
Title A comprehensive lightweight inter-domain procedure call
mechanism for concurrent computations

Author(s) Loong, AHS; Cheung, WH

Citation
Frontiers of Computer Technology, the 10th IEEE Region 10
Annual International Conference Proceedings, 22-26 August
1994, v. 1, p. 50-55

Issued Date 1994

URL http://hdl.handle.net/10722/45556

Rights Creative Commons: Attribution 3.0 Hong Kong License

A Comprehensive Lightweight Inter-Domain Procedure Call
Mechanism for Concurrent Computations

Anthony H.S. Loong and W.H. Cheung
Dept. of Computer Science, The University of Hong Kong

Abstract
Many inter-domain procedure calls have been devel-

oped to provide fast communication services between
protection domains. Dafferent techniques have been
employed to trade protection for performance. How-
ever, few studies have been made to discuss issues
for constructing a comprehensive and generally usable
inter-domain procedure call (hereafter as IDPC) f a d -
ity. In this aper, we evaluate the trade08 between
protection a n 8 performance in a IDPC facility, and in-
troduce a new inter-domain procedure call mechanism.
Our IDPC mechanism shows its merits on achieving
the comprehensiveness with secure protection and good
performance comparable to some well-known mecha-
nisms.

1 Introduction

The notion of process plays an important role in
contemporary multi-tasking operating systems. Defi-
nitions of process and its components vary among dif-
ferent operating systems, but that in Unix is recog-
nized and well-accepted by most people. Unix pro-
cess, residing within a single address space and con-
taining only one thread of ezecution, provides a sim-
ple and secure environment to run a single program
image. However, in some applications, users find that
such a strongly protected environment imposes perfor-
mance burden to inter-process communications, espe-
cially in those applications in which protection require-
ments are loose and rocess communications are fre-
quent. To cope with %is, lot of works have been done
in improving the performance of inter-process commu-
nications, mostly by loosing the protection barrier be-
tween caller and c a k e domains. Unix’s light-weighted
thread package, lightweight remote procedure call [l],
user-level interprocess communication [2], anonymous
RPC [3] are all examples with different extents of trad-
ing protections for performances. So, what is the ap-
propriate tradeoff between protection and performance
for an inter-domain communication facility?

The answer to this question is not unique. It de-
pends on the generality of the communication service
and on the structure of its underlying operating sys-
tem. In recent years, the concepts of micro-kerneland
reconfigurability have become important treads in op-
erating system design. Famous operating systems like
Mach, Chorus, and Amoeba more or less have their
kernel components well-encapsulated and modularly
constructed. An inter-domain communication facil-
ity, being a communicating mechanism which tightly
couples with its operating system components, should
be designed in such a way that the kernel modularity
can be maintained. Moreover, it should be available
to application users, not just be used in the system
communications only. Thus, design issues like service

semantics, naming problem, and abnormal exception
handling should be reconsidered with user-level con-
cern. In fact, by explorin improvements in the aspects
of modularity and u s a b h y in addition to the hasic
requirements of protection and performance, we are
adding a new tradeoff consideration in inter-domain
communication development: comprehensiveness. Is-
sues for achievin comprehensiveness may range from
low-level ones s u s as specifying interactions and mati-
aging kernel modules, to high-level ones such as defin-
ing calling semantics, resolving names and ensuring ro-
bustness. Few studies on analyzing these issues have
been made and one major purpose of our work is to
fill up the inadequacy.

Among different kinds of inter-domain communicsi-
tion facilities, we focus on discussing the inter-domain
procedure call (IDPC). Procedure call itself denotes
a simple, clear, well-known and powerful mechanism
to transfer data parameters and execution control to
a specific destination address. Depending on the lo-
cation of the address, the execution will result in a
local, inter-domain or remote procedure call. This
variability, together with its simplicity and effective-
ness, makes it a suitable tool in building distributed
applications a n d , the basic primitives to construct
other distributed facilities. In this paper, we have
compared some common inter-domain procedure call
mechanisms and found out how they behave in making
compromise on protection, performance and compre-
hensiveness.

To testify the feasibility of our analysis, we have
designed and implemented a new IDPC facility which
demonstrates a good tradeoff among good perfor-
mance, secure protection, and appropriate comprehen-
siveness. The facility is general and reliable enough
for those kinds of applications which require fast com-
munications between protected domains, such as net,-
work protocol software development where protected
boundaries for individual protocols and low cross-
protocol overheads for transferring large data packeh
are necessary[7].

