each rectangular block (Section 3 and
Appendix C) .

6 Vertex-Disjoint Paths in Grids.

(iii)

(3

super-sink (a source node to a boundary ver-
tex) in the auxiliary grid. Exit if not found.

Update the edge-disjoint paths as well as the
inflow function of the affected rectangular
blocks.

Update the reachability graph of each affected
rectangular block (Section 4).

The framework of our algorithm to solve the vertex-
disjoint problem is similar to the one for the edge-
disjoint paths problem, except that some steps need
to be modified to cope with the vertex-disjoint require-
ment. The differences are: (1) the definition of rect-
angular blocks, (2) the construction of the paths inside
the rectangular blocks, (3) the isolation of rectangular
blocks in the grid, and (4) the construction of the reach-
ability graph.

6.1 Tilted Rectangular Blocks. The type of
rectangular block defined in the vertex-disjoint version
is called a tilted rectangular bloc/~. The shape of the
blocks remains rectangular but they are tilted at 45” to
the horizontal grid line. A tilted TOW (tilted column) is a
chain of vertices which form a straight line tilted at 45”
clockwise (anti-clockwise) to the horizontal grid line.

tilted row tilted column

Figure 5: Formation of a tilted rectangular block.

For ease of visualizing the tilted rectangular block,
imagine the tilted rectangular block is rotated 45O anti-
clockwise so that the tilted rows and columns become
horizontal and vertical respectively (Figure 6.1). The
h-cut(i) for 2 < i < p - 1 and v-cut(j) for 2 < j < q - 1
are defined as vertex cuts which denote the ith tilted
row and jth tilted cohrmn of vertices respectively in the
tilted rectangular block. The capacity and demand of

a cut are defined similarly. Note that when a cut has
a boundary vertex in S or T, the demand of this cut
will take the worst-case value, i.e., the larger absolute
value, by including or excluding the inflow/outflow at
the boundary vertex. It can be proved that Lemma 3.1
still applies to the tilted rectangular block.

LEMMA 6.1. Given a tilted rectangular p x q block and
two sets of boundary vertices S and 7 with IS\ = 171, a
set of vertex-disjoint paths exists which satisfies S and
7 if and only if all the h-cut(i) for 2 < i < p - 1 and
v-cut(j) for 2 < j < q - 1 do not overflow.

v-dem(7)=3

h-dem(5)=-2

0 for UC S l forurT

Figure 6: Tilted rectngular block rotated at 45’ anti-
clockwise.

Finally, the construction of vertex-disjoint paths
satisfying S and 7 in a tilted rectangular block can also
be done in a similar approach as the construction of the
edge-disjoint paths.

6.2 Isolation of Rectangular Blocks. Since the
definition of row and column in a tilted rectangular
block has been changed, the isolation steps have to be
modified in this vertex-disjoint case. A straightforward
method is to transform the input m x n grid into an
(m+n-1) x (m+n-1) tilted grid by padding the original
grid with vertices on those tilted rows and columns
which are not full. The padded grid is the smallest
tilted grid enclosing the original grid. Applying the
original isolation algorithm to the padded grid along the
tilted rows and columns will result in O((m + n)fi)
uncovered cells, i.e., O(N1.5) if both m and n are O(N).
However, if m is much less than n, special handling
methods are needed to obtain the optimal number of
uncovered cells. The detailed description of the isolation
algorithm will not be covered here.

6.3 Construction of Reachability Graphs. The
construction of the reachability graph is the same as in
the edge-disjoint case, except that the connection for
the boundary vertex 21 to the center vertex is different

460

when u is on a saturated cut and u E S or 7. The
main difficulty lies in the fact that the cut consists of
a set of vertices instead of edges and the two boundary
vertices in a cut can be in S or 7. These boundary
vertices have to be split into two vertices, one in each
of the reachability graphs of two components.

