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Abstract- In this paper, an efficient exact maximum-likelihood
(ML) detection scheme is presented for a multiple-input single-
output (MISO) system with real signal constellations. The pro-
posed technique has a geometrical interpretation of exploring the
points jointly "close" in all coordinate axes around the decoding
hyperplane and is therefore dubbed planar detection. The fact
that the lattice points which are close in all coordinate axes are
much less, leads to dramatic reduction in detection complexity.
Making a few approximations, this paper derives the average-
case complexity exponent, eC, for planar detection analytically in
a closed form. Numerical results show that for an (n, 1)1 system,
although the expected complexity is still exponential, complexity
reduction of 2 exponents, i.e., from ec to ec -2, is realized and
such advantage is promised irrespective of the size of the signal
constellations and the received signal-to-noise ratio (SNR).

I. INTRODUCTION

Maximum-likelihood (ML) detection is well understood to
be the optimal detection strategy for both multiuser detection
[1]-[3] and space-time decoding (e.g., [4]). The promising per-
formance of ML detection, however, comes with the challenge
of exponential complexity increase.

For an (Nt, Nr) system where Nt < Nr (i.e., an overdeter-
mined system), ML detection can be achieved in a relatively
cheap way by sphere decoding [5]-[9]. In sphere decoding,
the channel is rotated onto a space in a way that the spatially
multiplexed signals are only sequentially dependent. An effi-
cient algorithm is hence available to search the signal points
that fall inside the decoding hypersphere for a given radius.
As a result, the ML detection can then be efficiently obtained
by solving the dual spherical search problem with a judicious
choice of radius. Further reduction in decoding complexity can
be obtained by suboptimal detection techniques such as zero-
forcing, nulling and cancellation [10], which albeit degrade
the diversity performance severely.

In practice, however, it is unlikely to have sufficient number
of receive antennas for decoupling the spatial signals (which
may include the interfering signals). It is thus more reasonable
to consider the case where Nt > Nr (i.e., an underdetermined

§This work was supported in part by The Hong Kong Research Grants
Council under grant HKU7142/04E.

iThe notation (Nt, N,) is used to denote a multiple-input multiple-output (MIMO)
system which has Nt transmitting inputs and N, receiving outputs.
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system). Unfortunately, the immediate challenge is that none
of the existing efficient detectors (both optimal and suboptimal
ones) would work.

This paper investigates the complexity reduction for the ML
detection problem of a multiple-input single-output (MISO)
system, i.e., (n, 1), which forms the basis of asymmetric fat
MIMO-ML detection (or n = Nt-r + 1). In particular, we
shall present a detection scheme, which assures to give exact-
ML detection at reduced complexity for (n, 1) systems if the
signal constellation is real, e.g., pulse-amplitude modulation
(PAM).
Our approach is based on the geometrical understanding that

the ML lattice point appears to be a point that is the first seeing
the hyperplane (so-called "close") in all coordinate axes. And,
given the fact that these close points are scarce, an efficient
algorithm exists to greatly reduce the detection complexity. In
light of this interpretation, the proposed detection scheme is
therefore called planar detection [11].

In contrast to the previous work [11], the main contribution
of this paper lies in the analytical derivation of the average-

=
logC(n,SNR) i lsdfrcase complexity exponent, e Il n, in a closed form

for planar detection where C(n, SNR) denotes the expected
computational complexity in the number of elementary cal-
culations over many independent channel instantiations and
transmit lattices. The complexity exponent derived serves as
a complexity measure for ideal realization of planar detection
and can provide a reasonable estimate on the average com-
plexity for actual implementation of planar detection.

The remainder of the paper is organized as follows. Section
II will describe the channel model for real-valued MISO-
ML detection. In Section III, we present the so-called planar
detection for efficient exact MISO-ML detection for real signal
constellations. Section IV is dedicated for the derivation of
the average-case complexity. Simulation results are provided
in Section V, and we conclude the paper in Section VI.

