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Efficient Algorithms for Finding Disjoint Paths in Grids * 
(Extended Abstract) 

Francis Y.L. Chin t Wun-Tat Chan t 

Abstract 
The reconfiguration problem on VLSI/WSI processor arrays 
in the presence of faulty processors can be stated as the 
following integral multi-source routing problem [16]: Given 
a set of N nodes (faulty processors or sources) in an m x n 
rectangular grid where m, n < N, the problem to be solved 
is to connect the N nodes to distinct nodes at the grid 
boundary using a set of “disjoint” paths. This problem can 
be referred to as au escape problem [5] which can be solved 
trivially in O(mnN) time. 

By exploiting all the properties of the network, planarity 
and re larity of a grid, integral flow, and unit capacity 
source 7 sink/flow, we can optima& comuress the size of the 
grid from O(mn) to O(m) and solve the uroblem in 
iI(dm h’ -. ’ w ere d is the maximum number of disjoint 
paths found, for both the edge-disjoint and vertex-disjoint 
cases. In the worst case, d, m, n are O(N) and the result is 
O(N2.5). Note that this routing problem can also be solved 
with the same time complexity even if the disjoint paths 
have to be ended at another set of N nodes (sinks) in the 
grid instead of the grid boundary. 

1 Introduction. 

The combinatorial problem to be discussed in this paper 
is motivated by the problem of developing efficient 
algorithms for reconfiguring VLSI/WSI processor arrays 
in the presence of faulty processors [4, 15, 161. This is 
called reconfiguration problem and can be stated as the 
following discrete multi-source routing problem [16]: 

Given a set of N nodes (faulty processors or 
sources) in an m x n rectangular grid, the 
problem to be solved is to connect the N nodes 
to distinct nodes (sinks) at the grid boundary 
using a set of “disjoint” paths (compensation 
paths). 

If non-faulty processors are allowed to reconfigure 
along the grid lines by “single-track” switches, then 
the disjoint (compensation) path connecting a faulty 
processor to a non-faulty boundary processor should 
contain no faulty processors, and be limited to vertical 
or horizontal straight lines. An O(N2) algorithm was 
first proposed in [16], and later improved to O(N log N) 
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in [l], to find a set of non-intersecting straight lines 
if a solution to this reconfiguration problem exists; 
otherwise the algorithm would provide no solution. The 
optimization problem of finding the maximum number 
of nodes that can be connected to the boundary by non- 
intersecting straight lines was studied and an O(N3) 
algorithm was first presented in [3], and later improved 
to O(N2 1ogN) in [12]. 

If the array of processors on a rectangular grid 
are equipped with “multi-track” switches, then the 
compensation paths would not be limited to straight 
lines. There are two interpretations of “disjoint” paths, 
edge-disjoint paths or vertex-disjoint paths. A set of 
paths are called edge (vertex) disjoint if no edge (vertex) 
is shared by more than one path. For the fault- 
tolerant reconfiguration problem, vertex-disjoint paths 
are required. This problem has been mentioned in [16] 
and was referred to as the escape problem in [5]. In this 
paper, both forms of problems, finding vertex-disjoint 
and edge-disjoint paths, are studied. 

This reconfiguration problem can be viewed as a 
vertex-disjoint or edge-disjoint routing problem in a pla- 
nar graph [8,9,11,14,17]. Most of these papers are con- 
cerned with the problem of finding disjoint paths where 
each path connects two specified vertices in the graph. 
A more relevant result is the optimal linear-time algo- 
rithm [14], an improvement on the O(plogp) result [18] 
to find the maximum number of vertex-disjoint (s,t)- 
paths for an O(p)-size planar graph. Unfortunately, the 
techniques used in these two algorithms cannot be ap- 
plied to our problem of improving the time complexity 
in finding vertex-disjoint paths for the source nodes. 

The edge-disjoint paths problem can be solved by 
reducing it to a multiple-source, multiple-sink flow 
problem [lo] on a grid network, where all the N nodes 
are sources with unit supply, all the boundary vertices 
in the grid are sinks with unit demand, and every 
grid edge has unit capacity. As the grid is planar, it 
can be shown [lo] that this multiple-source, multiple- 
sink problem on an O(p)-size planar network can be 
solved in O(p413 logp) time (or O(N8i3 1ogN) time 
for the reconfiguration problem if m,n are O(N)) by 
using fast shortest-path algorithm for planar graphs [7’l. 
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(a) A set of 3 dis- (b) An augmenting (c) A set of 4 disjoint 
joint paths. path in auxiliary grid. path. 

Figure 1: Example of finding of an augmenting path in auxiliary grid. 

