
Title Improved parallel algorithms for finding connected components

Author(s) Chong, KW; Lam, TW

Citation Ieee International Conference On Algorithms And Architectures
For Parallel Processing, 1995, v. 1, p. 452-459

Issued Date 1995

URL http://hdl.handle.net/10722/45553

Rights Creative Commons: Attribution 3.0 Hong Kong License

Improved Parallel Algorithms for Finding
Connected Components

K.W. Chong’ and T.W. Lam+
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

Email: {kwchong, twlam}@csd.hku.hk

Abstract

Finding the connected components of a graph
is a basic computational problem. In recent
years, there were several exciting results in
breaking the log’ n-time barrier to finding
connected components on parallel machines
using shared memory without concurrent-
write capability. This paper further presents
two new parallel algorithms both using less
than log2 7~ time. The merit of the first algo-
rithm is that it uses only a sublinear number
of processors, yet retains the time complexity
of the fastest existing algorithm. The second
algorithm is slightly slower but its work (i.e.,
the time-processor product) is closer to op-
timal than all previous algorithms using less
than log’n time.

1 Introduction

Given an undirected graph G = (V,E) , two
vertices u ,v E V are said to be connected if
there is a sequence of edges in E linking U
and v. The connected component of a vertex

is the set of vertices which are connected
to U. The problem of finding the connected
components of an undirected graph is often

‘Research was supported in part by a Postgradu-
ate Studentship and CRCG grant 335/065/0038 of the
University of Hong Kong.

‘Research was supported in part by CRCG grants
335/065/0038 and 335/065/0039 of the University of
Hong Kong.

0-7803-2018-2/95/$4.~ 0 1995 lEEE
452

encountered in many applications and is re-
garded as a fundamental graph problem. This
problem can be optimally solved in linear time
on a sequential computer using the technique
depth-first search or breadth-first search. Un-
fortunately, these search methods do not ad-
mit efficient parallel implementation. Other
techniques have been developed to solve this
problem in parallel (see the survey in [9, 131).

This paper is concerned about parallel al-
gorithms for finding connected components
on shared-memory machines. The computa-
tional model used is the Parallel Random Ac-
cess Machine (PRAM), which is one of the
most popular models for designing parallel
algorithms. The PRAM model divides into
three main variants in regard to the ability
of the processors to concurrently access the
shared memory: CRCW, which allows con-
current read and concurrent write; CREW,
which allows concurrent read but exclusive
write; and EREW, the weakest variant of
PRAM, which only allows exclusive read and
exclusive write. Details of the model can be
found in JSJg’s book [9] or the survey by Karp
and Ramachandran [13]. The CRCW model
is considered much more powerful than the
other two. Simulation of a CRCW algorithm
on a CREW or EREW PRAM slows down
the running time by a factor of logn. The
algorithms in this paper are designed for the
EREW PRAM.

The performance of a parallel algorithm is

measured by its running time and work. The
work of a parallel algorithm is defined to be
the product of the time and the number of
processors required, it reflects the total num-
ber of operations carried out by all processors.
Consider any problem whose fastest sequen-
tial algorithm has a time complexity T(n) . A
parallel algorithm for this problem is said to
be work-optimal if its work is O(T(n)). In
most cases, we are only interested in those
work-optimal algorithms running in logo(’) n
time.

Hirschberg, Chandra, and Sarwate [6] are
the first to give a parallel algorithm for find-
ing the connected components of an undi-
rected graph in O(logz n) time using n’/logn
CREW processors, where n and m denote the
number of vertices and edges of the graph
respectively. The work of this parallel algo-
rithm is O(n’1ogn). A refinement by Chin,
Lam, and Chen [3] improves this algorithm
to use nZ/ log’ n CREW processors with the
same time complexity. That is, the work is
reduced to O(n2) . This algorithm is work-
optimal when the input graph contains fL(n’)
edges. A few years later, the processor re-
quirement was further improved by Han and
Wagner [7] to m/ logZn + n/logn and the
work becomes O(m + nlogn).