In the following presentation, Section 2 gives the
tradeoff survey concerning protection, performance,
and comprehensiveness, Section 3 mentions the basic
features and the implementation issues in our IDPC fa-
cility, Section 4 analyzes the performance, and finally,
Section 5 concludes our discussion.

2 Trade-off Survey on IDPC

2.1 Protection and Performance

Trade-off study between protection and perfor-
mance for inter-domain facilities has been going on for
years. Overhead raised in crossing boundary of protec-
tion domain affects the performance, while accessibil-

SO

ity between the caller domain and the callee domain
determines the degree of protection. By varying the
degree of protection, performance can be made bet-
ter or worse. This variability is possible because there
are three parameters which can be altered in designing
an IDPC mechanism. They are (1) the different defi-
nitions of a protection domazn; (2) the different ways
to ensure its security; and (3) the different degrees of
protection enforcement.

Depends on different situations, a protection do-
main may be defined as a physical host where protec-
tion is enforced by hardware boundary; as an address
space where protection is enforced by address acces-
sibility; or as a program segment where protection is
enforced by hardware segmentation. All these are ex-
amples having high de ree of protection enforcement
in which an execution l o w cannot access the area out-
side its own protection domain. Guaranteed by hard-
ware mechanism to prevent overlapping of data access
among protection domains, it results in an absolute
protected environment in which intentional access to
other domains without kernel involvement is impossi-
ble. Unfortunately, this involves relatively high cross-
domain overheads due to several operations:

(1) kernel traps: traps are necessary to transfer con-
trol to kernel to perform privileged works, both in the
procedure calling and returning operations;

(2) parameters copying: transfer of parameters be-
tween domains should be accomplished by data copy-
ing. Problems will be deteriorated if reference parame-
ters are included since pointers may point to structure
which may also contain pointers;

context switching: registers should be saved and
:il)oaded, th e invalidation of virtual memory cache will
further degrade the performance;

(4) scheduling: if different threads are responsible for
the execution flows in the caller and callee domain,
scheduling of threads is necessary during each domain
crossing.

All these overheads must appear in a remote pro-
cedure call but optimizations can be applied to avoid
some of these, if the procedure calls just happen be-
tween domains resided in a single host. In fact, some
IDPC mechanisms explore optimization further by tol-
erating the possibility of allowing threads to access lo-
cations outside their protection domains. Usually, this
occurs in the process of executing a procedure where
partial area of the caller domain is shared with the
callee domain. A common technique is to use shared
memory to hold parameters and return values, hence
reducing the overhead of data copying. However, this
opens the possibility of having illegal accesses from the
peer domain. In the case where threads are directly
transferred from the caller to callee domain, the argu-
ment stack or the thread’s whole stack can be shared
to eliminate data-copying but information in the stack
is then vulnerable to unexpected or intentional in-
valid access. Thus, although an inter-domain call with
loose protection enforcement will have a better per-
formance than those with absolute protection enforce-
ment, they should trust their applications for not mak-
ing attempts to leak through these extra shared mem-
ory between the domain boundaries. To alleviate the
situation, some implementation will introduce specific
language constructs to restrict programming.

2.2 Comprehensiveness

Compromising protection is not the only way to
gain performance in constructing an IDPC mechanism.
Very often, special techniques will be used in an im-
plementation to reduce overheads, but they may have
the adverse effect of imposing some forms of restric-
tions on its applications. For example, in transfer-
ring large amount of data, the technique of remapping
the whole memory page holding the data can reduce a
considerate amount of data copying overhead because
it requires only changing the page table directory en-
tries. However, as the granularity of data transfer is
in page size, careful page alignments on the transfer-
ring data should be made to prevent from sharing of
unrelated data. Consequently, cross-domain communi-
cation services adopting this technique should employ
special data structures and operations to ensure that
page alignment is properly made. Moreover, with spe-
cific data structures, they suffer from less efficient and
restricted use of memory address spaces. This is an
typical example of trading generality for performance