II. MISO-ML DETECTION

For a spatially multiplexed MISO system, each transmitter
or antenna is sending an independent symbol, Xk C Q, which
takes values from the symbol set Q. At the receiver side, the
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received signal can be written as

y = hlxl + h2X2+ + hx+ (1)

where hk is the channel response from the kth transmitter to
the receiver, and r1 denotes the noise, which has zero-mean
Gaussian distribution with variance of a .

To simplify our discussion, we shall assume that all the
variables are real-valued. It is however possible to generalize
the results in this paper for complex values (for details, see
[11]). ML detection aims to find the values, X1,X2,...,S n,
jointly or the vector x = [Xl X2 ... Xn]T (the superscript T
denotes transposition) that

XML= arg min (hlxl + h2X2 +. + hnXn y)2. (2)

Geometrically, it requires to find the point (Xi, X2, Xxn) C
Qfn that is the closest to the decoding hyperplane (see Figure
I forQ -3, -1, 1,3} and n = 2)

2: hlxl + h2X2+ + hnXn= y, x C Rn. (3)

III. PLANAR DETECTION

Before we describe the algorithm that can efficiently solve
the ML detection (2), we find it useful to define the closeness
of a point.

Definition III-1 Closeness of a point-Assuming for the
sake of simplicity that the channels are real and positive, i.e.,
hl, h2,... > 0, a point (Xl, X2,..., Xn) is said to be close in
coordinate axis or direction k (or abbreviated as d-k) if Xk
is the first point that sees the decoding hyperplane from the
half-space hlxl + + hnzX > y or hlxl + + hnXn < Y,
i.e.,

Xk E :minxQx s.t. x>

U x:maxxEQx s.t. x<

y>- hmXm

hk

y- E: hmxm

hk

(4)
It should be noted that the closeness property of a point in one
particular direction is in fact conditioning on the coordinates in
other directions. In other words, if some coordinates change,
the closeness property may be destroyed.
Theorem ITT-1 Joint closeness of the ML lattice point-

The point (X1,X2, ... ,tXn) C Qn that corresponds to the
ML detection must be close in all directions (or close in d-
1,2,. ... , n).

Proof: See [11]. D
The joint closeness property serves as a necessary condition

for ML detection. The fact that the number of points that are
jointly close in all directions are scarce becomes the key for an
efficient detection algorithm to be found. In Figure 1, we show
an example of a decoding line given Q = {-3,- 1,1, 3} . In
this example, there are six lattice points which are close in

d-l, 2. As compared to the total of 16 possible lattice points,
if we search only the closed points, it can significantly reduce
the decoding complexity while still achieving the exact ML
performance. In the following, we give a formal description
of our Planar Detection or Plane Decoding algorithm:

1) Initialize k = 1. Then, randomly pick a point x(l) =

(1)2 ..T C Q and define a set X =

Compute

Ay(x(l)) = hlx(l) + h2X 1) + . + hnX() y. (5)

2) If X is empty, then go to Step 6. Otherwise, find the
two coordinates that make x(l) close in d-k

k = {x : arg minx s.t. X >XB}

and

where

Xk = {x: arg maxx s.t. <B}

k(1) y(x(l))
XB - Xk Lh

(6)

(7)

(8)

For each of the new coordinates if not empty, produce
a new point x and compute

Ay(x) = hk(xk4 XB). (9)

Similarly, we shall have also x and Ay(x).
3) If Jk = X(1), the point x(l) is close in d-1, 2,... ,k.

Then do the followings: if k < n, update k : k + 1
and X := [X x]. Otherwise, if k = n, erase x(l) from
X and reset k = 1. The point x(l) is a point jointly
close in all directions and is thus a candidate for ML
detection and is stored separately. Go back to Step 2.

4) If xk = Xk1, the point x(l) is close in d-l,2,...,k.
Then do the followings: if k < n, update k : k + 1
and X := [X x]. Otherwise, if k = n, erase x(l) from
X and reset k = 1. The point x(l) is a point jointly
close in all directions and is thus a candidate for ML
detection and is stored separately. Go back to Step 2.

5) Erase x(l) from X. Update X := [X x x] and reset
k = 1. Go back to Step 2.