Finding connected components in o(log2 n)
time’ on the CREW or EREW PRAM
had been an open problem for almost a
decade [13]. The breakthrough was even-
tually due to Johnson and Metaxas, who
showed an O (l ~ g ’ . ~ n) time algorithm us-
ing n + m processors on a CREW PRAM
[lo] or EREW PRAM [ll]. Working in-
dependently, Karger et a1.[12] and Nisan et
aZ.[14] have also achieved the time complexity
O (l ~ g ’ . ~ n). A faster algorithm that requires

‘The notation o(log2 n) refers to any function t(n)
whose growth rate is slower than log2 n by more than a
constant. More precisely, we mean limndm $& = 0.
For example, log’-’ n is o(log2 n) but neither log2 n -
log n nor 5 log’ n is.

O(1ognloglogn) time using n + m EREW
processors was later given by Chong and Lam
[4]. The work of this EREW algorithm is
O((n + m)lognloglogn).

Note that all previous algorithms that can
find connected components in o(log2 n) time
are not work-optimal. It was not known
how to solve the problem in O(1og n log log n)
time using a sublinear number of processors.
Another related open problem was whether
(n + m)/ log n processors are sufficient to find
connected components in o(log2 n) time.

As a matter of fact, the algorithms in
[lo, 11, 12, 41 all need to repeatedly invoke
some fast sorting algorithms such as Cole’s
Parallel Merge Sort [5] , which can sort n num-
bers in O(1og n) time using n processors, and
which incurs O(n1ogn) work in total. Each
time the sorting is applied on integers lying in
the range [l, n] . Since sorting n integers in the
range [I, n] can be done in @(n) time sequen-
tially, Cole’s Parallel Merge Sort is not work-
optimal in this case, and this explains why
the work of these connected-components algo-
rithms still have a distance from linear. Ob-
viously, one may think of those parallel algo-
rithms designed for sorting integers in a small
range, yet the most work-efficient algorithm
known for integer sorting, given by Albers and
Hagerup [l] , runs in O(log’.’ n(log1og n)0.5)
time using n/ log n EREW processors. If this
integer sorting algorithm is used, though the
work may be improved, we apparently would
obtain an algorithm much slower than that of

In this paper, we present a parallel algo-
rithm which runs in O(lognlog1ogn) time
using (n + m)/loglogn EREW processors;
hence the work is O ((n + m)logn). This is
the first algorithm that improves the proces-
sor requirement of the fastest existing EREW
algorithm to sublinear. The second algo-
rithm to be presented uses (n + m)/ logn
EREW processors to solve the problem in

141.

453

O (l ~ g ’ . ~ n(log1og time. The work in-
curred is O((n+m)(log n)0~5(ioglogn)’~5), the
best among all previous algorithms which run
in o(log2n) time. The performance of the
second algorithm may be better appreciated
if one note that, a t present, using n l logn
processors, even sorting n integers in the
range [1,n] cannot be achieved in less than

n(1og log n)0.5 time.

2 Preliminary

Most of the parallel algorithms for finding
connected components use an iterative ap-
proach: In the first iteration, the vertex set I/
is partitioned into subsets (each of size a t least
two) according to some simple rules. Vertices
within the same partition must be connected,
but two connected vertices may lie in two
different partitions. The graph is then con-
tracted to a smaller graph as each partition is
represented by one of the vertices within that
partition and the adjacency lists of the ver-
tices are combined into one as the adjacency
list of the representative vertex. In each sub-
sequent iteration, we work on the representa-
tive vertices only and repeat the partitioning
and contracting process.

After sufficient iterations, every connected
component will be represented by one vertex,
and all vertices know the representative ver-
tex of the connected component they belong
to. To test whether two vertices are in the
same connected component, we simply com-
pare their representative vertices.

The efficiency of such approach depends
on two issues: to partition the vertices ef-
ficiently and to keep the number of itera-
tions small. For instance, those older algo-
rithms [6, 3, 71 can perform the partitioning
in O(1ogn) time using n + m EREW pro-
cessors and the number of iterations can be
bounded by O(1ogn) [9], hence they can find
connected components using O(log2 n) time

and O ((n + m)log2 n) work. Intuitively, the
number of iterations is determined by the ef-
fectiveness of the partitioning process. The
number of iterations will be small if, in ev-
ery iteration, most of the partitions contain a
large number of vertices.

The two algorithms presented in this paper
are also based on the above approach.