However, this algorithm [lo] can only find a feasible 
solution if it exists and cannot find a solution with the 
maximum number of edge-disjoint paths. Alternatively, 
a multiple-source, multiple-sink problem can be reduced 
to a single-source, single-sink MAX-FLOW problem by 
connecting the sources to a super-source and sinks to 
a super-sink. However, this reduction may destroy the 
planarity of the graph. Solving the edge-disjoint paths 
problem as a unit-capacity MAX-FLOW problem [13] 
provides O(p”l”) time complexity. The vertex-disjoint 
paths problem can be solved by “splitting” a vertex 
into two and connecting them by an edge with unit 
capacity which ensures that only one path can traverse 
a vertex 121. This reduction also destroys the planarity 
property of the grid but results in a simple network [13] 
with unit capacity which leads to an O(p1.5) (or O(N3) 
for the reconfiguration problem if m, n are O(N)) time 
algorithm for the vertex-disjoint routing problem. 

In fact, the O(mnd) time bound where d is the 
maximum number of disjoint paths, i.e., O(N3) time 
bound for an O(N) x O(N) grid with N source nodes, 
can also be achieved easily with the standard FORD- 
FULKERSON algorithm [6], by connecting the sources 
to a super-source and sinks to a super-sink and find- 
ing the augmenting paths from the super-source to the 
super-sink in the network. In the ith iteration, the ex- 
istence of an augmenting path guarantees the existence 
of a set of i edge-disjoint paths from i source nodes to 
i boundary vertices. An auziliary grid in the ith it- 
eration is the residual network whose edges are with 
unit capacity. Alternatively, assume there are i disjoint 
paths from the super-source to super-sink. The auxil- 
iary grid is the m x n grid with each undirected edge 
on any of the i paths be replaced by a directed edge 
in an opposite direction to the path. The search for 

an augmenting path starting from the super-source to 
super-sink can be performed by a breadth-first search 
(BFS) on the auxiliary grid. For example, Figure l(a) 
shows the grid with 3 edge-disjoint paths. Figure l(b) 
indicates an augmenting path for source node D on the 
auxiliary grid. 

The new set of edge-disjoint paths for Figure l(b) 
is presented in Figure l(c), which contains one more 
edge-disjoint path than the original set shown in Fig- 
ure l(a). Thus, after each iteration the number of edge- 
disjoint paths csn be increased by one. The algorithm 
terminates when no augmenting paths in the auxiliary 
grid remain, and at the same time, this algorithm also 
finds the maximum number d of source nodes that can 
be connected to the boundary. As each iteration might 
take O(mn) time to search for an augmenting path, this 
algorithm takes O(mnd) time. 

In this paper, we present efficient and practical al- 
gorithms for edge-disjoint and vertex-disjoint reconfigu- 
ration problems based on the FORD-FULKERSON al- 
gorithm, determining the maximum number of disjoint 
paths. As the m x n grid has only N source nodes, we 
observe the sparity of source nodes in the grid and com- 
press the grid by isolating source-node-free rectangular 
blocks. This compression reduces the size complexity of 
the grid from O(mn) to a graph of size O(da), i.e., 
from O(N2) to O(N’.5) if m,n are O(N), and retains 
all the properties of the original grid. This compression 
is optimal in the sense that the size of the graph cannot 
be further reduced, and it enables us to find an aug- 
menting path in O(da) time and solve the problem 
in O(ddz) time. The crux of our algorithm is to 
retain the connectivity information on the compressed 
graph and to find an augmenting path efficiently at each 
iteration. 



In Section 2 we propose an optimal algorithm to 
isolate sourcenode-free rectangular blocks in a grid. Its 
routing through a source-node-free rectangular block 
will be discussed in Section 3. A necessary and suffi- 
cient condition for feasible routing, as well as the con- 
dition for reachability in a rectangular block, will be 
provided. Section 4 will discuss how a grid of 0 mn) 
size can be compressed into a graph of size 0( A mnN) 
and how the reachability information can be retained in 
the compressed graph. Section 5 reviews the overall al- 
gorithm by discussing how an augmenting path be found 
in O(da) time, how disjoint paths be identified in 
the original grid, and how the edge-disjoint paths prob- 
lem be solved in 0(&/a) time, i.e., O(N2e5) time 
if d,m and n are O(N). By tilting the grid by 45”, 
we show in Section 6 that the same technique can be 
modified and used to solve the vertex-disjoint problem. 
Section 7 concludes this paper. 

2 Isolation of Rectangular Blocks. 

Assume that the grid is m x n in size, where m, n < N. 
(Appendix A shows a simple O(N) preprocessing step 
which reduces the size of the grid to min(N,m) x 
min(N,n) for any m,n.) A time-optimal O(mn) 
algorithm to isolate source-node-free rectangular blocks 
in an m x n grid in an “optimal” fashion is presented. 
The rectangular blocks should be free of any source 
nodes, and totally disjoint from each other, i.e., their 
boundaries do not share any common grid vertices 
or edges (Figure 2). We shall show in the following 
subsection that the number of vertices and edges that 
are not covered by rectangular blocks is @(da) or 
8(N1m5) if m, n are O(N), an asymptotically “optimal” 
isolation of rectangular blocks. 

Figure 3: A step in Procedure RB-ISOLATION. 

