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A Comprehensive Lightweight Inter-Domain Procedure Call 
Mechanism for Concurrent Computations 

Anthony H.S. Loong and W.H. Cheung 
Dept. of Computer Science, The University of Hong Kong 

Abstract 
Many inter-domain procedure calls have been devel- 

oped to provide fast communication services between 
protection domains. Dafferent techniques have been 
employed to trade protection for  performance. How- 
ever, few studies have been made to  discuss issues 
for  constructing a comprehensive and generally usable 
inter-domain procedure call (hereafter as IDPC) f a d -  
ity. In  this aper, we evaluate the trade08 between 
protection a n 8  performance in a IDPC facility, and in- 
troduce a new inter-domain procedure call mechanism. 
Our IDPC mechanism shows its merits on achieving 
the comprehensiveness with secure protection and good 
performance comparable to some well-known mecha- 
nisms. 

1 Introduction 

The notion of process plays an important role in 
contemporary multi-tasking operating systems. Defi- 
nitions of process and its components vary among dif- 
ferent operating systems, but that in Unix is recog- 
nized and well-accepted by most people. Unix pro- 
cess, residing within a single address space and con- 
taining only one thread of ezecution, provides a sim- 
ple and secure environment to run a single program 
image. However, in some applications, users find that 
such a strongly protected environment imposes perfor- 
mance burden to inter-process communications, espe- 
cially in those applications in which protection require- 
ments are loose and rocess communications are fre- 
quent. To cope with %is, lot of works have been done 
in improving the performance of inter-process commu- 
nications, mostly by loosing the protection barrier be- 
tween caller and c a k e  domains. Unix’s light-weighted 
thread package, lightweight remote procedure call [l], 
user-level interprocess communication [2], anonymous 
RPC [3] are all examples with different extents of trad- 
ing protections for performances. So, what is the ap- 
propriate tradeoff between protection and performance 
for an inter-domain communication facility? 

The answer to this question is not unique. It de- 
pends on the generality of the communication service 
and on the structure of its underlying operating sys- 
tem. In recent years, the concepts of micro-kerneland 
reconfigurability have become important treads in op- 
erating system design. Famous operating systems like 
Mach, Chorus, and Amoeba more or less have their 
kernel components well-encapsulated and modularly 
constructed. An inter-domain communication facil- 
ity, being a communicating mechanism which tightly 
couples with its operating system components, should 
be designed in such a way that the kernel modularity 
can be maintained. Moreover, it should be available 
to application users, not just be used in the system 
communications only. Thus, design issues like service 

semantics, naming problem, and abnormal exception 
handling should be reconsidered with user-level con- 
cern. In fact, by explorin improvements in the aspects 
of modularity and u s a b h y  in addition to the hasic 
requirements of protection and performance, we are 
adding a new tradeoff consideration in inter-domain 
communication development: comprehensiveness. Is- 
sues for achievin comprehensiveness may range from 
low-level ones s u s  as specifying interactions and mati- 
aging kernel modules, to high-level ones such as defin- 
ing calling semantics, resolving names and ensuring ro- 
bustness. Few studies on analyzing these issues have 
been made and one major purpose of our work is to 
fill up the inadequacy. 

Among different kinds of inter-domain communicsi- 
tion facilities, we focus on discussing the inter-domain 
procedure call (IDPC). Procedure call itself denotes 
a simple, clear, well-known and powerful mechanism 
to transfer data parameters and execution control to 
a specific destination address. Depending on the lo- 
cation of the address, the execution will result in a 
local, inter-domain or remote procedure call. This 
variability, together with its simplicity and effective- 
ness, makes it a suitable tool in building distributed 
applications a n d ,  the basic primitives to construct 
other distributed facilities. In this paper, we have 
compared some common inter-domain procedure call 
mechanisms and found out how they behave in making 
compromise on protection, performance and compre- 
hensiveness. 

To testify the feasibility of our analysis, we have 
designed and implemented a new IDPC facility which 
demonstrates a good tradeoff among good perfor- 
mance, secure protection, and appropriate comprehen- 
siveness. The facility is general and reliable enough 
for those kinds of applications which require fast com- 
munications between protected domains, such as net,- 
work protocol software development where protected 
boundaries for individual protocols and low cross- 
protocol overheads for transferring large data packeh 
are necessary[7]. 