3 Algorithm I
In this section, we show an algorithm to
find the connected components of an undi-
rected graph in O(1og n log log n) time using
(n + m)/ log log n processors.

3.1 Background

Connect(IC): This paper will often make use
of a procedure called Connect(k) which was
given in (41: Consider any graph G = (V, E)
with n vertices and m edges. Let k be any
positive integer bounded by log log n. Then
executing Connect(k) on G will partition the
vertices of G in such a way that any ver-
tex v E V is found in a partition contain-
ing at least 2’’ vertices connected to t~ if
v’s connected component in G consists of
22k or more vertices, otherwise all vertices in
U’S connected component are put together in
U’S partition. Connect(k) reports each par-
tition in the form of a rooted tree, and the
root will be regarded as the representative
of the partition. The time required to exe-
cute Connect(k) can be as little as O(IC29
time provided that n + m processors are avail-
able. In particular, if k = loglogn, i t takes
O(1ogn loglog n) time to execute Connect(IC),
which can put all vertices in every connected
component of G into a rooted tree, but it re-
quires more than (n+m)/ log log n processors.

In this paper, we will often invoke
Connect(k) with IC = log log n - log log log n.
This requires O(1og n) time using n + m pro-
cessors, or, by Brent’s scheduling principle [2],

454

O(lognlog1ogn) time using (n+m)/ loglogn
processors. In those cases where m is known
to be greater than n, we can simplify the pro-
cessor complexity as m and m/ loglog n, re-
spectively.

Working on a smaller subgraph: As
mentioned above, for a graph G = (V ,E)
with n vertices and m edges, if we use
less than a linear number of processors, say,
(n + m)/ loglog n, executing Connect(t) on
G with k = loglog n - logloglogn cannot be
done in O(1ogn) time. Thus, we will work
on a subgraph of G with fewer edges so that
the time bound of O(1ogn) can be met. Let b
be an integer less than n. Define a subgraph
G(b) with the same vertex set as Gas follows:

Every vertex v chooses b distinct
neighbors from its adjacency list, or
all if there are less than b neighbors
available. G(b) includes a l l edges
(u , v) such that U has chosen v or
TI has chosen U in the previous step.

The subgraph G(b) contains a t most nb edges.
Some vertex in G(b) may have more than b
neighbors, though. For any vertex v E V , v’s
connected component in G(b) is a subset of
that in G. Moreover, if v’s connected compo-
nent in G contains z < 6 vertices then v’s con-
nected component in G(b) contains exactly z
vertices.

Let k = log log n - log log log n. Consider
the subgraph G(b) where b = 22k = n A .
G(b) contains at most n ” 6 edges. Note
that n’+& processors are sufficient to ex-
ecute Connect(k) on G(b) in O(1ogn) time.
For any vertex v of G, if v’s connected com-
ponent in G contains less than b vertices, all
vertices in this connected component must be
found together after executing Connect(k) on
G(b); otherwise, v is involved in a connected
component with at least nl/loglogn vertices in
both G and G(b), executing Connect(k) on
G(b) would report TI in a partition of size at

least n k vertices.
Ext rac t ing dis t inct elements f rom an

adjacency list: Our connected component
algorithms may contract a given graph G to
a smaller multi-graph GI. That is, G’ does
have fewer vertices than G, but may involve
multiple edges between some pair of vertices.
Extracting a simple subgraph G’(b) from G’
is not trivial because the adjacency lists of
vertices in G‘ may contain a lot of duplicate
entries. This motivates US to study the fol-
lowing problem.

Consider any h 5 n linked lists, each
composed of integers not necessarily
distinct. The total length of these
lists, denoted by I , is at most n2.
We want to devise a parallel algo-
rithm using I / log log n processors to
extract as many as n G elements
from each list in O(1og n) time.