(1P) 

2.2 Performance Analysis of the Algorithm. 
Let T(N, m, n) be the number of uncovered ce2ls (a cell 
is the smallest square region in the grid), where N is the 
number of source nodes in an m x n grid, with n 2 m. 
Furthermore, let N& and NR be the number of source 
nodes in Gr., an mL x nL grid, and Gn, an mR x nR 
grid, respectively. According to the procedure RB- 
ISOLATION, we have the following conditions, NL + 
NR = N,NL 2 O,NR 2 O,~L 2 &.,nR B mR, ad 
mL,mR f min(m,l+J>, ad nL,nR < m+m,l$J>, 
and the recurrence, 

ISOLAT!ON (Appendix B). Without loss of generality, 
assume m < n. The grid is then partitioned into 3 sub- 
grids Gt , GM, GR of the same height (Figure 3), where 
(1) GL,.GM,GR represents the left, middle and right 
rectangular subgrids, (2) Gt and GR individually share 
a common boundary with GM, (3) GM should cover 
the middle grid column and (4) GM contains no source 
node except at its right and/or left boundaries. Note 
that Gr. and Gn can be null while GM always exists. 
If Gr, or Gn exists, they will be handled recursively. If 
GM is more than three grid columns wide, then GM 
will become an isolated rectangular block after remov- 
ing its leftmost and rightmost grid columns. Otherwise, 
no middle rectangular block can be isolated. 

k--‘%+%A--+--GR~ 

(ml) (ma) 

4 Rectangular blocks 

(24 

0 
if N = 0 or 

TW,m,n) d 

i 

m= 1, 
TWL, w, w,.> 
+T(NR,~R,~R)+~~ 

otherwise 

where the number of uncovered cells are at most 2m 
when G is partitioned into 3 subgrids. We can prove by 
induction on N that 

Figure 2: The isolation of rectangular blocks. 
(2.2) T(N,m,n) < (klfi - kz)@ 

2.1 Algorithm for the Isolation of Rectangu- for N > 0 and some constants ki, k2 > 0. Thus, from 
lar Blocks. The isolation of the rectangular blocks the number of uncovered nodes and edges is 
in the grid G is done recursively by procedure RB- i.e., O(N’.5) if m and n are O(N). 
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2.3 Lower Bound of the Uncovered Cells. We 
shall show that the number of uncovered cells in an m x n 
grid with N source nodes is at least fI(da) even 
when the source-node-free blocks to be isolated are not 
necessarily rectangular. 

THEOREM 2.1. As long as the blocks (free of source 
nodes) to be isolated do not contain any holes and 
m < n < mN, then the number of uncovered cells is 
at least S2(&GX) f or an m x n grid with N source 
nodes. 

Proof. (Sketch) Consider the N source nodes dis- 

tributed evenly on an m x n grid as an @X&E 

P-dimensional array, the distance between any pair of 
source nodes, or between any source node and the grid 
boundary, will then be at least m (1 + m -’ cells 
apart. The minimum weight spanning tree joining all N 
source nodes and the boundary must be of cost at least 
Q(lhGaiQ. 

3 Edge-Disjoint Paths in the Rectangular 
Blocks. 

An augmenting path from the super-source to the super- 
sink (or a boundary vertex) can be found by a breadth- 
first search through the auxiliary grid. Since the rectan- 
gular blocks are free of any source nodes, the breadth- 
first search step does not have to consider all the grid 
vertices or edges in the rectangular block in finding 
an augmenting path as long as the reachability infor- 
mation between any pair of boundary grid vertices is 
known. A necessary and sufficient reachability condition 
on the boundary grid vertices of a rectangular block, and 
an asymptotically optimal algorithm to find the edge- 
disjoint paths in the rectangular block, will be given in 
the next two subsections. 

3.1 Necessary and Sufficient Condition. Given 
a rectangular p x q block denoted by [l :: p] x [I :: q], 
vertices in the block can be represented by (i, j) where 
1 < i < p and 1 < j < q. The boundary of the block 
consists of the set of vertices Z? = { (i,j) ] i = 1, i = 
P, j = 1 or j = q1. C = {(l,l),(l,q),(P,l),(P,q)} 
denotes the set of corner vertices of the block. S consists 
of all sources and 7 all sinks on the boundary of the grid. 
A set of edge-disjoint paths satisfies S and 7 if there are 
exactly IS] = 171 edge-disjoint paths completely inside 
the block and each path is joining (or pairing up) a 
vertex in S with a vertex in ‘7. 