In the following presentation, Section 2 gives the 
tradeoff survey concerning protection, performance, 
and comprehensiveness, Section 3 mentions the basic 
features and the implementation issues in our IDPC fa- 
cility, Section 4 analyzes the performance, and finally, 
Section 5 concludes our discussion. 

2 Trade-off Survey on IDPC 

2.1 Protection and Performance 

Trade-off study between protection and perfor- 
mance for inter-domain facilities has been going on for 
years. Overhead raised in crossing boundary of protec- 
tion domain affects the performance, while accessibil- 
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ity between the caller domain and the callee domain 
determines the degree of protection. By varying the 
degree of protection, performance can be made bet- 
ter or worse. This variability is possible because there 
are three parameters which can be altered in designing 
an IDPC mechanism. They are (1)  the different defi- 
nitions of a protection domazn; ( 2 )  the different ways 
to  ensure its security; and ( 3 )  the different degrees of 
protection enforcement. 

Depends on different situations, a protection do- 
main may be defined as a physical host where protec- 
tion is enforced by hardware boundary; as an address 
space where protection is enforced by address acces- 
sibility; or as a program segment where protection is 
enforced by hardware segmentation. All these are ex- 
amples having high de ree of protection enforcement 
in which an execution l o w  cannot access the area out- 
side its own protection domain. Guaranteed by hard- 
ware mechanism to prevent overlapping of data access 
among protection domains, it results in an absolute 
protected environment in which intentional access to 
other domains without kernel involvement is impossi- 
ble. Unfortunately, this involves relatively high cross- 
domain overheads due to several operations: 

(1) kernel traps: traps are necessary to transfer con- 
trol to kernel to perform privileged works, both in the 
procedure calling and returning operations; 

( 2 )  parameters copying: transfer of parameters be- 
tween domains should be accomplished by data copy- 
ing. Problems will be deteriorated if reference parame- 
ters are included since pointers may point to structure 
which may also contain pointers; 

context switching: registers should be saved and 
:il)oaded, th e invalidation of virtual memory cache will 
further degrade the performance; 

(4) scheduling: if different threads are responsible for 
the execution flows in the caller and callee domain, 
scheduling of threads is necessary during each domain 
crossing. 

All these overheads must appear in a remote pro- 
cedure call but optimizations can be applied to avoid 
some of these, if the procedure calls just happen be- 
tween domains resided in a single host. In fact, some 
IDPC mechanisms explore optimization further by tol- 
erating the possibility of allowing threads to access lo- 
cations outside their protection domains. Usually, this 
occurs in the process of executing a procedure where 
partial area of the caller domain is shared with the 
callee domain. A common technique is to use shared 
memory to  hold parameters and return values, hence 
reducing the overhead of data copying. However, this 
opens the possibility of having illegal accesses from the 
peer domain. In the case where threads are directly 
transferred from the caller to callee domain, the argu- 
ment stack or the thread’s whole stack can be shared 
to eliminate data-copying but information in the stack 
is then vulnerable to unexpected or intentional in- 
valid access. Thus, although an inter-domain call with 
loose protection enforcement will have a better per- 
formance than those with absolute protection enforce- 
ment, they should trust their applications for not mak- 
ing attempts to leak through these extra shared mem- 
ory between the domain boundaries. To alleviate the 
situation, some implementation will introduce specific 
language constructs to restrict programming. 

2.2 Comprehensiveness 

Compromising protection is not the only way to 
gain performance in constructing an IDPC mechanism. 
Very often, special techniques will be used in an im- 
plementation to reduce overheads, but they may have 
the adverse effect of imposing some forms of restric- 
tions on its applications. For example, in transfer- 
ring large amount of data, the technique of remapping 
the whole memory page holding the data can reduce a 
considerate amount of data copying overhead because 
it requires only changing the page table directory en- 
tries. However, as the granularity of data transfer is 
in page size, careful page alignments on the transfer- 
ring data should be made to prevent from sharing of 
unrelated data. Consequently, cross-domain communi- 
cation services adopting this technique should employ 
special data structures and operations to ensure that 
page alignment is properly made. Moreover, with spe- 
cific data structures, they suffer from less efficient and 
restricted use of memory address spaces. This is an 
typical example of trading generality for performance 