1

A simple solution to this problem is to sort
each list in parallel. Identical elements within
each list become adjacent elements. Then
it is easy to get rid of the redundant ele-
ments in each list and then extract the first
nloilogn remaining elements from each list.
This, however, requires O(1ogn) time using
1 processors [5] , or O(lognlog1og n) time us-
ing I/ loglog n processors. A more elaborate
solution is as follows: Divide each list into
segments; each segment except the last one
contains n A log n consecutive elements.
Sort all the segments in parallel and com-
press identical elements in each segment. This
can be done in O(1og n / log log n) time using 1
processors, or O(1og n) time using l / loglog n
processors. If a list has only one segment
or contains a segment composed of a t least
n E k distinct elements, then i t is done. For
all other lists whose segments each contains
less than n h distinct elments, their total
length must have been shortened by a fac-
tor of logn and is at most l l logn . We can

1

455

.-,,, ,

Figure 1: (a) An undirected graph. (b) The vertices are partitioned into groups, each
of which are connected. Edges between vertices inside the same partition are internal
edges (e.g. edges (1,2), (1,13)). Edges (13,12) and (13,15) are multiple edges between
the leftmost and the lower partition. Other multiple edges are (6,7) and (6,9), as well
as (3,12) and (11,lO).

now sort all the remaining lists and extract all
their distinct elements in O(1og n) time using
O(I/ logn) processors.

3.2 The algorithm

Given an undirected graph G with n vertices
and m edges, we want to find the connected
components of G using (n + m)/loglogn
processors. We first consider the case in
which the number of processors available,
(n + m)/ log log n, is no less than nl+&.
We will show later how to deal with the case
when m is not big enough to guarantee this
condition.

The algorithm consists of at most log log n
phases, each requires O(1ogn) time. To ease
our discussion, let Go = G. The input to
Phase i, where 0 5 a < loglogn, is a graph
G,, and the output another graph Gi+l.

In Phase 0, we extract a subgraph Go(b)

from GO and execute Connect(k) on Go(b),
where k = log log n - log log log n and b = 22k .
As mentioned earlier, this requires O(1ogn)
time using n'+& processors. A partition
of size less than b reported by Connect(k) cor-
responds to a connected component of Go and
can be reported immediately. For a partition
with b or more vertices, we use the root re-
ported by Connect(k) to represent all vertices
in the partition and merge the adjacency lists
of all vertices in Go into a single adjacency
list for the root. Note that the new adjacency
list may contain internal edges (i.e., edges
pointing to vertices inside the same partition)
and external edges linking to other partitions.
Internal edges can be removed from all the
roots'new adjacency lists in O(1og n) time us-
ing m/logn processors. In other words, we
contract Go to a smaller graph GI whose ver-
tices each represents at least b vertices of Go.
GI is possibly a multi-graph. See Figure 1.

456

Next, we proceed to Phase 1. We use the
algorithm mentioned earlier to extract a sim-
ple subgraph G1 (b) from G1 in O(1og n) time
using O(m/ log log n) processors, and execute
Connect(IC) to partition the vertices of Gl(b).
Every connected component of GI with less
than b vertices is found in a single partition.
That means, a connected component of Go
with less than b2 vertices can be reported at
or before Phase 1. Other partitions contain-
ing at least b vertices of G1 are to be repre-
sented by their roots. Thus, GI is contracted
to a smaller graph Gz whose vertices each
represents at least b2 vertices of Go. We re-
peat these extraction and contraction steps
phase after phase until all connected compo-
nents of G have been reported. Since ev-
ery connected component of Go containing
less than b' or n& vertices can be re-
ported after executing i phases, we conclude
that log log n phases are sufficient to find the
largest connected component of Go. Each
phase can be implemented in O(1ogn) time
using (n + m)/ log log n processors.

Preprocessing: At the beginning of the
section, we assume that the input graph G is
dense and there are sufficient processors. If
G has few edges, i.e., (n + m)/loglogn <
n l + h , we first execute Connect(IC) di-
rectly on G with IC = loglogn - logloglogn.
This can be done in O(1og n log log n) time us-
ing (n + m)/loglogn processors. G is then
contracted to a smaller graph G' with n' 5
nl-* vertices. Note that nlloglogn >
n' I+&. We have enough processors to
work on G' as if G' is the input. This requires
O(1og n'log log n') time.

