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Abstract— This paper presents a simple yet precise and effi-
cient algorithm for collision prediction of two oriented bounding
boxes under univariate (piecewise) rational motion. We present
an analytic solution to the problem of finding the time of collision
and the feature involved, or declaring that no collision should
occur. Our solution can be applied to boxes of any size, under
arbitrary rational rigid motion. The algorithm is based on the
efficient examination of the Minkowski sum (MS) of the two
boxes, using a spherical Gauss map dual representation, and a
precise extraction of the collision time, if any, as a solution to a
set of rational equations that are automatically derived.

I. INTRODUCTION

Collision detection (CD) is a fundamental problem in a wide

range of fields. Various CD applications are found in robotics

(motion planning), computer graphics (physically based simu-

lations), and 3D computer games. Collision detection between

complex 3D models is considered a difficult task to perform

directly. A common simplification of the general collision

prediction problem computes the collision between simple

bounding volumes, e.g., bounding spheres [13], [14], [19], axis

aligned bounding boxes (AABB) [2], [12], oriented bound-

ing boxes (OBB) [11], and discrete oriented polytopes (K-

DOPS) [15]. The efficiency of the bounding volume approach

has been demonstrated in [23], which stated that as long as

convex bound volumes are used and a few reasonable assump-

tions are made regarding the relation between the original

shape and its bounding volume, the number of collisions

predicted is proportional to the number of actual collisions.

Many solutions for the CD problem discretely sample the

objects’ locations along the motion path and perform local

collision detection per location [1], [11], [15], [24]. Due to

their discrete nature, these algorithms perform poorly with

small objects or fast motion. To overcome the limitations of

discrete collision detection methods, several techniques have

been proposed to model the motion between samples, by

interpolating a continuous path between two or more samples

and solving the continuous motion equations. A common ap-

proach for solving these continuous collision detection (CCD)

problems is to calculate the swept volume of the moving

objects along their paths, and perform collision tests between

the swept volumes. Finding the collision time is not an inherent

part of these methods, and therefore, their ability to predict

the collision is limited. Other known CCD algorithms that are

purely analytic are limited to specific types of motion, such

as a screw motion, or suffer from very high complexity.

In this work, we present an algorithm that provides a

simple analytic solution to the CCD problem of two oriented

bounding boxes (OBBs) under rational rigid motion of any

degree, by analyzing Minkowski sums (MS). The MS [26]

of two sets, B1 and B2 in vector space, denoted by B1 ⊕B2,

is the set {b1 + b2 | b1 ∈ B1, b2 ∈ B2}. Two objects, B1 and

B2, intersect if there exist b1 ∈ B1, b2 ∈ B2 such that b1 = b2.

Therefore, the intersection between objects B1 and B2, if any,

can be found by identifying the time when the MS of B1 and

−B2 contains the origin, having b1 ∈ B1, b2 ∈ B2 such that

b1 − b2 = 0. We present a method for efficiently computing

the precise time along the rational motion when the origin

is contained in the boundary of the Minkowski sum of two

moving OBBs, and consequently, for analytically predicting

the time of collision. The CCD problem is reduced to a set of

polynomial equations, with its degree bounded by a function

of the degree of the rational motion.

The rest of this paper is organized as follows. In Section II,

earlier relevant work on CD is reviewed. Section III gives an

overview of our algorithm and some background. In Section

IV, we present our algorithm in detail. Section V provides

some results and examples. Finally, in Section VI, we discuss

some limitations and conclude our approach.

II. RELATED WORK

Since the early work on CD [3], [5], [7], the field has

grown significantly and addressed various types of collision

queries, differing in object types (e.g. polytopes, surfaces) and

motion types (e.g. linear, screw, rational). Quite a few different

approaches have been taken to determine whether two moving

objects will collide. For an extensive survey see [17]. Here,

only relevant work, on precise CCD under a univariate motion,

is discussed.