7 Conclusion.

Routing problems have been studied widely by many
researchers [8, 9, 11, 171. Much of the research is
on “specified” routing, that is, given a set of nets

{(%h),... , (SN, tN)} where (si, ti) is a net such that
si E S and ti E T with 1 ,< i 6 N, the “specified”
routing is to find n pairwise disjoint paths joining si and
ti where 1 < i < N. In this paper, we have investigated
a particular routing problem on a rectangular grid,
which is called “unspecified” routing. The problem to
be solved is finding n disjoint paths pairing vertices in
S with vertices in 7, in the sense that vertices in S
can be connected to any vertices in 7 as long as each
vertex in S is connected to a distinct vertex in 7. This
unspecified routing problem is a generalization of the
reconfiguration problem or escape problem by defining
7 as the set of boundary vertices. It is easy to see
that we can apply the technique described in this paper
to solve this “unspecified” routing problem with the
same 0(&/s) or O(N2.5) time complexity. Both
the edge-disjoint and vertex-disjoint path algorithms
presented in this paper are being implemented. Their
experimental results will be presented in the full paper.

References

[l] Y. Birk and J. B. Lotspiech, On finding non-
intersecting straightline connections of grid points to
the boundary, J. of Algorithms, 13 (1992), pp. 636-656
(also appears in SODA 91’).

[2] J. A. and U. S. R. Murty, Graph Theory with Applica-
tion, North-Holland, Amsterdam, 1977.

[3] J. Bruck and V. P. Roychowdhury, How 20 play bowling
in parallel on the grid, J. of Algorithms, 12 (1991),
pp. 516-529.

[4] B. Codenotti and R. Tamassia, A network flow ap-
proach to the reconfigumtion of VLSI arruys, IEEE
Trans. on Computers, 40 (1991), pp. 118-121.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, MIT Press, Cambridge,
MA, 1991.

[S] L. R. Ford and D. R. Fulkerson, Flows in Networks,
Princeton University Press, Princeton, NJ.

[7] P. Klein, S. R.ao, M. Rauch, and S. Subramanian,
Faster shortest-path algorithms for planar gmphs, Pro-
ceedings of the Twenty-Sixth Annual ACM Symp. on
Theory of Computing, 1994, pp. 27-37.

Figure 7: A set of edge-disjoint paths produced by the
algorithm.

[S] T. Lai and A. Sprague, On the routability of a conuez
grid, J. of Algorithms, 8 (1987), pp. 372-384.

[9] K. Mehlhorn and F. P. Preparata, Routing through a
rectangle, JACM, 33 (1986), pp. 60-85.

[lo] G. L. Miller and J. Naor, Flow in planar gmphs with
multiple sources and sinks (e&ended abstract), Proc.
of the 30th IEEE Symp. on Foundations of Computer
Science, 1989, pp. 112-117.

[ll] T. Nishizeki, N. Saito, and K. Suzuki, A linear-time
routing algorithm for conuez grids, IEEE Trans. on
Computer-Aided Design, 4 (1985), pp. 68-75.

[12] L. P&OS, Connecting the m&mum number of grid
nodes to the boundary with non-intersecting line seg-
ments, Proc. of the Scandinavian Workshop on Algo-
rithm Theory, 1994, pp. 255-266.

113) C. H. Papadimitrious and K. Steiglitz, Combinatorial
Optimization: Algorithm and Complexity, Prentice-
Hall, Englewood Cliffs, NJ, 1982.

(141 H. Ripphausen-Lipa, D. Wagner, and K. Weihe, The
vertex-disjoint Menger problem in planar gmphs, Proc.
of the Fourth Annual ACM-SIAM Symp. on Discrete
Algorithms, 25-27 Jan. 1993, pp. 112-119.

[15] V. P. Roychowdhury and J. Bruck, On finding non-
intersecting paths in grids and its application in re-
configuring VLSI/WSI armys, Proc. of the First An-
nual ACM-SIAM Symp. on Discrete Algorithms, 1990,
pp. 454-464.

[lS] V. P. Roychowdhury, J. Bruck, and T. Kailath, Efi-
cient algorithms for reconfigumtion in VLSI/WSI ar-
mys, IEEE naus. on Comp., 39 (1990), pp. 480-489.

[17] A. Schrijver, Finding k disjoint paths in a directed

461

planaw graph, SIAM J. on Computing, 23 (1994),
pp. 780-788.

[18] H. Suzuki, T. Akama, and T. Nishizeki, Finding
Steiner forests in planar graphs, Proc. of the First An-
nual ACM-SIAM Symp. on Discrete Algorithms, 1990,
pp. 444-453.

Appendix A. Preprocessing of the Grid.