Comprehensiveness concerns the improvements on 
r l i t y  and usability of an inter-domain facility, 

ased on the basic assumption of maintaining kernel 
modularity. To ensure comprehensiveness in an IDPC 
mechanism, more issues other than that supporting 
normal operations or enchancing performance and pro- 
tection should be considered. Generally speaking, each 
issue will relate to a supporting facility or a specific 
aspect which may not be essentially necessary in the 
basic calling operations of the IDPC mechanism , but 
must be provided when the facility is generally used. 
Some of these issues are summarized as follows: 
Name Binding: 
A naming mechanism may be avoided if the caller do- 
main has a static knowledge of the names of all other 
callee domains. However, for an inter-domain facility 
that is available to general users, such knowledge is 
absent. So, a naming mechanism should exist to allow 
callee domains to export their procedures and caller 
domains to import or bind these procedures. Amount 
of overheads added in the calling operation depends 
on where and how the binding information is kept and 
retrieved. If this information can be kept in the user 
address space, the loss of performance due to name 
binding can be reduced. 
Thread and Address Space Management: 
Within a modular operating system, threads and ad- 
dress spaces are modularized as individual objects 
from which process model and thread packages are 
constructed. If an IDPC mechanism is allowed to ap- 
ply on both user-level domains and kernel-level do- 
mains, it is inevitable to have its implementation care- 
fully coupled with these operating system components. 
In order to maintain modularity, the management of 
these objects and the integration of the mechanism 
with the overall kernel structure should be careful 
made. Nevertheless, running a comprehensive IDPC 
mechanism under a modular operating system envi- 
ronment should incur extra performance overhead be- 
cause this requires a more strictly, well-encapsulated, 
and sophisticated method to keep and update the state 
information of the system objects. 
Robustness: 
If the mechanism is constructed for specific applica- 
tion, abnormal behaviors can be easily anticipated and 
corresponding control or assumption can be made to 
avoid their occurrences. Unfortunately, it is not the 
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case for general use. Due to misuse or ignorance by 
users, fatal exceptions such as jumping to invalid or 
unexisted domain, calling procedure without import- 
ing, possible deadlock during exportin and importing 
procedures, and sudden termination of threads during 
calling, may result. They should be handled to ensure 
the robustness of the mechanism. However, significant 
overheads may be imposed since extra checking state- 
ments should be added to the implementation and they 
must be performed in every cross domain operation. 
In spite of this fact, robustness is an inevitable issue 
in comprehensiveness since it determines the usability 
and the reliability of the mechanism. 

s u m  p"LFIIu.e w p,ula<m L a d  
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caller can get the right capability. Though the chance 
of guessing the capability may be low, it is still pos- 
sible. In other word, such kind of inter-domain pro- 
cedure call mechanism indeed gains very good perfor- 
mance improvement by sacrificlng absolute protection 
enforcement. Moreover, ARPC has different versions 
which requires different degrees of trust on the appli- 
cation users. The greater the degree of trust is, the 
better the gain in performance but the larger the re- 
striction on applications is. This shows an example 
of compromising comprehensiveness and protection for 
performance. At the extreme case, local procedure call 
do not enforce any protection, resulting in the best 
performance. 

n,, F,""""" L'Wk &lrerr 
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2.3 A Comparison on Some IDPC Besides inter-domain procedure call, other cross- 
domain communication mechanism like Fbufs 141 and 
Shipping Container [8] have been designed. As-mech- 
anisms applied to particular areas, they make as- 
sumptions on the operatin environment that limits 
their generality. In the foylowing section, it can be 
seen how our IDPC mechanism is designed and imple- 
mented comprehensively under a modular operating 
system environment, with performance close to these 
application-oriented facilities. 

