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Abstract 

Finding the connected components of a graph 
is a basic computational problem. In recent 
years, there were several exciting results in 
breaking the log’ n-time barrier to finding 
connected components on parallel machines 
using shared memory without concurrent- 
write capability. This paper further presents 
two new parallel algorithms both using less 
than log2 7~ time. The merit of the first algo- 
rithm is that it uses only a sublinear number 
of processors, yet retains the time complexity 
of the fastest existing algorithm. The second 
algorithm is slightly slower but its work (i.e., 
the time-processor product) is closer to  op- 
timal than all previous algorithms using less 
than log’n time. 

1 Introduction 

Given an undirected graph G = (V,E) ,  two 
vertices u ,v  E V are said to be connected if 
there is a sequence of edges in E linking U 
and v. The connected component of a vertex 

is the set of vertices which are connected 
to U. The problem of finding the connected 
components of an undirected graph is often 
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encountered in many applications and is re- 
garded as a fundamental graph problem. This 
problem can be optimally solved in linear time 
on a sequential computer using the technique 
depth-first search or breadth-first search. Un- 
fortunately, these search methods do not ad- 
mit efficient parallel implementation. Other 
techniques have been developed to solve this 
problem in parallel (see the survey in [9, 131). 

This paper is concerned about parallel al- 
gorithms for finding connected components 
on shared-memory machines. The computa- 
tional model used is the Parallel Random Ac- 
cess Machine (PRAM), which is one of the 
most popular models for designing parallel 
algorithms. The PRAM model divides into 
three main variants in regard to the ability 
of the processors to concurrently access the 
shared memory: CRCW, which allows con- 
current read and concurrent write; CREW, 
which allows concurrent read but exclusive 
write; and EREW, the weakest variant of 
PRAM, which only allows exclusive read and 
exclusive write. Details of the model can be 
found in JSJg’s book [9] or the survey by Karp 
and Ramachandran [13]. The CRCW model 
is considered much more powerful than the 
other two. Simulation of a CRCW algorithm 
on a CREW or EREW PRAM slows down 
the running time by a factor of logn. The 
algorithms in this paper are designed for the 
EREW PRAM. 

The performance of a parallel algorithm is 



measured by its running time and work. The 
work of a parallel algorithm is defined to be 
the product of the time and the number of 
processors required, it reflects the total num- 
ber of operations carried out by all processors. 
Consider any problem whose fastest sequen- 
tial algorithm has a time complexity T(n) .  A 
parallel algorithm for this problem is said to 
be work-optimal if its work is O(T(n)).  In 
most cases, we are only interested in those 
work-optimal algorithms running in logo(’) n 
time. 

Hirschberg, Chandra, and Sarwate [6] are 
the first to give a parallel algorithm for find- 
ing the connected components of an undi- 
rected graph in O(logz n) time using n’/logn 
CREW processors, where n and m denote the 
number of vertices and edges of the graph 
respectively. The work of this parallel algo- 
rithm is O(n’1ogn). A refinement by Chin, 
Lam, and Chen [3] improves this algorithm 
to use nZ/ log’ n CREW processors with the 
same time complexity. That is, the work is 
reduced to O(n2) .  This algorithm is work- 
optimal when the input graph contains fL(n’) 
edges. A few years later, the processor re- 
quirement was further improved by Han and 
Wagner [7] to m/ logZn + n/logn and the 
work becomes O(m + nlogn).  

Finding connected components in o(log2 n) 
time’ on the CREW or EREW PRAM 
had been an open problem for almost a 
decade [13]. The breakthrough was even- 
tually due to Johnson and Metaxas, who 
showed an O ( l ~ g ’ . ~ n )  time algorithm us- 
ing n + m processors on a CREW PRAM 
[lo] or EREW PRAM [ll]. Working in- 
dependently, Karger et a1.[12] and Nisan et 
aZ.[14] have also achieved the time complexity 
O ( l ~ g ’ . ~  n). A faster algorithm that requires 

‘The notation o(log2 n) refers to any function t(n) 
whose growth rate is slower than log2 n by more than a 
constant. More precisely, we mean limndm $& = 0. 
For example, log’-’ n is o(log2 n) but neither log2 n - 
log n nor 5 log’ n is. 

O(1ognloglogn) time using n + m EREW 
processors was later given by Chong and Lam 
[4]. The work of this EREW algorithm is 
O((n + m)lognloglogn).  

Note that all previous algorithms that can 
find connected components in o(log2 n) time 
are not work-optimal. It was not known 
how to solve the problem in O(1og n log log n) 
time using a sublinear number of processors. 
Another related open problem was whether 
(n + m)/ log n processors are sufficient to  find 
connected components in o(log2 n) time. 

