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Motion Estimation from Spheres

Guoqiang Zhang and Kwan-Yee K. Wong
Department of Computer Science, University of Hong Kong,

Hong Kong SAR, China
{gqzhang, kykwong}@cs.hku.hk

Abstract

This paper addresses the problem of recovering epipo-
lar geometry from spheres. Previous works have ex-
ploited epipolar tangencies induced by frontier points on
the spheres for motion recovery. It will be shown in this pa-
per that besides epipolar tangencies, N2 point features can
be extracted from the apparent contours of the N spheres
when N > 2. An algorithm for recovering the fundamental
matrices from such point features and the epipolar tangen-
cies from 3 or more spheres is developed, with the point fea-
tures providing a homography over the view pairs and the
epipolar tangencies determining the epipoles. In general,
there will be two solutions to the locations of the epipoles.
One of the solutions corresponds to the true camera config-
uration, while the other corresponds to a mirrored config-
uration. Several methods are proposed to select the right
solution. Experiments on using 3 and 4 spheres demon-
strate that our algorithm can be carried out easily and can
achieve a high precision.

1. Introduction

In computer vision and computer graphics, many studies
have been conducted on motion estimation. For the case of
point correspondences, the geometric information has been
well studied, like the computation of fundamental matrix
between two views [13], trifocal tensor of three views [3]
and point-based factorization algorithm of N views [9]. Re-
cently, other features, like lines, conics and silhouettes of
arbitrary objects, are being studied and exploited in motion
estimation. Unlike point features, the use of line correspon-
dences in motion estimation involves at least three images
to derive constraints on the viewing geometry [10]. For
the case of silhouettes, the epipolar tangents to the silhou-
ettes are exploited for recovering epipolar geometry. In [2],
Cross et al. developed an algorithm for motion estimation
from point features and epipolar tangencies . In [11], Wong
and Cipolla first dealt with the circular motion problem us-
ing the two outer epipolar tangencies. Silhouettes from gen-

eral viewpoints are then registered with the circular motion
sequence. In [8], Sinha et al. calibrated a camera network
(internal parameters and external parameters) using epipo-
lar tangents from dynamic silhouettes.

The literature is somewhat sparse when it comes to the
problem of recovering camera geometry from conic corre-
spondences. In [7], Schulz-Mirbach and Weiss proposed
that the constraints on epipolar geometry can be derived
from conic correspondences induced by planar conics, but
no results had been presented. In [5], Kahl and Heyden
extended their work to general quadrics, like spheres and
ellipsoids, by deriving a different form of constraints on
the epipolar geometry. The minimum data required are 4
quadrics with each one providing two constraints, which is
essentially the same as the case of using silhouettes of ob-
jects, and the constraints from the two outer epipolar tan-
gents can be nicely derived from the analytic expression of
the images of quadric surfaces (conics). Recently, Kamin-
sky and Shashua proposed to recover epipolar geometry
from general planar curves and spatial curves [6], of which
the contribution is mainly on theorem.

Another motivation for the work stems from the need of
calibrating a camera network, which is a necessary and im-
portant step in many computer vision studies. Calibrating
such a large number of cameras using a general 3D refer-
ence object (like a planar pattern) is tedious and cumber-
some because such a pattern will not be visible in all views
simultaneously. Taking the sphere as the reference object
can, however, easily overcome this problem. The work
of recovering camera internal parameters from spheres has
been addressed in [1, 12]. In [1], in addition to recover-
ing camera internal parameters, Agrawal et al. also men-
tioned the possibility of motion estimation. However, only
the sphere centers are exploited in their work and also the
radii of all the spheres are required to be equal.

In this paper, we use spheres to recover the epipolar ge-
ometry. Note that 2 spheres together can be viewed as a sur-
face of revolution. The envelops of planes bitangent to these
2 spheres form 2 cones with the 2 vertices lying on the axis
of the surface of revolution (see Figure 1). We will show
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that the images of these 2 vertices can be computed from
the apparent contours of the spheres in the image. 3 spheres
can provide 6 vertices, with all these points lying on the
plane passing through the 3 sphere centers. Together with
the epipolar tangent constraints (viewing geometry not on
the plane where the vertices lie), the epipolar geometry can
be recovered from the point correspondences of such ver-
tices and the sphere centers. The advantage of the proposed
method is straightforward. Besides epipolar tangent con-
straints, point features are shown to be extracted from the
imaged spheres. The minimum number of spheres required
is 3, which is advantageous over the work in [5]. Also the
recovered points have high precision because of the good
estimation of conics (sphere images). Experiments demon-
strate that our algorithm can be carried out easily and can
achieve a high precision.

The reminder of this paper is organized as follows.
Section 2 briefly reviews the projection properties of the
sphere surfaces. Section 3 describes how to extract the
point features from the apparent contours of the spheres.
Section 4 presents the algorithm for recovering epipolar ge-
ometry from 3 or more spheres. Section 5 gives the experi-
mental results on using 3 and 4 spheres. A short conclusion
is given in Section 6.