Comprehensiveness concerns the improvements on
r l i t y and usability of an inter-domain facility,

ased on the basic assumption of maintaining kernel
modularity. To ensure comprehensiveness in an IDPC
mechanism, more issues other than that supporting
normal operations or enchancing performance and pro-
tection should be considered. Generally speaking, each
issue will relate to a supporting facility or a specific
aspect which may not be essentially necessary in the
basic calling operations of the IDPC mechanism , but
must be provided when the facility is generally used.
Some of these issues are summarized as follows:
Name Binding:
A naming mechanism may be avoided if the caller do-
main has a static knowledge of the names of all other
callee domains. However, for an inter-domain facility
that is available to general users, such knowledge is
absent. So, a naming mechanism should exist to allow
callee domains to export their procedures and caller
domains to import or bind these procedures. Amount
of overheads added in the calling operation depends
on where and how the binding information is kept and
retrieved. If this information can be kept in the user
address space, the loss of performance due to name
binding can be reduced.
Thread and Address Space Management:
Within a modular operating system, threads and ad-
dress spaces are modularized as individual objects
from which process model and thread packages are
constructed. If an IDPC mechanism is allowed to ap-
ply on both user-level domains and kernel-level do-
mains, it is inevitable to have its implementation care-
fully coupled with these operating system components.
In order to maintain modularity, the management of
these objects and the integration of the mechanism
with the overall kernel structure should be careful
made. Nevertheless, running a comprehensive IDPC
mechanism under a modular operating system envi-
ronment should incur extra performance overhead be-
cause this requires a more strictly, well-encapsulated,
and sophisticated method to keep and update the state
information of the system objects.
Robustness:
If the mechanism is constructed for specific applica-
tion, abnormal behaviors can be easily anticipated and
corresponding control or assumption can be made to
avoid their occurrences. Unfortunately, it is not the

51

I I1

case for general use. Due to misuse or ignorance by
users, fatal exceptions such as jumping to invalid or
unexisted domain, calling procedure without import-
ing, possible deadlock during exportin and importing
procedures, and sudden termination of threads during
calling, may result. They should be handled to ensure
the robustness of the mechanism. However, significant
overheads may be imposed since extra checking state-
ments should be added to the implementation and they
must be performed in every cross domain operation.
In spite of this fact, robustness is an inevitable issue
in comprehensiveness since it determines the usability
and the reliability of the mechanism.

s u m p"LFIIu.e w p,ula<m L a d
RucalureCdl =w

caller can get the right capability. Though the chance
of guessing the capability may be low, it is still pos-
sible. In other word, such kind of inter-domain pro-
cedure call mechanism indeed gains very good perfor-
mance improvement by sacrificlng absolute protection
enforcement. Moreover, ARPC has different versions
which requires different degrees of trust on the appli-
cation users. The greater the degree of trust is, the
better the gain in performance but the larger the re-
striction on applications is. This shows an example
of compromising comprehensiveness and protection for
performance. At the extreme case, local procedure call
do not enforce any protection, resulting in the best
performance.

n,, F,""""" L'Wk &lrerr
'pEe

2.3 A Comparison on Some IDPC Besides inter-domain procedure call, other cross-
domain communication mechanism like Fbufs 141 and
Shipping Container [8] have been designed. As-mech-
anisms applied to particular areas, they make as-
sumptions on the operatin environment that limits
their generality. In the foylowing section, it can be
seen how our IDPC mechanism is designed and imple-
mented comprehensively under a modular operating
system environment, with performance close to these
application-oriented facilities.

In order to explore the issues of comprehensive-
ness that has been weakly emphasized in the previ-
ous works, we have constructed a new IDPC facility
which demonstrates how these issues can be tackled in
simple yet efficient way without heavy kernel media-
tion. Despite that the facility is available to user, its
novel feature of allowing kernel threads to cross ad-
dress space boundaries offers an opportunity for users
to flexibly build applications with concurrent execu-
tions in an environment where separate protection do-
mains are distributed. Here, we describe some of the
special features in our facility:
Simplicity and generality: it provides a familiar,
simple but yet generic user-level communication util-
ity to support concurrent applications with multiple
domains.
Simple declaration: namin of domain, declaration
of export and import procefures are specified in a
special definition file. No extra amendments on the
program is needed when defining and calling an inter-
domain procedure, thus it makes the mechanism trans-
parent to the orikinal program codes.
Dynamic binding: in addition to static binding of
procedures between caller and callee domain, run-time
binding is also possible. It allows the callee domain to
be changed dynamically. Such characteristic enables
applications with run-time reconfigurable servers can
be built to ensure service flexibility and reliability.
Intra-domain call: bindin of exported procedure
to the same domain is possibfe, allowing it to support
both inter-domain and intra-domain communications
transparent 1 y .
No kernel-mediated binding: all binding informa-
tion is kept and retrieved in the caller or callee own
address space without kernel involvement. This fa-
vors better performance and less interference to kernel
structure and modularity.
User-level name server: name server is implo
mented as a separate module running in a user address
space. For the sake of consistency, its communications
with other domains are also done through the same