A cut (edge cut) is defined as a set of block 
edges whose removal will partition the block into two 
components. In particular, h-c&(i) is a horizontal cut 
which denotes the ith row of block edges and v-c&(j) 

is a vertical cut which denotes the jth column of block 
edges. h-cap(i) and v-cup(i) is defined as the capacity 
(number of edges) of h-cut(i) and v-cut(j) respectively. 
The demand of a cut represents the least number of 
paths needed to pass through the cut in order to satisfy 
S and 7. In particular, I&em(i) and v-dem(j) denote 
the least number of edge-disjoint paths needed to pass 
through the edges, from top to bottom, and from left to 
right, in h-cut(i) and v-cut(j) respectively. For instance, 
h-dem(i) or v-dem(j) = ICI - k2 where kl and k2 are 
number of boundary vertices above the (i + 1)st row or 
on the left of the (j + l)st column of the rectangular 
block and in S and 7 respectively . We say, a cut 
is saturated if its absolute value of demand equals its 
capacity and overflowed if its absolute value of demand 
is larger than its capacity. The conditions for the 
existence of edge-disjoint paths given in the following 
lemma is similar to those given in [9]. 

LEMMA 3.1. Given a rectangular p x q block and two 
sets of boundary vertices S and 7 with IS( = 171, there 
exists a set of edge-disjoint paths satisfying S and 7 if 
and only if all the h-cut(i) for 1 < i < p-l and v-cut(j) 
for 1 < j < q - 1 do not overflow. 

3.2 Paths Construction. Lemma 3.1 provides 
the condition which ensures the existence of a set 
of edge-disjoint paths satisfying S and 7. Such a 
set of edge-disjoint paths can be identified inside the 
rectangular grid by considering each block vertex as 
well as its adjacent edges one by one, row by row 
from top to bottom. When vertex (i, j) is considered, 
the flows (paths with direction) through its right edge 
((i, j), (i, j + 1)) and its down edge ((i, j), (i + 1, j)) will 
be determined. Throughout the algorithm, we ensure 
that (1) the flow at each vertex is conserved, i.e., amount 
of inflow equals amount of outflow at each vertex, and 
(2) the new h-cut(i) and v-c&(j) in the remaining block 
do not overflow. This ensures that a set of edge-disjoint 
paths in the remaining block still exists. 

THEOREM 3.1. Given a rectangularp x q block and two 
sets of boundary vertices S and 7 with ISI = 171, and 
all the h-cut(i) for 1 6 i < p - 1 und v-cut(j) for 
l<j<d- 1 not overflowed, a set of edge-disjoint 
paths in the grid satisfying S and 7 can be found in 
O(pq) time. 

4 Construction of Reachability Graphs. 

In this section, we shall show how the reachability 
information of an auxiliary grid in a rectangular block is 
retained, and how this information is used to accelerate 
the finding of the augmenting path. This reachability 
information is represented by a reachability graph R 



- Directed edges in both direction of 
m&ability graph 

(a) (b) cc> 
Figure 4: Reachability graphs for the Cases a, b and c. 

which replaces the part of the auxiliary grid inside a 
rectangular block. 

Define an inflow function I(U), for u E a, to be the 
number of sources at u minus the number of sinks at u. 
In particular, I(U) is valid if 

I(u) = 
-2,-1,0,1,2 if 21 EC 
-l,O, 1 ifuEl3-C 

and c I(U) = 0 
UEB 

In general, I(U) > 0 if u E 5, < 0 if u E T and otherwise 
= 0. Note that a set of edge-disjoint paths that satisfies 
I(U) is equivalent to the set of edge-disjoint paths that 
satisfies S and 7. The inflow function I(u) is called 
solvable if none of h-cut(i) for 1 < i < p - 1 and v- 
cut(j) for 1 6 j 6 q - 1 are overflowed. 

LEMMA 4.1. Given any rectangular block with a valid 
and solvable inflow function I(u), let a new valid inflow 
function I’(u) be defined as 

I(u)+1 ifu=x, 
I’(u) = I(u) - 1 ifu = y, wherex,yEB 

I(4 otherwise. 

Case a: Neither of the h-cut(i) and ,v-cut(j) is 
saturated. An augmenting path should exist between 
any pair of boundary vertices as long as I’(u) remains 
valid. An example is given Figure 4(a). 

Case b: Either h-cut(i) or v-cut(j) (not both) 
is saturated. The block is partitioned into components 
by its saturated cuts, and the reachability information of 
each component is similar to Case a and is represented 
by a star graph. An example of this case is given in 
Figure 4(b). 

Case c: Both saturated h-cut(i) and v-cut(j) 
exist. The rectangular block is partitioned by the set 
of saturated cuts h-cut(i) and v-cut(j) into components. 
The reachability information of each of these boundary 
components will be represented by a star graph, in the 
same way as Cases a and b. An example is given in 
Figure 4(c). 

It can be proved that the reachability information 
for all cases can be properly represented by a reachabil- 
ity graph of size O(p + q). 

5 Overall Algorithm. 

Integrating the results in the previous sections, we can 
describe the overall algorithm as follows. 

Then there exists an augmenting path from x to y in the 
auxiliary grid corresponding to the set of edge-disjoint (1) 
paths satisfying I(u) if and only if I’(u) is solvable. 

(2) 

Based on the above lemma, we are able to determine 

Preprocess the grid (Appendix A). 