In order to explore the issues of comprehensive- 
ness that has been weakly emphasized in the previ- 
ous works, we have constructed a new IDPC facility 
which demonstrates how these issues can be tackled in 
simple yet efficient way without heavy kernel media- 
tion. Despite that the facility is available to user, its 
novel feature of allowing kernel threads to cross ad- 
dress space boundaries offers an opportunity for users 
to flexibly build applications with concurrent execu- 
tions in an environment where separate protection do- 
mains are distributed. Here, we describe some of the 
special features in our facility: 
Simplicity and generality: it  provides a familiar, 
simple but yet generic user-level communication util- 
ity to support concurrent applications with multiple 
domains. 
Simple declaration: namin of domain, declaration 
of export and import procefures are specified in a 
special definition file. No extra amendments on the 
program is needed when defining and calling an inter- 
domain procedure, thus it makes the mechanism trans- 
parent to the orikinal program codes. 
Dynamic binding: in addition to static binding of 
procedures between caller and callee domain, run-time 
binding is also possible. It allows the callee domain to 
be changed dynamically. Such characteristic enables 
applications with run-time reconfigurable servers can 
be built to ensure service flexibility and reliability. 
Intra-domain call: bindin of exported procedure 
to the same domain is possibfe, allowing it to  support 
both inter-domain and intra-domain communications 
transparent 1 y . 
No kernel-mediated binding: all binding informa- 
tion is kept and retrieved in the caller or callee own 
address space without kernel involvement. This fa- 
vors better performance and less interference to kernel 
structure and modularity. 
User-level name server: name server is implo 
mented as a separate module running in a user address 
space. For the sake of consistency, its communications 
with other domains are also done through the same 



IDPC mechanism. Moreover, to eliminate unneces- cess. 
sary overhead, the name server will never be involved 
during a cross-domain call operation. 
Single thread involvement and mappable stack: ”am 

to rcduce context switching overhead, the same thread (uoyc8k’ lo lus ld  
that calls an inter-domain procedure in its caller do- 1 &&, 
main will be assigned to execute the procedure defi- 
nition in the callee domain. Closely adhered to the 
thread, the whole stack will be mapped to the callee 
domain so that copying of parameter data can be elimi- 
nated. In addition, dynamic stack and shared memory 
allocation utility is built t o  facilitate pointer parame- 

Modular development: our operating system is ............................... 

dedicately constructed to provide a modular abstrac- 

............................... * El 
* 
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tion which includes primitives manipulating on the 
system objects like thread and address space. Based 
on this architecture, the IDPC mechanism can be de- 
veloped without ad-hoc kernel modifications. This 
greatly increases the portability of the mechanism to 
other modular operating systems. 

_................... .......... * ..I ESenSnl _ .............................. 
The facility is-built on a locally-modified version of 

Minix operating system [SI which incorporates a vir- 
tual memorv svstem and a Dreliminarv modular kernel 

Figure 1:  Program, Thread Memory and Address 
Space 

that compr;ses thread, addiess space and program ob- 
jects. The following sections will give a more detailed 
description about our IDPC implementation. 

3.1 Thread and Address Space Manage- 
ment 

In our development, each thread represents a typi- 
cal execution flow while each address space denotes a 
protection domain holding a single code image loaded 
from a program object. The relationships between 
thread, address space and program object are illus- 
trated in Figure 1. When a program object is cre- 
ated, memory se ments are allocated to load the text 
and data code of the program image. It can then be 
attached to an address space object by mapping the 
text and data segment to the top of the address range. 
Stack se ment, on the other hand, is allocated only 
when a taread object is created. When thread object 
is latter attached to an address space object, specific 
address range will be allocated to where stack segment 
is mapped. Moreover, this address range also includes 
a new data segment the content of which is copied 
from the loaded data segment of the program object. 
This data segment in fact represents the initial value 
of the pro ram data. To enchance concurrency, more 
than one &read can be attached to an address space. 
As a result, by varying segment register during con- 
text switching, all threads in an address space can use 
the same text segment but will have their own copies 
of data and stack segments. During an IDPC opera- 
tion, thread will be jumped to the callee address space 
and stack segment will be mapped to the destinated 
address space, hence saving time for copying param- 
eters. However, the memory segment for the stack is 
actually functionally divided into two areas. The top 
one stores the normal stack data while the bottom one 
holds dynamically allocated data. This data region is 
private to individual threads so that a thread can ac- 
cess it no matter in which address space the thread is 
in. This provides a mean to handle reference parame- 
ters efficiently if data is kept in these data regions. In 
addition, to facilitate sharing of large data structures, 
all address spaces contain a shared memory segment 
where all threads from different address spaces can ac- 

As a utility for users, our system offers a simple 
set of user-level routines to create and manage these 
thread and address space objects. Memory utility is 
also provided to manipulate shared memory and dy- 
namically allocated stack data. However, all these rou- 
tines are built on top of the kernel-level primitives to 
avoid serious distortions to the existing kernel struc- 
ture and components. 