Collision detection of interpolated motion is useful in mo-

tion planning and also as an improvement to the discrete

collision detection algorithms. Canny [7] used quaternion-

based parameterization of the objects’ motion and collision

constraints, and then extracted the time of collision by solving

a set of polynomial equations of low degrees; however, his

algorithm’s high complexity makes it unwieldy and difficult

to implement. Redon, Kheddar and Coquillart [20], Buss [4],
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Rossignac and Kim [22] parameterized the objects’ motion

with glide rotation (e.g., screw motion). This approach handles

only limited motions, and approximating a general motion us-

ing screw motion is, therefore, not always completely accurate.

Another continuous method, suggested by Cameron [6], trans-

forms the collision detection problem to a space-time domain,

and performs a 4D intersection test between 4D extrusions of

the 3D objects through time (sweep). Nevertheless, due to the

computational cost of generating the 4D extrusion, the objects

are limited to translational motions only.

A more generic approach suggested by Redon, Kheddar and

Coquillart [21] makes use of OBB hierarchies, and expands

the discrete overlap test for OBBs described by Gottschalk et

al. [11] to the continuous case, using interval arithmetics [18].

This method eliminates the need to extract a closed-form

contact time from the interpolated motion. The method, how-

ever, is not simple to implement and is based on interval

arithmetics and recursive subdivision of these intervals. It,

therefore, depends on a subdivision threshold and cannot claim

to be analytically precise.

CCD has also been studied for moving ellipses [9] and

ellipsoids [8] under rational motion. Here the CCD problem

is reduced to finding the zeros of a univariate or a system of

bivariate equations, respectively.

The suggested algorithm requires computation of MS of two

OBBs. Efficient algorithms for computing the MS of general

polyhedral models exist (e.g., [10], [25]), but these do not take

advantage of our simple case, where the two polyhedral objects

are OBBs. Herein, the MS is defined by using the proper

subset of all possible pairs of elements from both OBBs.

This pair-matching operation is similar to the one used for

approximating the MS of curves in the 2D case by Lee, Kim

and Elber [16], and for polytopes by Fogel and Halperin [10].

There, the explicit equation of each face is extracted, and a

test is performed when, if at all, the face contains the origin.

III. OVERVIEW

This work focuses on a fundamental step of many CCD

algorithms. We strive to predict the collision time between two

OBBs, under univariate rational motion. Denote by B1 (t) and

B2 (t), the sets of points defining the boundaries of the two

moving OBBs, where t is a time parameter s.t. t ∈ [0, 1].
The two OBBs will collide if and only if there exists t0
where the MS of B1 (t0) and −B2 (t0) contains the origin,
�0 ∈ (B1 (t0) ⊕ (−B2 (t0))). This t0 will be found analytically.

In order to detect a collision, only times when one OBB

touches the other are required, without considering penetra-

tions. Since a continuous motion is analyzed, when B1 (t)
touches B2 (t) for the first time, the origin will become part

of the MS for the first time. Hence, only the boundary of

the Minkowski sum (BMS) is of interest, and all the internal

elements can be ignored.

A face on the BMS of two polytopes must be the sum of

two elements (vertices, edges, faces), taken from the polytopes.

However, not all these element pairs will constitute a face

on the boundary; some of them may only form an internal

element. In fact, the faces on the MS must be formed by pairs

of elements that have matching normal vector ranges, which

we find using the spherical Gauss map (SGM) of the OBBs’

described in Section III-A. If the two polytopes touch each

other, the face on the Minkowski sum formed by the touching

elements must contain the origin.

The main steps of the presented algorithm are:

1) Extract the SGMs of B1 (t) and B2 (t). Every face, edge

and vertex in each OBB has its matching point, arc

and spherical octant 1 on the normal (Gaussian) sphere,

respectively, according to their orientation (described in

detail, in Section III-A);

2) Find the compatible pairs of components from each

OBB by comparing the two SGMs (described in detail

in Section IV-B);

3) Calculate the planes in which the BMS faces are con-

tained using the compatible element pairs of the OBBs.