Isolate a set of source-node-free rectangular blocks 
in the grid (Section 2 and procedure RB- 
ISOLATION in Appendix B). the reachability information of each boundary vertex 

of a rectangular block to others based on 1(u). The (3) 
instances of the inflow functions 1(u) are divided into 
3 cases. In each case, we shall show how to construct 
the reachability graph R to represent the reachability 
of the boundary vertices of the rectangular block such 
that, for any two boundary vertices x and y, there is a 
path in R from x to y if and only if I’(u) is valid and 
solvable. 

Repeat 

(i) Based on the set of edge-disjoint paths found 
so far, construct the auxiliary grid and replace 
each rectangular block with its reachability 
graph (Section 4). 

(ii) Apply a breadth-first search to find an aug- 
menting path from the super-source to the 
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(4) The set of edge-disjoint paths can be completed 
by constructing the paths which satisfies the inflow 
function in each rectangular block (Section 3 and 
Appendix C) . 

6 Vertex-Disjoint Paths in Grids. 

(iii) 

(3 

super-sink (a source node to a boundary ver- 
tex) in the auxiliary grid. Exit if not found. 

Update the edge-disjoint paths as well as the 
inflow function of the affected rectangular 
blocks. 

Update the reachability graph of each affected 
rectangular block (Section 4). 

The framework of our algorithm to solve the vertex- 
disjoint problem is similar to the one for the edge- 
disjoint paths problem, except that some steps need 
to be modified to cope with the vertex-disjoint require- 
ment. The differences are: (1) the definition of rect- 
angular blocks, (2) the construction of the paths inside 
the rectangular blocks, (3) the isolation of rectangular 
blocks in the grid, and (4) the construction of the reach- 
ability graph. 

6.1 Tilted Rectangular Blocks. The type of 
rectangular block defined in the vertex-disjoint version 
is called a tilted rectangular bloc/~. The shape of the 
blocks remains rectangular but they are tilted at 45” to 
the horizontal grid line. A tilted TOW (tilted column) is a 
chain of vertices which form a straight line tilted at 45” 
clockwise (anti-clockwise) to the horizontal grid line. 

tilted row tilted column 

Figure 5: Formation of a tilted rectangular block. 

For ease of visualizing the tilted rectangular block, 
imagine the tilted rectangular block is rotated 45O anti- 
clockwise so that the tilted rows and columns become 
horizontal and vertical respectively (Figure 6.1). The 
h-cut(i) for 2 < i < p - 1 and v-cut(j) for 2 < j < q - 1 
are defined as vertex cuts which denote the ith tilted 
row and jth tilted cohrmn of vertices respectively in the 
tilted rectangular block. The capacity and demand of 

a cut are defined similarly. Note that when a cut has 
a boundary vertex in S or T, the demand of this cut 
will take the worst-case value, i.e., the larger absolute 
value, by including or excluding the inflow/outflow at 
the boundary vertex. It can be proved that Lemma 3.1 
still applies to the tilted rectangular block. 

LEMMA 6.1. Given a tilted rectangular p x q block and 
two sets of boundary vertices S and 7 with IS\ = 171, a 
set of vertex-disjoint paths exists which satisfies S and 
7 if and only if all the h-cut(i) for 2 < i < p - 1 and 
v-cut(j) for 2 < j < q - 1 do not overflow. 

v-dem(7)=3 

h-dem(5)=-2 

0 for UC S l forurT 

Figure 6: Tilted rectngular block rotated at 45’ anti- 
clockwise. 

Finally, the construction of vertex-disjoint paths 
satisfying S and 7 in a tilted rectangular block can also 
be done in a similar approach as the construction of the 
edge-disjoint paths. 

6.2 Isolation of Rectangular Blocks. Since the 
definition of row and column in a tilted rectangular 
block has been changed, the isolation steps have to be 
modified in this vertex-disjoint case. A straightforward 
method is to transform the input m x n grid into an 
(m+n-1) x (m+n-1) tilted grid by padding the original 
grid with vertices on those tilted rows and columns 
which are not full. The padded grid is the smallest 
tilted grid enclosing the original grid. Applying the 
original isolation algorithm to the padded grid along the 
tilted rows and columns will result in O((m + n)fi) 
uncovered cells, i.e., O(N1.5) if both m and n are O(N). 
However, if m is much less than n, special handling 
methods are needed to obtain the optimal number of 
uncovered cells. The detailed description of the isolation 
algorithm will not be covered here. 

6.3 Construction of Reachability Graphs. The 
construction of the reachability graph is the same as in 
the edge-disjoint case, except that the connection for 
the boundary vertex 21 to the center vertex is different 
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when u is on a saturated cut and u E S or 7. The 
main difficulty lies in the fact that the cut consists of 
a set of vertices instead of edges and the two boundary 
vertices in a cut can be in S or 7. These boundary 
vertices have to be split into two vertices, one in each 
of the reachability graphs of two components. 