3.2 Name Binding 

Alike the constructions of any RPC mechanisms, 
one major issue of building an IDPC facility is to 
resolve or map names between the caller and the 
callee domain. Such a name binding usually involves 
two phrases: exporting and importing. The export- 
ing phase requires callee to export those procedures 
that can be called from other domains. The import- 
ing phrase allows the caller to bind procedures from 
the appropriate callee, so that the caller can use the 
procedure definitions in the callee domain. 

In our implementation, all bindings are done 
through a name server which provides general services 
of maintainin mappings between identifiers. To sup- 
port our I D P 8  mechanism, the name server needs to 
keep three types of mappings: 
(1) The first mapping is an one-to-one mapping from 
symbolic domain name to a unique address space iden- 
tifier. 
(2) The second mapping is another one-to-one map- 
ping from address-space identifier and symbolic proce- 
dure name to a unique procedure identifier. This keeps 
a unique identification for all exported procedures in 
an address space domain. 
(3 The last one is a mapping from address-space iden- 

symbolic procedure name. It helps in cleaning up en- 
tries in other mappings when an address space domain 
is removed. 

For a program, no matter it is a caller or a callee, 
or both, a user should prepare an export/import defi- 
nition file which specifies the symbolic name of its ad- 
dress space domain, its exported procedures, and its 
imported procedures with the names of domain from 
which they are imported. Prior to running a program 

ti B er and its procedure identifier to the corresponding 
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image, exported procedures will be uniquely identified, 
and related name information will be automatically 
sent to the name server. After this, procedures can 
be imported by retrievin name information from the 
name server and storing %em in a reserved area of the 
user address space. This area composes of two tables: 
export procedure table and import procedure table. Ex- 
port procedure table keeps the actual address of each 
exported procedure. Searching this table with a proce- 
dure identifier as an index, a thread can immediately 
be jumped to the exact location of the exported proce- 
dure. The import procedure table keeps the procedure 
identifiers of the imported procedures and the address 
space identifiers of the callee domain. This allows a 
fast retrieval of binding information in the midst of 
domain crossing without involving the name server. 
Deadlocks between export and import operations will 
not occur since all exports of procedures are done be- 
fore imports and the attempts to import will be ceased 
to continue after a fixed limit of trials. Figure 2 shows 
an illustration of the exporting and importing opera- 
tions discussed. 

Figure 2: Exporting and Importing 

Our facility also includes a system call which al- 
lows binding of procedures a t  run-time. This increases 
programming flexibility since the definition of a pro- 
cedure can be changed at run-time by binding it to a 
new callee. Moreover, the name server communicates 
with other domains using the same IDPC mechanism 
throu h a set of pre-exported procedures. This eases 
modilcation and replacement of the name server. 

3.3 Calling 

Invoking an IDPC call involves transferring a thread 
from an address space to another. During a procedure 
call, the stack will follow the thread to move from the 
caller to the callee address space, and return after pro- 
cedure execution. The technique used is to set up the 
stack frame in such a way that before the actual exe- 
cution of the procedure in the callee domain, the stack 
frame is identical to that of a typical )oca1 procedure 
called in the callee domain. Refer to F i p e  3, the call- 
ing mechanism will undergo the following operations: 

(1) Calling an imported procedure is actually calling a 
s ecial system call which requires a stack instance as 
tgat shown in Stage 1. The top entry keeps the return- 
ing address; the second keeps the exported procedure 
identifier; excluding the two dummy entries followed, 
the remaining entries are used to  hold the arguments. 

Such setup can be made because before actual com- 
pilation, all statements of calling imported procedure 
will be scanned and automatically replaced by this s y s  
tem call with appropriate parameters added. This job 
is done by a pre-compilation transformation program 
which reads both the program source code and the 
export/import definition file. 
(2) In the system call, stack frame will be updated to 
include the caller address space identifier. The original 
return address will be lowered and replaced by a fixed 
address of a special library routine called returning 
stub (Stage 2). 
(3 Read from the import definition table, the callee's 
a R dress space identifier can be found and it will be- 
come one of the parameters in the kernel trap. 
(4) Trap to the kernel, program counter will be 
changed to point to another library routine called call- 
ing stub. The thread is now ready tojump to the callee 
domain. Pages are appropriately mapped, related vir- 
tual memory registers are set and finally the trap is 
returned. 
(5) The thread is now in the new domain with pro- 
gram counter pointed to the calling stub. By using the 
procedure identifier stored in the stack as an index to 
the export procedure table, the stub can simply look 
up the address of the exported procedure and jump to 
it. Now the stack instance (Stage 3) is similar to that 
of a local procedure call except the returning address 
is set to the address of the returning stub. 
(6) On returnin from the callee's procedure, the re- 
turning stub wi t  be called. The returning stub will 
invoke another kernel trap (Stage 4) .  
(7) By. looking at  the caller address space identifier 
stored in the stack frame, thread can be switched back 
to the caller address space. The top of the stack is 
changed back to the original returnin address and 
the program counter is set to another Ebrary routine 
called cleaning stub (Stage 5) which just executes a 
return instruction. Since the size of the stack have not 
been changed during the whole operation, the stack 
instance can be cleared up in the return operation like 
a local procedure call does. 