4 Algorithm I1

The work incurred by Algorithm I is O((n +
m)logn). To further improve the work, we
use a more flexible schedule and a parallel in-
teger sorting algorithm that uses fewer op-

erations. At present, the best of such inte-
ger sorting algorithms, devised by Albers and
Hagerup [I], can sort z integers drawn from
the range [O, z - 11 in O(log'.' z log logo.' z)
time using z/ log x processors on the EREW
PRAM. Note that this algorithm is slower
than Cole's O(1ogz) time parallel merge sort,
but it requires O(x(1ogs log log z)'.') instead
of log x operations.

The algorithm presented in this section
can find the connected components of an
undirected graph G with n vertices and m
edges in O((1og nloglog n)'.') time using (n+
m)/ log n processors. We first consider the
case where ml logn 2 2n and hence more
than 2n processors are available. Later we
will show a simple preprocessing to remove
this assumption.

Let d = m/n log n 2 2. Algorithm I1 con-
sists of at most log(1ogdn) + 1 phases.2 Let
Go = G. The input to Phase i, where 0 5
i 5 log(logdn), is a graph G, with n/d2'-'
vertices, and the output a smaller graph Gl+l
with n/d2'+'-' vertices. In Phase i, we ex-
tract a subgraph G' from G;, which has the
same vertex set as G, but contains at most
m/log n edges, and then execute Connect(k)
with IC = log log n to find all connected com-
ponents of G'. Similar to Algorithm I, Gl+l
is composed of the roots of those relatively
large connected components of G' reported by
Connect(k). Details are as follows.

Extracting G' from Gi: As G, may
be a multi-graph (i.e., the adjacency list of
a vertex may contain duplicate entries), we
first apply Albers and Hagerup's algorithm
[l] to sort each adjacency list. Gi cannot
have more edges than G and the total length
of all adjacency lists of Gi is bounded by
m 5 n2. Thus, the sorting can be done in
O((1og n)1 .5 (i~g l~g n)'.') time using m/ log n

'For example, if d = 2, log(logdn) = loglogn,
when d = ne for some 6 > 0, log(log,n) will be a.

constant.

457

processors. Redundant elements are then re-
moved from each adjacency list and G; be-
comes a simple graph. G' is defined to be
Gi(d''). If Gi has at most n/d2'-l vertices,
then G' has at most (n/d"-')& or ml logn
edges.

Finding the connected components of
G': We execute the procedure Connect(k)
with k = loglogn on G', which has at
most n vertices and ml logn edges. This
can be done in O(lognlog1ogn) time using
n + m/ log n processors, or simply m/ log n
processors (since we assume that m/logn 2
n). Recall that G' satisfies the property that,
for any vertex v, if v is connected to less than
d'' vertices in Gi, these vertices including v
must be found in a single connected compo-
nent of G'; otherwise, v's connected compo-
nent in G' involves a t least d" vertices. It is
easy to prove by induction that each vertex in
Gi represents a t least vertices that are
connected in Go. In other words, for a con-
nected component of Go with no more than
dZi- 'dzi = d2'+'-' vertices, either it has been
identified before Phase i or there is a corre-
sponding connected component in G. involv-
ing at most dz' vertices. At the end Jf Phase
i, all connected components of Go which con-
tain less than d''+'-' vertices must have been
found.

Cons t ruc t ing G,+l: G; has at most
n / d 2 ' - * vertices. The number of connected
components of G' which contain d" or more
vertices is a t most n/d' . We use the
roots of such components to represent the ver-
tices of G; and form a smaller graph Gitl.
The details are similar to Algorithm I. The
algorithm terminates when G;+l is empty or
has only one vertex. In the worst case, the
algorithm may run up to Phase log(1ogd n).

The most time-consuming step in each
phase is the integer sorting, which re-
quires O((logn)'.5(loglog time. As
there are a t most log(1ogdn) + 1 phases,

i+1-1

the time complexity of Algorithm I1 is
O((lognlog1og n)1.5). Note that the denser
the input graph, the more efficient Algorithm
I1 is. For instance, if m > nl+C log n for some
c > 0, then d = nc and Algorithm I1 requires
only O(1) phases.

Preprocessing: If the input graph G has
few edges and m l l o g n < 2n, we first exe-
cute Connect(k) with k = logloglogn + 1 di-
rectly on G and then contract G to a smaller
graph G' containing n' _< n/2logn vertices.
Since there are (n + m)/logn 2 2n' proces-
sors available, we can now execute Algorithm
I1 on G'.