As a matter of fact, the algorithms in 
[lo, 11, 12, 41 all need to repeatedly invoke 
some fast sorting algorithms such as Cole’s 
Parallel Merge Sort [ 5 ] ,  which can sort n num- 
bers in O(1og n) time using n processors, and 
which incurs O(n1ogn) work in total. Each 
time the sorting is applied on integers lying in 
the range [l, n ] .  Since sorting n integers in the 
range [I, n] can be done in @(n) time sequen- 
tially, Cole’s Parallel Merge Sort is not work- 
optimal in this case, and this explains why 
the work of these connected-components algo- 
rithms still have a distance from linear. Ob- 
viously, one may think of those parallel algo- 
rithms designed for sorting integers in a small 
range, yet the most work-efficient algorithm 
known for integer sorting, given by Albers and 
Hagerup [ l ] ,  runs in O(log’.’ n(log1og n)0.5) 
time using n/ log n EREW processors. If this 
integer sorting algorithm is used, though the 
work may be improved, we apparently would 
obtain an algorithm much slower than that of 

In this paper, we present a parallel algo- 
rithm which runs in O(lognlog1ogn) time 
using (n + m)/loglogn EREW processors; 
hence the work is O ( ( n  + m)logn).  This is 
the first algorithm that improves the proces- 
sor requirement of the fastest existing EREW 
algorithm to sublinear. The second algo- 
rithm to be presented uses (n + m)/ logn  
EREW processors to solve the problem in 
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O ( l ~ g ’ . ~  n(log1og time. The work in- 
curred is O((n+m)(log n)0~5(ioglogn)’~5), the 
best among all previous algorithms which run 
in o(log2n) time. The performance of the 
second algorithm may be better appreciated 
if one note that, a t  present, using n l logn  
processors, even sorting n integers in the 
range [1,n] cannot be achieved in less than 

n(1og log n)0.5 time. 

2 Preliminary 

Most of the parallel algorithms for finding 
connected components use an iterative ap- 
proach: In the first iteration, the vertex set I/ 
is partitioned into subsets (each of size a t  least 
two) according to  some simple rules. Vertices 
within the same partition must be connected, 
but two connected vertices may lie in two 
different partitions. The graph is then con- 
tracted to  a smaller graph as each partition is 
represented by one of the vertices within that 
partition and the adjacency lists of the ver- 
tices are combined into one as the adjacency 
list of the representative vertex. In each sub- 
sequent iteration, we work on the representa- 
tive vertices only and repeat the partitioning 
and contracting process. 

After sufficient iterations, every connected 
component will be represented by one vertex, 
and all vertices know the representative ver- 
tex of the connected component they belong 
to. To test whether two vertices are in the 
same connected component, we simply com- 
pare their representative vertices. 

The efficiency of such approach depends 
on two issues: to partition the vertices ef- 
ficiently and to keep the number of itera- 
tions small. For instance, those older algo- 
rithms [6, 3, 71 can perform the partitioning 
in O(1ogn) time using n + m EREW pro- 
cessors and the number of iterations can be 
bounded by O(1ogn) [9], hence they can find 
connected components using O(log2 n) time 

and O ( ( n  + m)log2 n) work. Intuitively, the 
number of iterations is determined by the ef- 
fectiveness of the partitioning process. The 
number of iterations will be small if, in ev- 
ery iteration, most of the partitions contain a 
large number of vertices. 

The two algorithms presented in this paper 
are also based on the above approach. 

3 Algorithm I 
In this section, we show an  algorithm to  
find the connected components of an undi- 
rected graph in O(1og n log log n) time using 
( n  + m)/ log log n processors. 

3.1 Background 

Connect(IC): This paper will often make use 
of a procedure called Connect(k) which was 
given in (41: Consider any graph G = (V, E )  
with n vertices and m edges. Let k be any 
positive integer bounded by log log n. Then 
executing Connect(k) on G will partition the 
vertices of G in such a way that any ver- 
tex v E V is found in a partition contain- 
ing at  least 2’’ vertices connected to  t~ if 
v’s connected component in G consists of 
22k or more vertices, otherwise all vertices in 
U’S connected component are put together in 
U’S partition. Connect(k) reports each par- 
tition in the form of a rooted tree, and the 
root will be regarded as the representative 
of the partition. The time required to  exe- 
cute Connect(k) can be as little as O(IC29 
time provided that n + m processors are avail- 
able. In particular, if k = loglogn, i t  takes 
O(1ogn loglog n) time to execute Connect(IC), 
which can put all vertices in every connected 
component of G into a rooted tree, but it re- 
quires more than (n+m)/ log log n processors. 