IDPC mechanism. Moreover, to eliminate unneces- cess.
sary overhead, the name server will never be involved
during a cross-domain call operation.
Single thread involvement and mappable stack: ”am

to rcduce context switching overhead, the same thread (uoyc8k’ lo lus ld
that calls an inter-domain procedure in its caller do- 1 &&,
main will be assigned to execute the procedure defi-
nition in the callee domain. Closely adhered to the
thread, the whole stack will be mapped to the callee
domain so that copying of parameter data can be elimi-
nated. In addition, dynamic stack and shared memory
allocation utility is built t o facilitate pointer parame-

Modular development: our operating system is

dedicately constructed to provide a modular abstrac-

............................... * El
*

matad
(ru”Unc “ry ter passing. dlOrrtUhl)

tion which includes primitives manipulating on the
system objects like thread and address space. Based
on this architecture, the IDPC mechanism can be de-
veloped without ad-hoc kernel modifications. This
greatly increases the portability of the mechanism to
other modular operating systems.

_................... * ..I ESenSnl _
The facility is-built on a locally-modified version of

Minix operating system [SI which incorporates a vir-
tual memorv svstem and a Dreliminarv modular kernel

Figure 1: Program, Thread Memory and Address
Space

that compr;ses thread, addiess space and program ob-
jects. The following sections will give a more detailed
description about our IDPC implementation.

3.1 Thread and Address Space Manage-
ment

In our development, each thread represents a typi-
cal execution flow while each address space denotes a
protection domain holding a single code image loaded
from a program object. The relationships between
thread, address space and program object are illus-
trated in Figure 1. When a program object is cre-
ated, memory se ments are allocated to load the text
and data code of the program image. It can then be
attached to an address space object by mapping the
text and data segment to the top of the address range.
Stack se ment, on the other hand, is allocated only
when a taread object is created. When thread object
is latter attached to an address space object, specific
address range will be allocated to where stack segment
is mapped. Moreover, this address range also includes
a new data segment the content of which is copied
from the loaded data segment of the program object.
This data segment in fact represents the initial value
of the pro ram data. To enchance concurrency, more
than one &read can be attached to an address space.
As a result, by varying segment register during con-
text switching, all threads in an address space can use
the same text segment but will have their own copies
of data and stack segments. During an IDPC opera-
tion, thread will be jumped to the callee address space
and stack segment will be mapped to the destinated
address space, hence saving time for copying param-
eters. However, the memory segment for the stack is
actually functionally divided into two areas. The top
one stores the normal stack data while the bottom one
holds dynamically allocated data. This data region is
private to individual threads so that a thread can ac-
cess it no matter in which address space the thread is
in. This provides a mean to handle reference parame-
ters efficiently if data is kept in these data regions. In
addition, to facilitate sharing of large data structures,
all address spaces contain a shared memory segment
where all threads from different address spaces can ac-

As a utility for users, our system offers a simple
set of user-level routines to create and manage these
thread and address space objects. Memory utility is
also provided to manipulate shared memory and dy-
namically allocated stack data. However, all these rou-
tines are built on top of the kernel-level primitives to
avoid serious distortions to the existing kernel struc-
ture and components.

3.2 Name Binding

Alike the constructions of any RPC mechanisms,
one major issue of building an IDPC facility is to
resolve or map names between the caller and the
callee domain. Such a name binding usually involves
two phrases: exporting and importing. The export-
ing phase requires callee to export those procedures
that can be called from other domains. The import-
ing phrase allows the caller to bind procedures from
the appropriate callee, so that the caller can use the
procedure definitions in the callee domain.

In our implementation, all bindings are done
through a name server which provides general services
of maintainin mappings between identifiers. To sup-
port our I D P 8 mechanism, the name server needs to
keep three types of mappings:
(1) The first mapping is an one-to-one mapping from
symbolic domain name to a unique address space iden-
tifier.
(2) The second mapping is another one-to-one map-
ping from address-space identifier and symbolic proce-
dure name to a unique procedure identifier. This keeps
a unique identification for all exported procedures in
an address space domain.
(3 The last one is a mapping from address-space iden-

symbolic procedure name. It helps in cleaning up en-
tries in other mappings when an address space domain
is removed.