5 Concluding Remarks

We have presented two improved algorithms
for finding the connected components of an
undirected graph in the EREW PRAM: one
is running in O(lognlog1og n) time using
(n + m)/loglogn processors while the other
takes O ((l ~ g n l o g l o g n) ~ . ~) time and (n +
m)/logn processors. The work of these d-
gorithms are O((n + m)logn) and O ((n +
m)(log n)0.5(i~gi~gn)1.5) respectively. It is
interesting to know whether these algorithms
can be improved to use fewer processors while
maintaining the time bound. Using random-
ization, Halperin and Zwick (81 have lately
devised an optimal EREW algorithm which
finds connected component in O(1ogn) time
with high probability using (n+m)/ log n pro-
cessors. It remains to see whether a deter-
ministic EREW or CREW algorithm using
optimal work and less than log' n time (say,
1ogltC n for some E < 1) exists. On the other
hand, even we relax the processor requirement
to any polynomial (say, n3) , it is still an open
problem whether the problem can be solved
in time less than log n log log n. The ultimate
goal is to devise an O(1og n) time algorithm,

References

[l] S. Albers and T. Hagerup, Improved
Parallel Integer Sorting without Con-
current Writing, Proc. 3rd Annual
ACM-SIAM Symposium on Discrete
Algorithms, 1992, pp.463-472.

[2] R.P. Brent, The Pamllel Evaluation of
General Arithmetic Ezpressions, Jour-
nal of the ACM, 21(1974), pp. 201-206.

[3] F.Y. Chin, J. Lam, and I-N. Chen,
Eficient Pamllel Algorithms for some
Gmph Problems, Communications of
the ACM, 25(1982), pp. 659-665.

[4] K.W. Chong and T.W. Lam, Find-
ing Connected Components in
O(lognlog1ogn) time on the EREW
PRAM, Proc. 4th Annual ACM-SIAM
Symposium on Discrete Algorithms,
1993, pp. 11-20.

[5] R. Cole, Pamllel Merge Sort, SIAM
Journal of Computing, 17(1988), pp.
770-785.

[GI D.S. Hirschberg, A.K. Chandra, and
D.V. Sarwate, Computing Connected
Components on Parallel Comput-
ers, Communications of the ACM,
22(1979), pp. 461-464.

[7] Y . Han and R.A. Wagner, An Eficient
and Fast Parallel-Connected Compo-
nent Algorithm, Journal of the ACM,
1990, pp. 626-642.

[8] S. Halperin and U. Zwick, An Op-
timal Randomized Logarithmic Time
Connectivity Algorithm for the EREW
PRAM, Proc. Symposium of Parallel
Algorithms and Architectures, 1994,
pp. 1-10.

[9] J. JBTL, A n Introduction to Parallel
Algorithms, Addison-Wesley, 1992, pp.
203-260.

[lo] D.B. Johnson and P. Metaxas, Con-
nected Components in O(lg3f2 IVl)
Parallel Time for the CREW PRAM,
Proc. 32nd Annual IEEE Symposium
on Foundations of Computer Science,
1991, pp. 688-697.

[ll] D.B. Johnson and P. Metaxas, A Par-
allel Algorithm for Computing Mini-
mum Spanning Trees, Proc. 4th An-
nual ACM Symposium on Parallel Al-
gorithms and Architectures, 1992, pp.
363- 372.

[12] D.R. Karger, N. Nisan, and M. Par-
nas, Fast Connected Components Al-
gorithms for the EREW PRAM, Proc.
4th Annual ACM Symposium on Par-
allel Algorithms and Architectures,
1992, pp. 373-381.

[13] R.M. Karp and V. Ramachandran,

Shared-Memory Machines, Handbook
of Theoretical Computer Science, vol
A, J. van Leeuwen Ed., MIT Press,
Massachusetts, 1990, pp. 869-941.

[14] N. Nisan, E. Szemeredi, and A.
Wigderson, Undirected Connectivity
in O (l ~ g ' . ~ n) Space, Proc. 33rd An-
nual IEEE Symposium on Founda-
tions of Computer Science, 1992, pp.

Parallel Algorithms for

24-29.

459