In this paper, we will often invoke 
Connect(k) with IC = log log n - log log log n. 
This requires O(1og n)  time using n + m pro- 
cessors, or, by Brent’s scheduling principle [2], 
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O(lognlog1ogn) time using (n+m)/ loglogn 
processors. In those cases where m is known 
to  be greater than n, we can simplify the pro- 
cessor complexity as m and m/ loglog n, re- 
spectively. 

Working  on a smaller  subgraph: As 
mentioned above, for a graph G = (V ,E)  
with n vertices and m edges, if we use 
less than a linear number of processors, say, 
(n + m)/ loglog n, executing Connect(t) on 
G with k = loglog n - logloglogn cannot be 
done in O(1ogn) time. Thus, we will work 
on a subgraph of G with fewer edges so that 
the time bound of O(1ogn) can be met. Let b 
be an integer less than n. Define a subgraph 
G(b) with the same vertex set as Gas follows: 

Every vertex v chooses b distinct 
neighbors from its adjacency list, or 
all if there are less than b neighbors 
available. G(b) includes a l l  edges 
( u , v )  such that  U has chosen v or 
TI has chosen U in the previous step. 

The subgraph G(b)  contains a t  most nb edges. 
Some vertex in G(b) may have more than b 
neighbors, though. For any vertex v E V ,  v’s 
connected component in G(b) is a subset of 
that in G. Moreover, if v’s connected compo- 
nent in G contains z < 6 vertices then v’s con- 
nected component in G(b) contains exactly z 
vertices. 

Let k = log log n - log log log n. Consider 
the subgraph G(b) where b = 22k = n A .  
G(b) contains at most n ” 6  edges. Note 
that n’+& processors are sufficient to ex- 
ecute Connect(k) on G(b) in O(1ogn) time. 
For any vertex v of G, if v’s connected com- 
ponent in G contains less than b vertices, all 
vertices in this connected component must be 
found together after executing Connect(k) on 
G(b); otherwise, v is involved in a connected 
component with at least nl/loglogn vertices in 
both G and G(b), executing Connect(k) on 
G(b) would report TI in a partition of size at 

least n k  vertices. 
Ext rac t ing  dis t inct  elements f rom an 

adjacency list: Our connected component 
algorithms may contract a given graph G to 
a smaller multi-graph GI. That is, G’ does 
have fewer vertices than G, but may involve 
multiple edges between some pair of vertices. 
Extracting a simple subgraph G’(b) from G’ 
is not trivial because the adjacency lists of 
vertices in G‘ may contain a lot of duplicate 
entries. This motivates US to study the fol- 
lowing problem. 

Consider any h 5 n linked lists, each 
composed of integers not necessarily 
distinct. The total length of these 
lists, denoted by I ,  is at most n2. 
We want to devise a parallel algo- 
rithm using I /  log log n processors to 
extract as many as n G  elements 
from each list in O(1og n) time. 

1 

A simple solution to this problem is to  sort 
each list in parallel. Identical elements within 
each list become adjacent elements. Then 
it is easy to get rid of the redundant ele- 
ments in each list and then extract the first 
nloilogn remaining elements from each list. 
This, however, requires O(1ogn) time using 
1 processors [5] ,  or O(lognlog1og n) time us- 
ing I/ loglog n processors. A more elaborate 
solution is as follows: Divide each list into 
segments; each segment except the last one 
contains n A  log n consecutive elements. 
Sort all the segments in parallel and com- 
press identical elements in each segment. This 
can be done in O(1og n /  log log n )  time using 1 
processors, or O(1og n) time using l /  loglog n 
processors. If a list has only one segment 
or contains a segment composed of a t  least 
n E k  distinct elements, then i t  is done. For 
all other lists whose segments each contains 
less than n h  distinct elments, their total 
length must have been shortened by a fac- 
tor of logn and is at  most l l logn .  We can 

1 
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Figure 1: (a) An undirected graph. (b) The vertices are partitioned into groups, each 
of which are connected. Edges between vertices inside the same partition are internal 
edges (e.g. edges (1,2), (1,13)). Edges (13,12) and (13,15) are multiple edges between 
the leftmost and the lower partition. Other multiple edges are (6,7) and (6,9), as well 
as (3,12) and (11,lO). 

now sort all the remaining lists and extract all 
their distinct elements in O(1og n) time using 
O(I/ logn) processors. 