3.4 Robustness 

Checking statements and data structures have been 
added to our implementation to  keep track of error 
conditions. A call will return without executing if in- 
valid binding information is found or the address space 
of the callee does not exist. Premature termination of 
a thread is properly handled and removal of an address 
space with active threads is not allowed. 
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4 Performance and Analysis 

Performance is done by taking the average time of 
making 100000 call operations running on a IBM 486- 
DX PC. Besides testings on basic overheads like typ- 
ical procedure call, thread context switch and intra- 
domain call, two versions of our implementations are 
tested. Version 1 is a non-optimized implementation 
whereas Version 2 uses a pre-mapping technique which 
is done during the creation of thread. It eliminates 
some page mapping overheads durin an IDPC oper- 
ation. Table 4 shows the result. It sfould be noticed 
that all data  shown include the test loop overhead. 

Several points should be noticed. First, our intra- 
domain call has achieved a good performance. It only 
involves some operations of name binding and error 
checks. Since the binding information is kept in the 
caller address space, no kernel involvement is neces- 
sary. Second, increasing the number of parameters has 
insignificant impact on the performance because we 
map the whole stack in which parameters are placed. 
Third, the large difference in performance between ver- 
sion 1 and version 2 is due to  the overheads in writing 
up the page table entries. However, the pre-mapping 
technique used in version 2 requires software modules 
and resources in kernel to  be arranged in a specific 
manner, so we have actually traded some flexibility 
for Performance. Finally, it can be seen that the total 
time for an inter-domain call (18.38 ms) is nearly equal 
to  the time for an intra-domain call (1.02 ms) plus two 
context switchings (8.83 ms x 2, one for calling, and 
one for returnin ) This shows that our mechanism 
involves very littfe'overhead because most of the over- 
heads come up from the context switching operation, 
which is determined by the kernel, not by the mech- 
anism itself. This switching overhead includes time 
taken for making a kernel trap, saving and loading 
thread context, and updating virtual memory regis- 
ters. If kernel optimizations are made on this, the 
overall performance of our mechanism can be further 
improved. 

Figure 4: Performance Data 

In comparing our implementation with other IDPC 
mechanisms, we have achieved a performance which is 
quite close to  that of LRPC. Figure 5 shows the per- 
formance data of executing a null call in some IDPC 
mechanisms (data are taken from Table 2 in [3 ) How 
ever, our implementation do not have an absolute pro: 
tection enforcement since the whole stack is visible in 
the callee domain. The situation can be alleviated 
since we rely on compiler to avoid generating codes in 

typical procedure that will access data in stack other 
than its local variables and parameters. 

Figure 5: Performance of a Null Call in Some IDPC 

5 Conclusion 

This paper presents a study on various inter-domain 
procedure call mechanisms. A survey has been con- 
ducted to  evaluate different ways of compromising pro- 
tection for performance. In addition, we discuss the 
issue of comprehensiveness which is essential in con- 
structing a general and useful IDPC mechanism. 

A new IDPC facility has been built to validate our 
study. Apart from its good performance and pro- 
tection, it incorporates necessary facilities to  support 
comprehensive IDPC services - name binding, thread 
and domain management, and robustness. The tech- 
nique of mapping the whole stack segment and us- 
ing dynamically allocated data  improves performance 
in transferring large data. Future works include us- 
ing this facility to develop some sophisticated concur- 
rent programs such as construction of network protocol 
software. The facility can also be extended to accom- 
modate remote procedure calls and to  build system 
components for a reconfigurable operating system. 
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