7 Conclusion. 

Routing problems have been studied widely by many 
researchers [8, 9, 11, 171. Much of the research is 
on “specified” routing, that is, given a set of nets 

{(%h),... , (SN, tN)} where (si, ti) is a net such that 
si E S and ti E T with 1 ,< i 6 N, the “specified” 
routing is to find n pairwise disjoint paths joining si and 
ti where 1 < i < N. In this paper, we have investigated 
a particular routing problem on a rectangular grid, 
which is called “unspecified” routing. The problem to 
be solved is finding n disjoint paths pairing vertices in 
S with vertices in 7, in the sense that vertices in S 
can be connected to any vertices in 7 as long as each 
vertex in S is connected to a distinct vertex in 7. This 
unspecified routing problem is a generalization of the 
reconfiguration problem or escape problem by defining 
7 as the set of boundary vertices. It is easy to see 
that we can apply the technique described in this paper 
to solve this “unspecified” routing problem with the 
same 0(&/s) or O(N2.5) time complexity. Both 
the edge-disjoint and vertex-disjoint path algorithms 
presented in this paper are being implemented. Their 
experimental results will be presented in the full paper. 
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Appendix A. Preprocessing of the Grid. 

We have previously assumed that the grid sizes, rra and 
n, are O(N). However, this usually may not be the 
case. If the N source nodes are sparsely located in the 
grid, m and n can be arbitrarily large. In this section, 
we shall describe a preprocessing step which reduces the 
size of the grid to min(N, m) x min(N, n) by eliminating 
rows/columns such that the resultant grid would retain 
the same solution as the original grid. WLOG, let us 
first consider the removal of columns from the original 
grid. The removal of rows can be done similarly. Let 
[b, e] denote a cluster of column i, b < i < e and p[b, e], 
the number of source nodes in [b,e]. We say [b, e] is 
routable if and only if 

p[b,i] < 2(i - b + 1) 
and p[i, e] < 2(e - i + 1) for all i, b < i < e 

Intuitively, the source nodes in a routable cluster 
[b, e] can be routed, in other words, the existence of non- 
intersecting paths to the boundary nodes of the grid 
(in particular, the top and bottom boundaries) by only 
considering the columns in [b, e]. The two inequalities 
ensure that there are enough columns on both sides of 
the cluster even when all the source nodes are routed 
towards the same side. For example in Figure 8, a 
routable cluster would include at least columns 3 to 8, 
[2,9], [2,8], [3,10], [x, y] with z < 3 and y > 8 are all 
routable. 

23456789 

Figure 8: Example of a routable cluster. 

LEMMA A.1. All the source nodes in a routable cluster 
that can be routed to the boundary, can also be routed to 
the top and bottom boundary nodes of the cluster. 

Proof. Consider a routable cluster [cI,c~]. For all the 
source nodes that can be routed to the boundary, we 

have a set ,of paths connecting them to the destination 
nodes on the four boundaries of [cI,c~]. Let us con- 
sider a solution with the minimum number of horizontal 
edges, we claim that there will be no more than 2 desti- 
nation nodes on each of the columns cl, cz connecting to 
sources nodes in [cl, cz], i.e. all the source nodes can be 
routed to the top/bottom boundary of [cl, CZ]. WLOG, 
let us assume the contrary that c2 contains more than 2 
destination nodes, consider the column k for the max- 
imum k, such that k < c2 and contains less than 2 
destination nodes. The routable property implies that, 

p[k + 1, ~21 G 2(c2 - k) 

So there is at least one source node located in cluster 
[cl, k] but with its destination node in cluster [k + 1, cz]. 
This implies at least one path passing through column 
k from cluster [cl, k] to [k + 1, CZ]. Therefore, we can 
direct this path to a new destination node on column 
k and reduce the number of horizontal edges (supposed 
to be minimum). If cl contains more than 2 destination 
nodes, we will get a contradiction similarly. 

In the following, we shall describe an O(N) algo- 
rithm to find a set of disjoint routable clusters of total 
size O(N) to cover all N source nodes in the grid. 

A cluster [b,e] is called right routable if for all i, 
b<i<e,p[i,e]<2(e- i + 1). Similarly, left routable 
ifp[b,i]62(i-b+l)foralli,b<i<e. 

The basic technique to find a set of disjoint right 
or left routable clusters is by scanning. WLOG, the 
algorithm to find the right routable clusters starts with 
the left most column, i.e., smallest indexed column, say 
column b containing source node(s), st each column to 
its right one by one until the first column e > b such 
that p[b, e] < 2(e - b + 1). We shall prove that [b, e] is 
the first right routable cluster in the set. The algorithm 
repeats itself to find the other right routable clusters 
by starting at the first column to the left of [b, e] and 
containing source node. Obviously, the algorithm takes 
linear time and can find a set of disjoint right routable 
clusters to cover all the source nodes. Similarly, the 
left routable clusters can be found by scanning from the 
right most column. 

LEMMA A.2. [b,e] is right routable. 

Proof. For any b < i < e, p[i, e] = p[b, e] - p[b, i - l] < 
2(e - b -I- 1) - 2(i - b) = 2(e - i + 1) as p[b, i - l] > 
2(i - 1 - b + 1) = 2(i - b) (from the algorithm). 