3.2 The algorithm 

Given an undirected graph G with n vertices 
and m edges, we want to find the connected 
components of G using ( n  + m)/loglogn 
processors. We first consider the case in 
which the number of processors available, 
(n + m)/ log log n, is no less than nl+&. 
We will show later how to deal with the case 
when m is not big enough to guarantee this 
condition. 

The algorithm consists of at most log log n 
phases, each requires O(1ogn) time. To ease 
our discussion, let Go = G. The input to 
Phase i, where 0 5 a < loglogn, is a graph 
G,, and the output another graph Gi+l. 

In Phase 0, we extract a subgraph Go(b) 

from GO and execute Connect(k) on Go(b), 
where k = log log n - log log log n and b = 22k .  
As mentioned earlier, this requires O(1ogn) 
time using n'+& processors. A partition 
of size less than b reported by Connect( k) cor- 
responds to a connected component of Go and 
can be reported immediately. For a partition 
with b or more vertices, we use the root re- 
ported by Connect(k) to represent all vertices 
in the partition and merge the adjacency lists 
of all vertices in Go into a single adjacency 
list for the root. Note that the new adjacency 
list may contain internal edges (i.e., edges 
pointing to vertices inside the same partition) 
and external edges linking to other partitions. 
Internal edges can be removed from all the 
roots'new adjacency lists in O(1og n) time us- 
ing m/logn processors. In other words, we 
contract Go to a smaller graph GI whose ver- 
tices each represents at least b vertices of Go. 
GI is possibly a multi-graph. See Figure 1. 
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Next, we proceed to Phase 1. We use the 
algorithm mentioned earlier to extract a sim- 
ple subgraph G1 ( b )  from G1 in O(1og n) time 
using O(m/  log log n)  processors, and execute 
Connect(IC) to  partition the vertices of Gl(b). 
Every connected component of GI with less 
than b vertices is found in a single partition. 
That means, a connected component of Go 
with less than b2 vertices can be reported at 
or before Phase 1. Other partitions contain- 
ing at  least b vertices of G1 are to be repre- 
sented by their roots. Thus, GI is contracted 
to  a smaller graph Gz whose vertices each 
represents at  least b2 vertices of Go. We re- 
peat these extraction and contraction steps 
phase after phase until all connected compo- 
nents of G have been reported. Since ev- 
ery connected component of Go containing 
less than b' or n& vertices can be re- 
ported after executing i phases, we conclude 
that log log n phases are sufficient to find the 
largest connected component of Go. Each 
phase can be implemented in O(1ogn) time 
using ( n  + m)/ log log n processors. 

Preprocessing: At the beginning of the 
section, we assume that the input graph G is 
dense and there are sufficient processors. If 
G has few edges, i.e., ( n  + m)/loglogn < 
n l + h ,  we first execute Connect(IC) di- 
rectly on G with IC = loglogn - logloglogn. 
This can be done in O(1og n log log n)  time us- 
ing ( n  + m)/loglogn processors. G is then 
contracted to  a smaller graph G' with n' 5 
nl-* vertices. Note that nlloglogn > 
n' I+&. We have enough processors to 
work on G' as if G' is the input. This requires 
O(1og n'log log n') time. 

4 Algorithm I1 

The work incurred by Algorithm I is O((n  + 
m)logn). To further improve the work, we 
use a more flexible schedule and a parallel in- 
teger sorting algorithm that uses fewer op- 

erations. At present, the best of such inte- 
ger sorting algorithms, devised by Albers and 
Hagerup [I], can sort z integers drawn from 
the range [O, z - 11 in O(log'.' z log logo.' z) 
time using z/ log x processors on the EREW 
PRAM. Note that this algorithm is slower 
than Cole's O(1ogz) time parallel merge sort, 
but it requires O(x(1ogs log log z)'.') instead 
of log x operations. 

The algorithm presented in this section 
can find the connected components of an 
undirected graph G with n vertices and m 
edges in O((1og nloglog n)'.') time using (n+ 
m)/ log n processors. We first consider the 
case where ml logn  2 2n and hence more 
than 2n processors are available. Later we 
will show a simple preprocessing to  remove 
this assumption. 

Let d = m/n log n 2 2. Algorithm I1 con- 
sists of at most log(1ogdn) + 1 phases.2 Let 
Go = G. The input to Phase i, where 0 5 
i 5 log(logdn), is a graph G, with n/d2'-' 
vertices, and the output a smaller graph Gl+l 
with n/d2'+'-' vertices. In Phase i, we ex- 
tract a subgraph G' from G;, which has the 
same vertex set as G, but contains at  most 
m/log n edges, and then execute Connect(k) 
with IC = log log n to  find all connected com- 
ponents of G'. Similar to Algorithm I, Gl+l 
is composed of the roots of those relatively 
large connected components of G' reported by 
Connect(k). Details are as follows. 