Since the topology of the BMS is derived from the set of

compatible elements, a change in these pairs accounts

to a change in the topology of the BMS. The set of

compatible pairs will not change as long as no spherical

point in the SGMs switches octants. Therefore, the time

line is divided into homogeneous intervals, in each of

which no point moves between octants on the SGM of

B1 (t) and B2 (t) (described in detail in Section IV-C);

4) Each homogeneous interval defines a unique MS’s topol-

ogy, and thus a unique set of planes that contain the

faces of the BMS. The MS of two convex polytopes

is convex [10]. Consequently, if there exists a t0 s.t.

one of the planes of the BMS contains the origin and

further, the origin is on the inside half-space of all other

planes, the origin is on the BMS due to the convexity

of the BMS of two OBBs, which indicates a collision

(described in detail in Section IV-D).

A. The Spherical Gauss Map’s (SGM) Dual Representation
In order to efficiently find the matching pairs among

OBB elements (faces, edges and vertices), an SGM’s

dual representation is created for each OBB. Initially,

the OBB is assumed to be aligned with the axes, so

it can be described by its two extreme dimensions:

(MinX, MinY,MinZ) and (MaxX,MaxY, MaxZ),
denoted (X,Y , Z) and

(
X, Y ,Z

)
, respectively. Each face

f is defined by its containing plane (e.g., X for the face

contained in x = MinX plane, etc.). The eight vertices of

the OBB are then defined as the intersection of three faces{
(f0, f1, f2) |f0 ∈ {

X,X
}

, f1 ∈ {
Y , Y

}
, f2 ∈ {

Z,Z
}}

.

Finally, denote an OBB edge e as the intersection of its two

adjacent faces (e.g.,
(
X,Y

)
etc.).

Define AP (f) to be the opposite (antipodal) face to f rela-

tive to the box’s center. For example, given f = X , AP (f) =
X . Similarly, define AP (v) = (AP (f0) ,AP (f1) ,AP (f2))
of vertex v as the opposite vertex of v = (f0, f1, f2) and

1Note we use the terms face, edge and vertex to denote geometric elements
in the primal, Euclidean, space, and the terms point, arc and octant to denote
geometric elements in the dual, SGM, space.
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AP (e) = (AP (f0) ,AP (f1)) of edge e as the opposite edge

of e = (f0, f1). Moreover, for any element E of the box (a

face, an edge, or a vertex), AP (AP (E)) = E.

Each face in the original OBB is represented as a point

on the SGM. Each of the OBB’s edges is represented as a

great, 90 degree arc on the SGM, with normals spanned by the

affine combination of its two adjacent faces’ normals. Finally,

each of the OBB’s vertices is represented as an octant on

the SGM, with normals that are the affine combination of its

three adjacent faces’ normals. The SGM of an OBB, as shown

in Fig. 1, has six spherical points (OBB faces), 12 spherical

arcs (edges on the OBB), and eight sphere octants (vertices

of the OBB). The OBB notation will be used to describe the

equivalent elements in the SGM. As in the OBB case, AP (E),
E ∈ SGM will be used to denote the antipodal element to E
in the SGM.

Boundary faces on the MS are created by summing either

a face from one OBB with a vertex from the other or an

edge from one OBB with an edge from the other. Herein,

only pairs with compatible or matched orientation (when one’s

SGM normal range intersects with the other’s SGM normal

range) form a valid BMS face (see Fig. 2). Taking into account

all face-vertex and edge-edge combinations for eight vertices,

six faces, and 12 edges per OBB yield a total of 240 possible

pairs. By comparing the SGMs of each OBB, and taking only

pairs with compatible orientation, the number of pairs that will

be processed in constructing the BMS will be greatly reduced

to only 30. This pairing procedure will be discussed in detail

in Section IV.

(a) (b)

Fig. 1. An OBB with its vertex, edge and face notation (a), and the matching
(dual) SGM with its octant, arc and point notation (b).

(a) SGM Extraction (b) Pair Matching

Fig. 2. Finding the pairs defining the MS. First, extract the SGM for each
OBB (a). Then find pairs with compatible orientations (b). In white are the
vertex-face matches, in gray edge-edge matches and in black, face-vertex
matches.