We have previously assumed that the grid sizes, rra and
n, are O(N). However, this usually may not be the
case. If the N source nodes are sparsely located in the
grid, m and n can be arbitrarily large. In this section,
we shall describe a preprocessing step which reduces the
size of the grid to min(N, m) x min(N, n) by eliminating
rows/columns such that the resultant grid would retain
the same solution as the original grid. WLOG, let us
first consider the removal of columns from the original
grid. The removal of rows can be done similarly. Let
[b, e] denote a cluster of column i, b < i < e and p[b, e],
the number of source nodes in [b,e]. We say [b, e] is
routable if and only if

p[b,i] < 2(i - b + 1)
and p[i, e] < 2(e - i + 1) for all i, b < i < e

Intuitively, the source nodes in a routable cluster
[b, e] can be routed, in other words, the existence of non-
intersecting paths to the boundary nodes of the grid
(in particular, the top and bottom boundaries) by only
considering the columns in [b, e]. The two inequalities
ensure that there are enough columns on both sides of
the cluster even when all the source nodes are routed
towards the same side. For example in Figure 8, a
routable cluster would include at least columns 3 to 8,
[2,9], [2,8], [3,10], [x, y] with z < 3 and y > 8 are all
routable.

23456789

Figure 8: Example of a routable cluster.

LEMMA A.1. All the source nodes in a routable cluster
that can be routed to the boundary, can also be routed to
the top and bottom boundary nodes of the cluster.

Proof. Consider a routable cluster [cI,c~]. For all the
source nodes that can be routed to the boundary, we

have a set ,of paths connecting them to the destination
nodes on the four boundaries of [cI,c~]. Let us con-
sider a solution with the minimum number of horizontal
edges, we claim that there will be no more than 2 desti-
nation nodes on each of the columns cl, cz connecting to
sources nodes in [cl, cz], i.e. all the source nodes can be
routed to the top/bottom boundary of [cl, CZ]. WLOG,
let us assume the contrary that c2 contains more than 2
destination nodes, consider the column k for the max-
imum k, such that k < c2 and contains less than 2
destination nodes. The routable property implies that,

p[k + 1, ~21 G 2(c2 - k)

So there is at least one source node located in cluster
[cl, k] but with its destination node in cluster [k + 1, cz].
This implies at least one path passing through column
k from cluster [cl, k] to [k + 1, CZ]. Therefore, we can
direct this path to a new destination node on column
k and reduce the number of horizontal edges (supposed
to be minimum). If cl contains more than 2 destination
nodes, we will get a contradiction similarly.

In the following, we shall describe an O(N) algo-
rithm to find a set of disjoint routable clusters of total
size O(N) to cover all N source nodes in the grid.

A cluster [b,e] is called right routable if for all i,
b<i<e,p[i,e]<2(e- i + 1). Similarly, left routable
ifp[b,i]62(i-b+l)foralli,b<i<e.

The basic technique to find a set of disjoint right
or left routable clusters is by scanning. WLOG, the
algorithm to find the right routable clusters starts with
the left most column, i.e., smallest indexed column, say
column b containing source node(s), st each column to
its right one by one until the first column e > b such
that p[b, e] < 2(e - b + 1). We shall prove that [b, e] is
the first right routable cluster in the set. The algorithm
repeats itself to find the other right routable clusters
by starting at the first column to the left of [b, e] and
containing source node. Obviously, the algorithm takes
linear time and can find a set of disjoint right routable
clusters to cover all the source nodes. Similarly, the
left routable clusters can be found by scanning from the
right most column.

LEMMA A.2. [b,e] is right routable.

Proof. For any b < i < e, p[i, e] = p[b, e] - p[b, i - l] <
2(e - b -I- 1) - 2(i - b) = 2(e - i + 1) as p[b, i - l] >
2(i - 1 - b + 1) = 2(i - b) (from the algorithm).

LEMMA A.3. Assume {[bi,eJ 1 1 < i < k} is a set of
disjoint right routable clusters, then [x,9] is also a right
routable cluster where ej < Q < bj+l for all 1 < j < k
and z < y.

462

Proof. We claim that for z < z < y, the number of
source nodes p[z, y] < 2(y - z + 1).

1. If ejl < z < bjt+l for some j’, the result follows.

2. If bjl < z < ej* for some j’, since [bit, ejf] is a right
routable cluster, p[z, ejt] < 2(ejr -z+l). Therefore,
PhYl < 2(Y - z + 1).