LEMMA A.3. Assume {[bi,eJ 1 1 < i < k} is a set of 
disjoint right routable clusters, then [x,9] is also a right 
routable cluster where ej < Q < bj+l for all 1 < j < k 
and z < y. 
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Proof. We claim that for z < z < y, the number of 
source nodes p[z, y] < 2(y - z + 1). 

1. If ejl < z < bjt+l for some j’, the result follows. 

2. If bjl < z < ej* for some j’, since [bit, ejf ] is a right 
routable cluster, p[z, ejt] < 2(ejr -z+l). Therefore, 
PhYl < 2(Y - z + 1). 

LEMMA A.4. Assume {[b:,e:] 1 1 < i < k} is a set of 
disjoint left routable clusters, then [x, y] is also a left 
routable cluster where ei < x < b&, for all 1 < j < k 
andx <y. 

Proof. The proof is similar as Lemma A-3. 

We define the operation union, U, of two cluster 
[h , el] and [la, e2] where bl G kt as 

{ 

[h,ell, be21 if el < h 
[h , f-a] U [b2, e2] = [h , e2] if b2 < el < e2 

[h, ell if e2 < el 

For two sets of disjoint cluster Cl and CZ, we define the 
operation union U as 

Cl U C2 = U [b, el where [b,e] E Cl or CZ 

Let, RRC = {[bi, ei]} be the set, of disjoint right routable 
cluster and LRC = {[& e:]} be the set of disjoint 
left routable cluster. We can construct another set of 
disjoint routable cluster RC = RRC u LRC. 

LEMMA A.5. RC is a set of disjoint routabte cluster. 

Proof. Let RC = {[b, e]}. By the definition of union, we 
have b = bi or bi for some i and e = ej or e> for some 
j Moreover, e6 < bi < b;,, for all i, otherwise RC is 
not disjoint. Similarly, ek < e: < bk+l for all i. Then, 
we have e: < b < b:,, for some i and ej < e < b>+l for 
some j. By Lemma A.3 & A.4, [b,e] is right and left 
routable, and hence it is routable. Therefore, RC is a 
set of disjoint routable cluster. 

LEMMA A.6. The size of RC is at most N. 

Proof. Consider a cluster [b, e] E RC, assume it, contains 
the clusters {[bk, ek] 1 i < k < j} C_ RRC and 
{[bkf , ekr] 1 i’ < k’ < j’} c LRC. By the algorithm, 
~Pk,ekl > 2(ek - by). Then we have ek - bk: + 1 < 
v. Moreover, since this cluster contains at least 
one source node, that column containing source node 
will be covered by a cluster in {[&I, ekj]}. Similarly, we 
have ek’ - bkp + 1 < p[b”-l”l+l. This cluster [bkj, ek!] 

contains at least one column covered by a cluster in 
{ [bk , ek]) . Conclusively, we have 

e - b + 1 < 2 (ek - bg + 1) + & (ekl - bk, + 1) 
k=i k=i’ 

-j-i+1 _ j’-i’+l 
2 2 

-j-i+1 j’-i’+l 
2 - 2 

G p[b, e] 

The size of the set, of disjoint routable cluster RC is 
c (e - b+ 1) which is less than c p[b,e], i.e., 

[b,e]ERC (b,e]ERC 

N. 

Appendix B. Procedure R&ISOLATION(G). 

Without loss of generality, let G be an m x n grid with 
n > m. 

(1) 

(2) 

(3) 

(4 

(5) 

(6) 

(Base case) If the number of source vertices N is 0 
or m = 1, return. 

Let grid column i, where 1 < a’ < LtJ, be the 
minimum column such that all columns from i + 1 
to L$J are free of source nodes. Column i is then 
the common boundary between Gr, and GM. 

Let grid column j, where L$J < j < n, be 
the maximum column such that all columns from 
L$J + 1 to j - 1 are free of source nodes. Column 
j is then the common boundary between GM and 
GR- 

If j 2 i + 3, then the subgrid containing grid 
columns from i + 1 to j - 1 will be an isolated 
rectangular block in GM. (Otherwise, we do not 
have an isolated rectangular block in GM.) 

If i > 2, then GL, the subgrid containing grid 
columns from 1 to i, will be handled recursively, 
i.e., RB-ISOLATION(GL). 

If j < n - 1, GR, the subgrid containing grid 
columns from j to n, will be handled recursively, 
i.e., RB-ISOLATION(GR). 

Appendix C. Algorithm for Edge-Disjoint Paths 
Construction in Rectangular Blocks. 

In this section, we exhaust the cases for the assignment 
of flow f(b) and f(c) at vertex (i, j) (Inside the bracket 



are the changes of demands of h-cut(i) and v-c&j) 
due to the assignment of flows f (5) and f(c), at the 
same time, the capacity h-c&a’) and w-cap(j) will be 
decremented by one): 

1. f(a) + f(di) = 2: f(b) = f(c) = 1 (&em’(j) = V- 
dem(j) - 1 and h-de&(i) = h-dem(i) - 1). 