IV. THE COLLISION PREDICTION ALGORITHM

Denote the rigid motion transformation matrices of boxes

B1 (t) and B2 (t) by M1 (t) and M2 (t), respectively. Both

matrices include rigid motion and non-uniform scale. Denote

the inverse motion matrix of Bi (t) by M−1
i (t). Therefore,

the relative motion of B2 (t) in B1 (t)’s coordinate system

is M (t) := M2 (t) M−1
1 (t) 2. Hence, and without loss of

generality, we hereafter consider B1 = B1 (t) as static, with

its center at the origin and edges aligned with the axes. We

may now define the relative motion of B2 (t), B̃2 (t), as M (t).

A. Dividing the Motion Path into Homogeneous Intervals
In order to examine the topology of the BMS and find

the time(s) when it includes the origin, the path of B̃2 (t)
is divided into intervals that contain homogeneous BMS

topologies. The times when these topologies change are found

as the zeros of all the normal components of B̃2 (t). These

zeros are sufficient conditions for homogeneity, since the

BMS is composed of point-octant and arc-arc pairs, one from

B1, which is now static and axis aligned, and one from

B̃2 (t). As long as none of the components of the normals

of B̃2 (t) switch sign, all its normals remain in the same

octant of B1 and thus the topology of the BMS remains

consistent. The three normals of B̃2 (t) are computed by

applying the transformation M (t) to the canonical normals−→
Nx

0 = (1, 0, 0, 0),
−→
Ny

0 = (0, 1, 0, 0) and
−→
Nz

0 = (0, 0, 1, 0),
−→
Nx (t) :=

−→
Nx

0 M (t) =
(
Nx

x (t) , Nx
y (t) , Nx

z (t)
)
,

−→
Ny (t) :=

−→
Ny

0 M (t) =
(
Ny

x (t) , Ny
y (t) , Ny

z (t)
)
, (1)

−→
Nz (t) :=

−→
Nz

0 M (t) =
(
Nz

x (t) , Nz
y (t) , Nz

z (t)
)
.

Consider the sorted list of the times the BMS’s topology

changes, T =
{
ti | ∃N b

a (ti) = 0, a, b ∈ {x, y, z}}, as time(s)

when one of the components of the transformed normals of

B̃2 (t) switches an octant in the SGM.

B. Efficient Computation of the BMS
Assume that the topology of the BMS was found to change

|T | = m, or m times, ti, i = 1..m. Further, denote by Ii the

homogeneous time interval [ti−1, ti), and let t0 = −∞ and

tm+1 = ∞. For each interval Ii, 1 ≤ i ≤ m + 1, we find the

compatible components of the two boxes using their SGMs.

Let t̃i ∈ Ii be an arbitrary interior time in Ii. Then, the vertex-

face, face-vertex, and edge-edge pairs are found with the aid

of the following property:

Lemma 1: For two OBBs in general position, exactly six

face-vertex (FV) instances, six vertex-face (VF) instances and

18 edge-edge (EE) instances contribute and define the BMS

at each interior time t̃i.
Proof: Consider all compatible pairs. Each of the six

points in each SGM resides in one octant on the other SGM.

Therefore, the point and octant together comprise a compatible

2We follow the convention for post-order matrix multiplications. The
composition of a transformation M1 followed by M2 is, therefore, given
by M = M1M2.
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pair (giving us a total of six VF and six FV pairs). There are

no other VF or FV pairs, because each point can only reside in

one octant. There are three great circles on each SGM. Each

great circle from B1’s SGM intersects each of the great circles

of B2 exactly twice. Altogether, there are nine possible pairs

of great circles, each defining two intersections between two

arcs (a total of 18 EE pairs).

Denote by o an octant in the SGM, o ∈{
(x, y, z) |x ∈ {

X,X
}

, y ∈ {
Y , Y

}
, z ∈ {

Z,Z
}}

(recall

Fig. 1). Further, denote by p a point and a an arc in an SGM.

Elements pi
j , a

i
j , o

i
j , i ∈ {1, 2} , j ∈ {1, 2, 3} correspond to

the jth point, arc, or octant of Bi’s SGM. The OBB B1 is

static, aligned with the axes and has its center at the origin.