6) All of the points jointly close in all directions are found.
Among these points, the one that gives the least /yy2 (x)
is the ML detection point.

In the above algorithm, we have assumed that h1, h2,...
0. However, if some channels are negative, one can still apply
the above algorithm for the channels, hi , h2 ,..., h, . But
the ML solution has to be modified by flipping the signs of
the symbols for the negative channels.

Figure 1 illustrates an example showing the decoding pro-
cedure of planar detection. As can be seen, eight points are
actually visited instead of six points. The reason is that some
addiional points will need to be visited to navigate along the
decoding hyperplane for the search of the jointly close points.
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IV. AVERAGE-CASE COMPLEXITY
To gain understanding on the average complexity involved,

this section is devoted to give the first look at the expected
computational complexity of planar detection averaged over
independent fading channels and the transmit sequences x C
Q't assuming ideal implementation, i.e., all the visited points
during detection are jointly close or overheads are ignored.

Q -PAM with signal constellations as shown in Figure 2 is
considered so that

Q = {±0.5d,±1.5d, ... . ±0.5( Q i-)d} (10)

where d is the separation of every adjacent constellations and
lQ denotes the number of constellation points. As a result, the
average transmit energy per dimension, 2 E`[x]' is given
by

2 I121/2
(7
2

-1 Q1 22 = 2 (1 1)

Denoting d= (Q 1- )d as the distance between the two
endpoints of Q and then simplifying (11), we have

2 d2 ( +1\
12 Q ) (12)

Note that if Xk CQ (defined in (10)), x C Qn will form the
lattice space of a hypercube. Nevertheless, for simplicity sake,
we shall approximate it by the lattice space of a hypersphere
and this approximation greatly simplifies the calculation of the
intersection between the decoding hyperplane and the lattice
space later on. To preserve the same transmit energy, we set

n

dn 7r; 2 Rn (13)
we(n)

where
f (n)! if n is even,1(n) = 2n (an!) ifn is odd,

and R denotes the radius of the lattice hypersphere

S: xi + c2 +x .+XCn< R2, x CQn.

(14)

space. Also, it should be noted that JVciose depends largely on y
(i.e., the shortest distance of the decoding line from the origin)
but not the channel state. Therefore, for n = 2, we have

^Vclose (N- )L:(y) + 1Lmax
(17)

where L(y) denotes the sectional length as a function of y and
Nmax denotes the maximal possible number of jointly close
points. (17) is written in a form such that when L(y) = 0,
then JVciose 1 while if L(y) = Lmax, then JVciose Nmax. In
this example, Nmax = 6 which occurs when the decoding line
intersects with the stepwise border lines shown in Figure 3.
For general Q -PAM, it can be easily seen that Nmax 2 Q
if n= 2.

This idea is illustrated in Figure 4 and is generalized here
for n > 2 so that

gVclose (Nx 1) V(y) + 1 (18)

where V denotes the intersectional area or volume. Because
the intersection of the decoding hyperplane P and the lattice
hypersphere S is another hypersphere, the intersectional vol-
ume can be found as

n-I
-FT 2 (R2_V(y) = (n-1) (0

n-Iy2) 2 if y K<R,
if IyI, R.

(19)

Moreover, we know that Vmax = V(0) and Nmax, 2Qn 1
(18) can therefore be expressed as

{ ~~~~~~~n-I

Ncse { (2|Q| 1 _1)n[1 ( 2)2 + 1 if Y< R,

t 1 if Y>R.
(20)

To find the expected value of JVclose, we need the probability
distribution of y. Recognizing that

(t) + t) +t) + 1y=hlx1 +h2X2 +--+hnXn'(15)
(21)

For ideal implementation of planar detection, the average-
case complexity allows the following expansion:

C(n, SN R) - 4E[AVclose] (16)

where JVclose denotes the number of lattice points jointly close
in all directions and we have used the fact that only four
elementary computations are required for each visited point
(see (8) and (9)). To know the complexity C, it requires the
estimation of the average number of JVclose.