LEMMA A.4. Assume {[b:,e:] 1 1 < i < k} is a set of
disjoint left routable clusters, then [x, y] is also a left
routable cluster where ei < x < b&, for all 1 < j < k
andx <y.

Proof. The proof is similar as Lemma A-3.

We define the operation union, U, of two cluster
[h , el] and [la, e2] where bl G kt as

{

[h,ell, be21 if el < h
[h , f-a] U [b2, e2] = [h , e2] if b2 < el < e2

[h, ell if e2 < el

For two sets of disjoint cluster Cl and CZ, we define the
operation union U as

Cl U C2 = U [b, el where [b,e] E Cl or CZ

Let, RRC = {[bi, ei]} be the set, of disjoint right routable
cluster and LRC = {[& e:]} be the set of disjoint
left routable cluster. We can construct another set of
disjoint routable cluster RC = RRC u LRC.

LEMMA A.5. RC is a set of disjoint routabte cluster.

Proof. Let RC = {[b, e]}. By the definition of union, we
have b = bi or bi for some i and e = ej or e> for some
j Moreover, e6 < bi < b;,, for all i, otherwise RC is
not disjoint. Similarly, ek < e: < bk+l for all i. Then,
we have e: < b < b:,, for some i and ej < e < b>+l for
some j. By Lemma A.3 & A.4, [b,e] is right and left
routable, and hence it is routable. Therefore, RC is a
set of disjoint routable cluster.

LEMMA A.6. The size of RC is at most N.

Proof. Consider a cluster [b, e] E RC, assume it, contains
the clusters {[bk, ek] 1 i < k < j} C_ RRC and
{[bkf , ekr] 1 i’ < k’ < j’} c LRC. By the algorithm,
~Pk,ekl > 2(ek - by). Then we have ek - bk: + 1 <
v. Moreover, since this cluster contains at least
one source node, that column containing source node
will be covered by a cluster in {[&I, ekj]}. Similarly, we
have ek’ - bkp + 1 < p[b”-l”l+l. This cluster [bkj, ek!]

contains at least one column covered by a cluster in
{ [bk , ek]) . Conclusively, we have

e - b + 1 < 2 (ek - bg + 1) + & (ekl - bk, + 1)
k=i k=i’

-j-i+1 _ j’-i’+l
2 2

-j-i+1 j’-i’+l
2 - 2

G p[b, e]

The size of the set, of disjoint routable cluster RC is
c (e - b+ 1) which is less than c p[b,e], i.e.,

[b,e]ERC (b,e]ERC

N.

Appendix B. Procedure R&ISOLATION(G).

Without loss of generality, let G be an m x n grid with
n > m.

(1)

(2)

(3)

(4

(5)

(6)

(Base case) If the number of source vertices N is 0
or m = 1, return.

Let grid column i, where 1 < a’ < LtJ, be the
minimum column such that all columns from i + 1
to L$J are free of source nodes. Column i is then
the common boundary between Gr, and GM.

Let grid column j, where L$J < j < n, be
the maximum column such that all columns from
L$J + 1 to j - 1 are free of source nodes. Column
j is then the common boundary between GM and
GR-

If j 2 i + 3, then the subgrid containing grid
columns from i + 1 to j - 1 will be an isolated
rectangular block in GM. (Otherwise, we do not
have an isolated rectangular block in GM.)

If i > 2, then GL, the subgrid containing grid
columns from 1 to i, will be handled recursively,
i.e., RB-ISOLATION(GL).

If j < n - 1, GR, the subgrid containing grid
columns from j to n, will be handled recursively,
i.e., RB-ISOLATION(GR).

Appendix C. Algorithm for Edge-Disjoint Paths
Construction in Rectangular Blocks.

In this section, we exhaust the cases for the assignment
of flow f(b) and f(c) at vertex (i, j) (Inside the bracket

are the changes of demands of h-cut(i) and v-c&j)
due to the assignment of flows f (5) and f(c), at the
same time, the capacity h-c&a’) and w-cap(j) will be
decremented by one):

1. f(a) + f(di) = 2: f(b) = f(c) = 1 (&em’(j) = V-
dem(j) - 1 and h-de&(i) = h-dem(i) - 1).

2. f(u) +f(dj) = -2: f(b) = f(c) = -1 (v-de&(j) =
w-dem(j) + 1 and I&em’(i) = h-dem(i) + 1).