Therefore, its SGM octants correspond to its coordinate

system octants. Let o2p be the function finding a point shared

by three neighboring octants. As described above, this is done

simply by finding the common point in the definition of these

three neighboring octants. For example, as seen in Fig. 1, the

octants
(
X,Y , Z

)
, (X,Y , Z) and

(
X,Y , Z

)
define the point

Y . Similarly, function p2o finds the octant on the SGM that

is defined by its three neighboring points.

1) Computing VF, FV pairs. The three orthonormal normals−→
Nx (t) ,

−→
Ny (t) ,

−→
Nz (t) of B2 can be obtained, as shown

in (1), and they correspond to p2
1, p

2
2, p

2
3, respectively, in

B2’s SGM (as described in III-A). Determining the sign

of each component of
−→
Nx

(
t̃
)
,
−→
Ny

(
t̃
)
,
−→
Nz

(
t̃
)

provides

us with three VF pairs, one pair for each point. For

example, if Nx
x > 0, Nx

y > 0, Nx
z > 0, then point

p2
1 corresponds to the octant o1

1 =
(
X, Y ,Z

)
, and as

explained above, the point and octant together com-

prise the pair
(
o1
1, p

2
1

)
. Denote the three VF pairs as(

o1
j , p

2
j

)
, j ∈ {1, 2, 3}. The three remaining VF pairs are

the antipodal pairs
(AP

(
o1

j

)
,AP

(
p2

j

))
, j ∈ {1, 2, 3},

giving us a total of six VF pairs.

From every three points of the SGM of B2 that form

an octant, we conclude which of the SGM points of B1

reside in it using the VF instances found above. For ex-

ample, for the three pairs
{(

o1
1, p

2
1

)
,
(
o1
2, p

2
2

)
,
(
o1
3, p

2
3

)}
,

the prescribed FV instance is:(
p1
1, o

2
1

)
=

(
o2p

(
o1
1, o

1
2, o

1
3

)
, p2o

(
p2
1, p

2
2, p

2
3

))
. (2)

Note that after finding the first three VF pairs, there is no

need to solve or evaluate any equations, and calculating

the rest of the VF and FV pairs can be done symbolically

using the notations defined above.

2) Computing EE pairs. Since there are eight octants and

six points, and geometric constraints require that an

octant contains no more than one point, there are exactly

two antipodal point-free octants on each B1’s and B2’s

SGMs. Consider the point-free octants of B1 and denote

them o1
f and AP

(
o1

f

)
. The point-free octants will be

analyzed shortly to extract the edge-edge (EE) pairs.

In the first step of calculating EE pairs, simple intersec-

tions are considered, where each arc intersects exactly

one other arc. For each arc in B1, the arc it intersects

in B2’s SGM is found as follows (see Fig. 3 (a)): For

each arc a1
1 in B1 defined by the points p1

1 and p1
2, find

the two adjacent octants o1
1, o1

2. If both octants contain a

point of B2 (found using the VF pairs), these two points

(p2
1, p2

2) must be adjacent, and are, therefore, connected

to an arc a2
1 of B2. Arc a2

1 necessarily intersects a1
1,

because its edge points, p2
1 and p2

2, are on two different

sides of a1. This generates the pair (a1
1, a

2
1). Since

there are two antipodal octants that are point-free, the

remaining octants form a ring with six internal arcs

whose neighbouring octants must not be point-free. As

a result, this step generates a total of six pairs.

The arcs of the point-free octant o1
f are then handled

differently. For the point-free octant o1
f , we find the

octant’s three border arcs a1
1, a1

2 and a1
3 and the matching

adjacent octants o1
1, o1

2 and o1
3 (see Fig. 3 (b)). We

then find the B2 points, p2
1, p2

2 and p2
3, in each of

these octants (there must be a point in each, since the

other point-free octant is antipodal, and not adjacent

to o1
f ). Now, six new EE pairs are derived, which are

defined by:
(
a1

i , p
2
i p

2
j

)
, i, j ∈ {1, 2, 3} , i �= j. Six

additional arc-arc pairs come from the antipodal point-

free octant AP
(
o1

f

)
, which gives us a total of twelve

pairs generated by this step.