For a program, no matter it is a caller or a callee,
or both, a user should prepare an export/import defi-
nition file which specifies the symbolic name of its ad-
dress space domain, its exported procedures, and its
imported procedures with the names of domain from
which they are imported. Prior to running a program

ti B er and its procedure identifier to the corresponding

53

in

image, exported procedures will be uniquely identified,
and related name information will be automatically
sent to the name server. After this, procedures can
be imported by retrievin name information from the
name server and storing %em in a reserved area of the
user address space. This area composes of two tables:
export procedure table and import procedure table. Ex-
port procedure table keeps the actual address of each
exported procedure. Searching this table with a proce-
dure identifier as an index, a thread can immediately
be jumped to the exact location of the exported proce-
dure. The import procedure table keeps the procedure
identifiers of the imported procedures and the address
space identifiers of the callee domain. This allows a
fast retrieval of binding information in the midst of
domain crossing without involving the name server.
Deadlocks between export and import operations will
not occur since all exports of procedures are done be-
fore imports and the attempts to import will be ceased
to continue after a fixed limit of trials. Figure 2 shows
an illustration of the exporting and importing opera-
tions discussed.

Figure 2: Exporting and Importing

Our facility also includes a system call which al-
lows binding of procedures a t run-time. This increases
programming flexibility since the definition of a pro-
cedure can be changed at run-time by binding it to a
new callee. Moreover, the name server communicates
with other domains using the same IDPC mechanism
throu h a set of pre-exported procedures. This eases
modilcation and replacement of the name server.

3.3 Calling

Invoking an IDPC call involves transferring a thread
from an address space to another. During a procedure
call, the stack will follow the thread to move from the
caller to the callee address space, and return after pro-
cedure execution. The technique used is to set up the
stack frame in such a way that before the actual exe-
cution of the procedure in the callee domain, the stack
frame is identical to that of a typical)oca1 procedure
called in the callee domain. Refer to F i p e 3, the call-
ing mechanism will undergo the following operations:

(1) Calling an imported procedure is actually calling a
s ecial system call which requires a stack instance as
tgat shown in Stage 1. The top entry keeps the return-
ing address; the second keeps the exported procedure
identifier; excluding the two dummy entries followed,
the remaining entries are used to hold the arguments.

Such setup can be made because before actual com-
pilation, all statements of calling imported procedure
will be scanned and automatically replaced by this s y s
tem call with appropriate parameters added. This job
is done by a pre-compilation transformation program
which reads both the program source code and the
export/import definition file.
(2) In the system call, stack frame will be updated to
include the caller address space identifier. The original
return address will be lowered and replaced by a fixed
address of a special library routine called returning
stub (Stage 2).
(3 Read from the import definition table, the callee's
a R dress space identifier can be found and it will be-
come one of the parameters in the kernel trap.
(4) Trap to the kernel, program counter will be
changed to point to another library routine called call-
ing stub. The thread is now ready tojump to the callee
domain. Pages are appropriately mapped, related vir-
tual memory registers are set and finally the trap is
returned.
(5) The thread is now in the new domain with pro-
gram counter pointed to the calling stub. By using the
procedure identifier stored in the stack as an index to
the export procedure table, the stub can simply look
up the address of the exported procedure and jump to
it. Now the stack instance (Stage 3) is similar to that
of a local procedure call except the returning address
is set to the address of the returning stub.
(6) On returnin from the callee's procedure, the re-
turning stub wi t be called. The returning stub will
invoke another kernel trap (Stage 4) .
(7) By. looking at the caller address space identifier
stored in the stack frame, thread can be switched back
to the caller address space. The top of the stack is
changed back to the original returnin address and
the program counter is set to another Ebrary routine
called cleaning stub (Stage 5) which just executes a
return instruction. Since the size of the stack have not
been changed during the whole operation, the stack
instance can be cleared up in the return operation like
a local procedure call does.

3.4 Robustness

Checking statements and data structures have been
added to our implementation to keep track of error
conditions. A call will return without executing if in-
valid binding information is found or the address space
of the callee does not exist. Premature termination of
a thread is properly handled and removal of an address
space with active threads is not allowed.

54

4 Performance and Analysis

Performance is done by taking the average time of
making 100000 call operations running on a IBM 486-
DX PC. Besides testings on basic overheads like typ-
ical procedure call, thread context switch and intra-
domain call, two versions of our implementations are
tested. Version 1 is a non-optimized implementation
whereas Version 2 uses a pre-mapping technique which
is done during the creation of thread. It eliminates
some page mapping overheads durin an IDPC oper-
ation. Table 4 shows the result. It sfould be noticed
that all data shown include the test loop overhead.