Extracting G' from Gi: As G, may 
be a multi-graph (i.e., the adjacency list of 
a vertex may contain duplicate entries), we 
first apply Albers and Hagerup's algorithm 
[l] to sort each adjacency list. Gi cannot 
have more edges than G and the total length 
of all adjacency lists of Gi is bounded by 
m 5 n2. Thus, the sorting can be done in 
O((1og n )1 .5 ( i~g l~g  n)'.') time using m/ log n 

'For example, if d = 2, log(logdn) = loglogn, 
when d = ne for some 6 > 0, log(log,n) will be a. 

constant. 
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processors. Redundant elements are then re- 
moved from each adjacency list and G; be- 
comes a simple graph. G' is defined to be 
Gi(d''). If Gi has at  most n/d2'-l vertices, 
then G' has at  most (n/d"-')& or ml logn  
edges. 

Finding the connected components  of 
G': We execute the procedure Connect(k) 
with k = loglogn on G', which has at 
most n vertices and ml logn  edges. This 
can be done in O(lognlog1ogn) time using 
n + m/ log n processors, or simply m/ log n 
processors (since we assume that m/logn 2 
n). Recall that  G' satisfies the property that, 
for any vertex v, if v is connected to less than 
d'' vertices in Gi, these vertices including v 
must be found in a single connected compo- 
nent of G'; otherwise, v's connected compo- 
nent in G' involves a t  least d" vertices. It is 
easy to prove by induction that each vertex in 
Gi represents a t  least vertices that are 
connected in Go. In other words, for a con- 
nected component of Go with no more than 
dZi- 'dzi  = d2'+'-' vertices, either it has been 
identified before Phase i or there is a corre- 
sponding connected component in G.  involv- 
ing at  most dz' vertices. At the end Jf  Phase 
i, all connected components of Go which con- 
tain less than d''+'-' vertices must have been 
found. 

Cons t ruc t ing  G,+l: G; has at  most 
n / d 2 ' - *  vertices. The number of connected 
components of G' which contain d" or more 
vertices is a t  most n/d' . We use the 
roots of such components to  represent the ver- 
tices of G; and form a smaller graph Gitl. 
The details are similar to Algorithm I. The 
algorithm terminates when G;+l is empty or 
has only one vertex. In the worst case, the 
algorithm may run up to  Phase log(1ogd n). 

The most time-consuming step in each 
phase is the integer sorting, which re- 
quires O((logn)'.5(loglog time. As 
there are a t  most log(1ogdn) + 1 phases, 

i+1-1 

the time complexity of Algorithm I1 is 
O((lognlog1og n)1.5). Note that the denser 
the input graph, the more efficient Algorithm 
I1 is. For instance, if m > nl+C log n for some 
c > 0, then d = nc and Algorithm I1 requires 
only O(1) phases. 

Preprocessing: If the input graph G has 
few edges and m l l o g n  < 2n, we first exe- 
cute Connect(k) with k = logloglogn + 1 di- 
rectly on G and then contract G to  a smaller 
graph G' containing n' _< n/2logn vertices. 
Since there are (n + m)/logn 2 2n' proces- 
sors available, we can now execute Algorithm 
I1 on G'. 

5 Concluding Remarks 

We have presented two improved algorithms 
for finding the connected components of an 
undirected graph in the EREW PRAM: one 
is running in O(lognlog1og n)  time using 
(n + m)/loglogn processors while the other 
takes O ( ( l ~ g n l o g l o g n ) ~ . ~ )  time and (n + 
m)/logn processors. The work of these d- 
gorithms are O((n + m)logn) and O ( ( n  + 
m)(log n)0.5( i~gi~gn)1.5)  respectively. It is 
interesting to  know whether these algorithms 
can be improved to  use fewer processors while 
maintaining the time bound. Using random- 
ization, Halperin and Zwick (81 have lately 
devised an optimal EREW algorithm which 
finds connected component in O(1ogn) time 
with high probability using (n+m)/ log n pro- 
cessors. It remains to  see whether a deter- 
ministic EREW or CREW algorithm using 
optimal work and less than log' n time (say, 
1ogltC n for some E < 1) exists. On the other 
hand, even we relax the processor requirement 
to any polynomial (say, n3) ,  it is still an open 
problem whether the problem can be solved 
in time less than log n log log n. The ultimate 
goal is to devise an O(1og n) time algorithm, 
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