(a) (b)

Fig. 3. EE Pairs: (a) shows the single intersection arcs. (b) shows the double
intersection arcs.

C. Calculating the BMS Planes
With the six VF, six FV, and the 18 EE pairs, the 30

corresponding BMS plane equations are constructed. The

followings are the explicit equations of these 30 planes.

1) Face-Vertex(t) (Point-Octant(t)). Let the face’s plane

equation be Ax + By + Cz + D = 0, where A2 +
B2 + C2 = 1, and let v (t) = (x (t) , y (t) , z (t)) denote

the vertex. Then, the BMS plane of this pair is:

Ax + By + Cz + D + 〈(A,B, C) , v (t)〉 = 0. (3)

2) Face(t)-Vertex (Point(t)-Octant). This is a symmetric

case - the vertex is now stationary and the plane equation

is a function of t. The BMS plane of this pair is:

A (t) x + B (t) y + C (t) z + D (t)
+ 〈(A (t) , B (t) , C (t)) , v〉 = 0. (4)

3) Edge - Edge(t) (Arc - Arc(t)). Let e1 =
(
v1
1 , v1

2

)
denote

the static edge in B1, and e2 (t) =
(
v2
1 (t) , v2

2 (t)
)

denote the moving edge. The matching BMS plane is:
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〈
e1
1 × e2

1 (t) , (x, y, z)
〉
+

〈
e1
1 × e2

1 (t) , v1
1 + v2

1 (t)
〉

= 0. (5)

D. Finding the Collision Time
The last step of the algorithm finds the time t̃ for which

�0 ∈ BMS
(
t̃
)
. For each of the 30 plane equations, given by

Pi (t) =
〈−→
Ni (t) , (x, y, z)

〉
− Di (t) = 0, 1 ≤ i ≤ 30, there

is �0 ∈ Pi

(
t̃
)

iff Di

(
t̃
)

= 0. Further, all BMS planes are

constructed so that they face outside (i.e., Di (t) > 0). From

the convexity of the BMS (as a MS of two convex shapes),

we have

�0 ∈ BMS(t̃) ⇔ ∃i, Di(t̃) = 0 ∧ ∀j �= i, Dj(t̃) ≤ 0.

E. Optimization
A simple and effective bounding sphere (BS) test over the

OBBs is used to eliminate the intervals along the relative

motion where the OBBs are too far to collide. The BS test

is performed by finding all intervals along the motion when

the center of the moving OBB, B̃2, is located at a distance of

at least r from the origin (which is the center of B1), where

r is the sum of the radii of the two bounding spheres.

V. RESULTS

The presented algorithm was implemented in C++ and the

tests below were executed on a Pentium 4 with 1 GB RAM.

As stated in Section IV, addressing the case in which both

boxes are moving is unnecessary, because one can always

change the coordinate system to be that of one of the boxes,

and thus one box is static and the other moving. Sections

V-A to V-C, present linear, 2nd and 4th degree motions,

respectively. The following examples are also presented in

details in http://www.cs.technion.ac.il/˜gershon/OBBCol/.

A. Linear Motion

Fig. 4. Linear Motion Path

(a) Time of entry collision (b) Time of exit collision

Fig. 5. Linear Motion Collisions - (a) The time of entry collision between
the two boxes. (b) The time of exit collision between the boxes, if they were
to continue their initial motion, as if no physical collision occurred.

Fig. 4 depicts the motion path and Fig. 5 the collision points

of the linear motion example. This linear motion path is given

by the motion matrix:

M(t) =⎛
⎜⎜⎝

−0.88 −0.16 −0.46 0
0.07 −0.90 −0.43 0
0.48 0.41 −0.78 0

−28.35 + 45.11t −36.86 + 60.69t 0 1

⎞
⎟⎟⎠ (6)

where the 3×3 upper left component is a fixed rotation, and

the lower 1× 3 component defines the linear translation. This

motion has only one homogeneous interval – i.e., the BMS

topology does not change throughout the entire motion.