For a given channel state (hi, h2, ... , hn) and the transmit
lattice x, the number of jointly close points, JVclose, depends
greatly on the intersectional area (or volume if n > 3) between
the lattice space and the decoding hyperplane. This can be
exemplified in Figure 3 where the number of jointly close
points is shown for the decoding line 2x1 + 3X2 = y with
various y. As can be seen, AVclose is, by and large, proportional
to the sectional length between the decoding line and the lattice

where (x(t), ..t... , xt)) is the actual lattice point being
transmitted, a random model for the channel and the transmit
lattice is required. In this paper, we assume that hk's are inde-
pendent identically distributed (i.i.d.) zero-mean unit-variance
Gaussian random variables, i.e., E[hk = 0 but E[h2] =1 Vk.
Likewise, x)ks are i.i.d. uniform distributed discrete random
variables from the set Q. If n is large, e.g., n > 3, by the
central limit theorem, y will be nearly Gaussian with

E[y] = 0 (22)

and
E[y2] = na2 + 72 (23)

so that
1 _ 2

27r(nox + an)
(24)
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E[NVclose] I+ fy()d + (2 1) [I () + 1} fy (y)dy

21QnI 1 2
[ (
R u

2 )2 2 ]2
R

E[Jclosel 1±+ 10X (

As a consequence, we get (25) (see the top of the
page). Using some mathematical manipulations, it can fu
be simplified as (26). Now, define

SNR A- Ek ]
E[T72]

nfx
2nt

and note that R = puc where

= (n) Q l

As such, we have also

R

2nx + U2
/SNR

In- vS-NR +1

To summarize, we can now write the average-case compli
C(n, SNR) as (30) (see the top of the next page) with ,u p

ously defined in (28). Additionally, the complexity expo

ec, can be readily found as

log C(n, SN R)
logn

It is often useful to consider ec for complexity compari
because if ec approaches a constant, then the complexi
polynomial but if ec grows like '

, then the complexi
exponential. For brute-force ML detection of a MISO sys

C(n, SNR) = Qln (2n + 1) and the complexity exponei

will grow like gn . Therefore, the complexity is expone

V. SIMULATION RESULTS

Computer simulations have been done to evaluate the
coding complexity for various size of signal constellation,
and the number of dimensions n. Complexity exponent re

for both the planar detection based on the derivation an(

brute-force ML detection are provided for comparisons,
are plotted in Figure 5. In this figure, SN R is assumed t
15 dB, but it should be noted that the results are insens
to the SNR.

Results demonstrate that the complexity of planar dete(
is still exponential as it grows linearly with n. This is hov
not surprising because there is no channel structure thai
be exploited to simplify the detection (note that in a sc
MIMO, sphere decoding simplifies the detection by rot
the channel into a triangular structure). Having this in r

planar detection in fact significantly reduces the compli

R

iUc2-+
(26)2( _ sin)f/ 2 oSnnoe 2(n72 + 22)0T2 _7r

next as compared to the brute-force ML detection, the only choice
rther for MISO-ML. In particular, planar detection achieves a com-

plexity reduction from ec to ec -2 irrespective of the signal
constellation size Q and the SN R without compromising the

(27) ML performance.

VI. CONCLUSION
This paper has presented an efficient detection method

(28) that achieves exact-ML performance for MISO real signal
(28) constellations. The average-case complexity exponent has also

been derived in a closed form.
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C(n,SNR)=4 1+ 2 1 _1SNR cosn 0 e
/ S R1 -2
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Fig. 2. Signal constellations for IQ I-PAM.
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Fig. 1. A diagram showing the decoding sequence of planar detection when
Q -3, -1,1, 3} and n 2.
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Fig. 4. Geometry of the decoding hyperplane and the lattice hypersphere.
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Fig. 3. An example showing how ANjose depends on y assuming the decoding Fig. 5. The complexity exponent as a function of n for various IQI and
line 2x +3X2 =y and Q {-3, -1, 1, 3}. The regions where the decoding SNR = 15 dB. PD refers to planar detection and BF refers to brute-force
line lies are labelled with the corresponding values of ArlAose. ML detection
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