3. j(u) + j(dj) = 0:

(a) v-dem(j) = vc(j) or !&em(i) = -he(i):
f(b) = -1 and j(c) = 1 (&em’(j) = V-
dem(j) - 1 and h-de&(i) = h-deem(i) + 1).

(b) g$m(j) = -w(j) or h-dem(i) = he(i):
= 1 and f(c) = -1 (&em’(j) = V-

dem(j) + 1 and h-&m’(i) = h-&m(i) - 1).

(c) Otherwise: f(b) = f(c) = 0 (v-dem’(j) = V-
dem(j) and h-de&(i) = h-dem(i)).

4. j(u) + j(dj) = 1:

(a) v-dem(j) = ~~c(j) or h-dem(i) = -he(i) + 1:
f(b) = 0 and f(c) = 1 (v-dem’(j) = EJ-
dem(j) - 1 and h-dem’(i) = h-dem(i)).

(b) Otherwise: f(b) = 1 and f(c) = 0 (II-
dem’ (j) = w-dem(j) and h-dem’(i) = h-
dem(i) - 1).

5. f(U) + f(O!j) = -1:

(4

(b)

&em(j) = -m(j) or h-dem(i) = he(i) - 1:
f(b) = 0 and f(c) = -1 (&em’(j) = V-
dem(j) + 1 and h-dem’(i) = h-dem(i)).

Otherwise: f(b) = -1 and f(c) = 0 (V-
dem’(j) = hem(j) and h-&m’(i) = h-
dem(i) + 1).

Proof. Correctness of the algorithm
We shall prove the correctness of the algorithm by

induction on i, for 1 (i < p. Hypothesis: after we
consider the vertex (i, j), (1) the new cuts h-cut’(i) and
w-cut’(j) in the remaining block are not overflowed, i.e.,
Ih-dem’(i)l < h-cap’(i) and Iv-dem’(j)l < v-cap’(j) and
(2) the flow at vertex (i, j) is conserved.

Assume it holds for the vertices (i, l), . . . , (i, j - 1).
Let us consider vertex (i, j),

1. f(U) + f (dj) = 2:
Since &em(j) 2 v-dem’(j - 1) + 1 2 -p + i + 1
and u-dem(j) < p-i + 1, we have Iv-dem(j) - 11 <
P - i, i.e., Iv-dem’(j)] < v-cap’(j). Similarly,
jh-dem’(i)l < h-cap’(i).

2.

3.

4.

463

f(a) + f(O!j) = -2: Similar to previous case.

f(U) + f (dj) = 0:

(a) If v-dem(j) = v-cap(j): We claim that h-
dem(i) < q-j-l. If h-dem(i) 2 q-j, we have
h-dem(i) +&em(j) 2 p+q-i - j+l. That
means the net number of boundary vertices in
S to the left of v-cut(i) or on top of h-cut(j)
is greater than p + q - i - j. However, the
number of boundary vertices to the right of
v-cut(j) and on top of h-cut(j) is no greater
thanp+q-i - j. It makes a contradiction
if the claim is not true. The other conditions
follow directly in the algorithm. Then we have
Iv-dem’(j)l < v-cap’(j) and Ih-dem’(i)l Q h-
cap’(i).
The case for l&em(j) = -h-cap(j) can be
proved in similar way.

(b) The cases for &em(j) = -v-cap(j) or
h-dem(i)=h-cup(i) can be proved in similar
way.

.

(c) Otherwise: Trivial.

Cases when f(a) + f (dj) = 1 or -1 can be proved
in similar way.

The conservation of flow at vertex (a, j) follows from
the algorithm directly. It is also easy to see that the
assignment of flow function at each edge takes constant
time and thus the whole algorithm takes O(pq) time.

Assume all the vertices in the ith row have been
considered where 1 < i < p, the flow patterns of those
edges (((6 11, (i~l,l)),((i,2),(i+1,2)),.. - ,((i,q), (i+
1, q))) in the horizontal cut h-cut(i) for the p x q block
have been determined and can be treated as the new
sources and sinks for the remaining (p - i) x q block
denoted by [i + 1 :: p] x [l :: q].

Once the flow patterns of all block edges are deter-
mined, we can follow the flow direction of each block
edge to construct the set of edges-disjoint paths satis-
fying the sets S and 7. The edge-disjoint path corre-
sponding to each flow pattern at each block vertex is as
follows:

Figure 9: Formation of Paths.