In this example, two FV pairs produce a collision – one

for the entry collision (see Fig. 5(a)) and the other for the

exit collision (see Fig. 5(b)). The derived polynomial, after

substituting (0, 0, 0) for (x, y, z) in (3), is p (t) := 28.68 −
60.68t, or t = 0.47. It took 0.0128 seconds to execute the

entire algorithm, in this example.

B. 2nd Degree Motion

(a) Motion path (b) Motion samples

Fig. 6. 2nd Degree Motion Path - (a) The motion planned path, and initial
and end positions; (b) Samples of the box’s motion.

(a) Time of entry (b) Time of exit

Fig. 7. 2nd Degree Motion Collisions - (a) The time of entry collision
between the two boxes. (b) The time of exit collision between the boxes.

An edge-edge collision example in presented in Fig. 6

(the motion path), and Fig. 7 (collisions’ times). To produce

this motion, rotation components that consist of 2nd degree

rationals were used. The translation component is linear.

In this example, dividing the motion path to homogeneous

intervals produced 15 intervals, of which three intervals were

out of our [0, 1] domain, and eight intervals could be elimi-

nated using the bounding sphere test. This leaves four relevant

intervals, of which only one is of interest – between tstart =
0.55 and tend = 0.92. In this interval, two EE pairs are found,

which provide two collision times – one for the entry collision

time (see Fig. 7(a)), and the other for the exit collision time

(see Fig. 7(b)). The solutions were found (tenter = 0.654, and

texit = 0.889) from a degree 5 constraint, which is derived

from (4) by substituting

D (t) = −〈(A (t) , B (t) , C (t)) , p (t)〉 (7)

where p (t) is some point on the discussed plane. Recalling,

that A (t) , B (t) , C (t) , p (t) are all generated by applying the
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motion matrix on static vectors representing the correspond-

ing face/vertex, and recalling that this motion is consisted

of a 2nd degree rational motion, and a linear translation -

A (t) , B (t) , C (t) become 2nd degree polynomials, and p (t)
becomes a 3rd degree polynomial. Therefore the dot product

in (4) yields a degree-5 constraint. It took 0.052 seconds to

execute the entire algorithm, in this example.

C. 4th Degree Motion

(a) Motion path (b) Motion samples

Fig. 8. 4th Degree Motion Path - (a) The motion planned path, and initial
and end positions; (b) Samples of the box’s motion.

The last example is without collision and is presented in Fig.

8 (a) (the motion path), and Fig. 8 (b) (samples of the motion).

In this example, dividing the motion path to homogeneous

intervals produced 17 intervals, of which two intervals were

out of the [0, 1] domain, and 11 intervals could be eliminated

using the bounding sphere test. In the remaining intervals no

collision was found. It took 0.103 seconds to execute the entire

algorithm in the above example.

VI. CONCLUSION AND FUTURE WORK

The proposed CD algorithm provides an efficient way

to analytically calculate collisions under univariate rational

rigid motion. Since continuous motions can be approximated

arbitrarily precisely using rationals, this algorithm provides a

practical way to perform a purely analytic CCD. Further, any

complex motions could be arbitrarily precisely approximated

using piecewise polynomial functions, avoiding higher degree

representations.

We may further consider OBBs moving under affine mo-

tions, which can be useful for collision detection of deformed

objects. However, it will take more work in the pair-matching

stage as the SGMs of the OBBs are no longer regular.

The presented algorithm can be used for more complex

objects than boxes, by approximating relevant parts of the

objects with several OBBs, or, as suggested in Gottschalk et

al [11], by using a hierarchy of OBBs. The basic calculation of

OBB-OBB collision would remain the same – purely analytic.

Another possible extension to this algorithm would be to

apply the SGM concept for discrete oriented polytopes (K-

DOPS) or any convex polytopes. With some modification to

the pair matching phase of our algorithm, it could provide

a much better approximation of the bounded objects, and

consequently, could reduce the overall collision computation

time in cases where the motion is a-priori known and is

(piecewise) rational.
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