Several points should be noticed. First, our intra-
domain call has achieved a good performance. It only
involves some operations of name binding and error
checks. Since the binding information is kept in the
caller address space, no kernel involvement is neces-
sary. Second, increasing the number of parameters has
insignificant impact on the performance because we
map the whole stack in which parameters are placed.
Third, the large difference in performance between ver-
sion 1 and version 2 is due to the overheads in writing
up the page table entries. However, the pre-mapping
technique used in version 2 requires software modules
and resources in kernel to be arranged in a specific
manner, so we have actually traded some flexibility
for Performance. Finally, it can be seen that the total
time for an inter-domain call (18.38 ms) is nearly equal
to the time for an intra-domain call (1.02 ms) plus two
context switchings (8.83 ms x 2, one for calling, and
one for returnin) This shows that our mechanism
involves very littfe'overhead because most of the over-
heads come up from the context switching operation,
which is determined by the kernel, not by the mech-
anism itself. This switching overhead includes time
taken for making a kernel trap, saving and loading
thread context, and updating virtual memory regis-
ters. If kernel optimizations are made on this, the
overall performance of our mechanism can be further
improved.

Figure 4: Performance Data

In comparing our implementation with other IDPC
mechanisms, we have achieved a performance which is
quite close to that of LRPC. Figure 5 shows the per-
formance data of executing a null call in some IDPC
mechanisms (data are taken from Table 2 in [3) How
ever, our implementation do not have an absolute pro:
tection enforcement since the whole stack is visible in
the callee domain. The situation can be alleviated
since we rely on compiler to avoid generating codes in

typical procedure that will access data in stack other
than its local variables and parameters.

Figure 5: Performance of a Null Call in Some IDPC

5 Conclusion

This paper presents a study on various inter-domain
procedure call mechanisms. A survey has been con-
ducted to evaluate different ways of compromising pro-
tection for performance. In addition, we discuss the
issue of comprehensiveness which is essential in con-
structing a general and useful IDPC mechanism.

A new IDPC facility has been built to validate our
study. Apart from its good performance and pro-
tection, it incorporates necessary facilities to support
comprehensive IDPC services - name binding, thread
and domain management, and robustness. The tech-
nique of mapping the whole stack segment and us-
ing dynamically allocated data improves performance
in transferring large data. Future works include us-
ing this facility to develop some sophisticated concur-
rent programs such as construction of network protocol
software. The facility can also be extended to accom-
modate remote procedure calls and to build system
components for a reconfigurable operating system.

References
B.N. Bershad, T.E. Anderson, E.D. Lazowaska, H.M.
Levy, "Lightweight Remote Procedure Call," ACM
Trans. on Comp. Systems, Vol. 8, No. 1, Feb 1990,
pp 37-55.
B.N. Bershad, T.E. Anderson, E.D. Lazowska, H.M.
Levy, 'Wser-Level Interprocess Communication for
Shared Memory Multiprocessors," ACM Trans. on
Comp. Systems, Vol. 9, No. 2, May 1991, pp 175-198.
C. Yarvin, R. Bukowski, T. Anderson, "Anonymous
RPC: Low Latency Protection in a 64-Bit Address
Space," Proc. of 1993 Summer USENIX, Jun 1993, pp
175-186.
P. Druschel, L.L. Peterson, "Fbufs: A High-
Bandwidth Cross-Domain Transfer Facility," TR,
Dept. of Comp. Sc., U. of Arizona.
A.D. Birrell, B. J. Nelson, "Implementing Remote Pro-
cedure Call," ACM Trans. on Comp. Systems., Vol. 2,
No. 1, Feb 1984, pp 39-59.
A.S. Tanenbaum, F. Meulenbroeks, R. Michiels, J .
Muller, J. Pickert, S. Reiz, J.W. stevenson, "Minix
1.5 Reference Manual," Prentice Hall.
A.H.S. Loong, W.H. Cheung, "An Implementation
Model for Developing Network Protocol Infrastruc-
ture," Proc. of the 1993 IEEE Region 10 International
Conf. on "Computers, Communication and Antoma-
tion," Oct 1993, Vol. 1, pp 519-522.
J. Pasquale, E. Anderson, P.K. Muller, "Container
Shipping: Operating System Support for I/O-Intensive
Applications," IEEE Computer, Vol. 27, No. 3, Mar
1994, pp 84-93.