2. f(u) +f(dj) = -2: f(b) = f(c) = -1 (v-de&(j) = 
w-dem(j) + 1 and I&em’(i) = h-dem(i) + 1). 

3. j(u) + j(dj) = 0: 

(a) v-dem(j) = vc(j) or !&em(i) = -he(i): 
f(b) = -1 and j(c) = 1 (&em’(j) = V- 
dem(j) - 1 and h-de&(i) = h-deem(i) + 1). 

(b) g$m(j) = -w(j) or h-dem(i) = he(i): 
= 1 and f(c) = -1 (&em’(j) = V- 

dem(j) + 1 and h-&m’(i) = h-&m(i) - 1). 

(c) Otherwise: f(b) = f(c) = 0 (v-dem’(j) = V- 
dem(j) and h-de&(i) = h-dem(i)). 

4. j(u) + j(dj) = 1: 

(a) v-dem(j) = ~~c(j) or h-dem(i) = -he(i) + 1: 
f(b) = 0 and f(c) = 1 (v-dem’(j) = EJ- 
dem(j) - 1 and h-dem’(i) = h-dem(i)). 

(b) Otherwise: f(b) = 1 and f(c) = 0 (II- 
dem’ (j) = w-dem(j) and h-dem’(i) = h- 
dem(i) - 1). 

5. f(U) + f(O!j) = -1: 

(4 

(b) 

&em(j) = -m(j) or h-dem(i) = he(i) - 1: 
f(b) = 0 and f(c) = -1 (&em’(j) = V- 
dem(j) + 1 and h-dem’(i) = h-dem(i)). 

Otherwise: f(b) = -1 and f(c) = 0 (V- 
dem’( j) = hem(j) and h-&m’(i) = h- 
dem(i) + 1). 

Proof. Correctness of the algorithm 
We shall prove the correctness of the algorithm by 

induction on i, for 1 ( i < p. Hypothesis: after we 
consider the vertex (i, j), (1) the new cuts h-cut’(i) and 
w-cut’(j) in the remaining block are not overflowed, i.e., 
Ih-dem’(i)l < h-cap’(i) and Iv-dem’(j)l < v-cap’(j) and 
(2) the flow at vertex (i, j) is conserved. 

Assume it holds for the vertices (i, l), . . . , (i, j - 1). 
Let us consider vertex (i, j), 

1. f(U) + f (dj) = 2: 
Since &em(j) 2 v-dem’(j - 1) + 1 2 -p + i + 1 
and u-dem( j) < p-i + 1, we have Iv-dem( j) - 11 < 
P - i, i.e., Iv-dem’(j)] < v-cap’(j). Similarly, 
jh-dem’(i)l < h-cap’(i). 

2. 

3. 

4. 
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f(a) + f(O!j) = -2: Similar to previous case. 

f(U) + f (dj) = 0: 

(a) If v-dem(j) = v-cap(j): We claim that h- 
dem(i) < q-j-l. If h-dem(i) 2 q-j, we have 
h-dem(i) +&em(j) 2 p+q-i - j+l. That 
means the net number of boundary vertices in 
S to the left of v-cut(i) or on top of h-cut(j) 
is greater than p + q - i - j. However, the 
number of boundary vertices to the right of 
v-cut(j) and on top of h-cut(j) is no greater 
thanp+q-i - j. It makes a contradiction 
if the claim is not true. The other conditions 
follow directly in the algorithm. Then we have 
Iv-dem’(j)l < v-cap’(j) and Ih-dem’(i)l Q h- 
cap’(i). 
The case for l&em(j) = -h-cap(j) can be 
proved in similar way. 

(b) The cases for &em(j) = -v-cap(j) or 
h-dem(i)=h-cup(i) can be proved in similar 
way. 

. 

(c) Otherwise: Trivial. 

Cases when f(a) + f (dj) = 1 or -1 can be proved 
in similar way. 

The conservation of flow at vertex (a, j) follows from 
the algorithm directly. It is also easy to see that the 
assignment of flow function at each edge takes constant 
time and thus the whole algorithm takes O(pq) time. 

Assume all the vertices in the ith row have been 
considered where 1 < i < p, the flow patterns of those 
edges (((6 11, (i~l,l)),((i,2),(i+1,2)),.. - ,((i,q), (i+ 
1, q))) in the horizontal cut h-cut(i) for the p x q block 
have been determined and can be treated as the new 
sources and sinks for the remaining (p - i) x q block 
denoted by [i + 1 :: p] x [l :: q]. 

Once the flow patterns of all block edges are deter- 
mined, we can follow the flow direction of each block 
edge to construct the set of edges-disjoint paths satis- 
fying the sets S and 7. The edge-disjoint path corre- 
sponding to each flow pattern at each block vertex is as 
follows: 

Figure 9: Formation of Paths. 