2. Projection of A Sphere

A sphere is a special kind of quadrics, of which the pro-
jection properties have been described in details in [4]. In
homogeneous coordinates, a quadric surface can be repre-
sented by a 4× 4 symmetric matrix Q. Any point X on the
surface satisfies

XTQX = 0.

A dual quadric Q∗ is an alternative expression of the
quadric Q in terms of the planes tangent to the quadric sur-
face. The corresponding equation for a tangent plane π is
πTQ∗π = 0, where Q∗= adjoint of Q, or Q−1 if Q is in-
vertible.

It is indicated in [4] that the projection of a quadric Q
under the camera matrix P is a conic C. The projection is
formulated as

C∗ = PQ∗PT, (1)

where C∗ is the dual conic. Considering a sphere with cen-
ter a and radius r, under the camera matrix P = K[ I 0 ],
its image, the dual conic C∗ is given by

C∗ = KKT − (Ka/r)(Ka/r)T. (2)

C can be obtained as the inverse of C∗. Hence the appar-
ent contour of a sphere in the image can be analytically ex-
pressed as a conic, or equivalently as a dual conic.

Figure 1. Two spheres with the two bitangent cones. The two ver-
tices lie on the axis passing through the sphere centers.

3. Point Features from Imaged Spheres

From equation (2), it can be concluded that neither the
imaged sphere center nor the image of any axis passing
through the sphere center can be extracted from the image
of a single sphere. Nevertheless, we can address the prob-
lem from another point of view by considering 2 spheres
together. Note that 2 spheres can be viewed as a surface of
revolution, with the axis of revolution passing through the 2
sphere centers. The envelopes of bitangent planes to the 2
sphere surfaces are 2 cones whose vertices lie on the axis as
shown in Figure 1.

The projections of these 2 cone vertices in the image can
be extracted from the apparent contours of the 2 spheres
which are 2 conics. Consider the cone with its vertex lying
outside the line segment connecting the 2 sphere centers.
Without loss of generality, we set the center of Sphere 1
with radius r1 to be coincided with the world origin (see
Figure 2). The center of sphere 2 with radius r2 is as-
sumed to lie on the Z-axis with coordinates ( 0 0 t )T.
Since the two spheres are invariant while rotating about
the Z-axis, the camera center can be set lying on the X-
Z plane with coordinates ( X0 0 Z0 )T. The plane
( A B C D )T passing through the camera center and
tangent to both spheres (with both spheres lying on the same
side of the plane) should satisfy

⎧⎨
⎩

AX0 + CZ0 + D = 0
D/

√
A2 + B2 + C2 = r1

(Ct + D)/
√

A2 + B2 + C2 = r2
. (3)

The solution is derived to be
⎧⎪⎪⎨
⎪⎪⎩

D = r1
C = (r2 − r1)/t
A = (−Z0r2 + Z0r1 − tr1)/(tX0)
B = ±√

1 − C2 − A2

. (4)

Equation (4) reveals that there are two solutions which cor-
respond to the two planes as indicated in Figure 2.
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Figure 2. Bitangent planes to the 2 spheres with the intersection
line passing through the camera center and Vout. The 2 spheres
are on the same side of the tangent planes.

It can be easily verified that the point Vout with co-
ordinates ( 0 0 tr1

r1−r2
)T lies on both tangent planes.

Hence, the intersection line of the two planes is determined
by the camera center and Vout. Note that Vout is a point
on the Z-axis and is determined only by the 2 spheres. It
can thus provide a point correspondence between different
views. It can be seen easily that these 2 tangent planes
project as 2 lines in the image, which are tangent to the
apparent contours of both spheres. The intersection point of
these 2 lines gives the image of Vout.

The analysis is similar for the other cone with its vertex
lying within the line segment connecting the 2 sphere cen-
ters, (see Figure 3). Due to the fact that the 2 spheres should
be located on different sides of the tangent plane, the set of
equations now becomes

⎧⎨
⎩

AX0 + CZ0 + D = 0
D/

√
A2 + B2 + C2 = r1

(Ct + D)/
√

A2 + B2 + C2 = −r2
. (5)

By simple deduction, the solution is

⎧⎪⎪⎨
⎪⎪⎩

D = r1
C = −(r2 + r1)/t
A = (Z0r2 + Z0r1 − tr1)/(tX0)
B = ±√

1 − C2 − A2

. (6)

Similarly, the point Vin = ( 0 0 tr1
r1+r2

)T on the in-
tersection line of the 2 planes is determined only by the
2 spheres. It can provide one more point correspondence
between different views. Its image can be obtained as the
intersection of the inner bitangents to the 2 conics in the im-
age, as shown in Figure 3. For the case when the 2 conics
partially overlap with each other, the bitangents become 2
complex vectors, of which the intersection is still the image
of Vin. The image of the axis can be readily obtained as the
line passing through the images of Vout and Vin.

From the above analysis, we know that 2 spheres can
provide 2 point correspondences and the axis passing
through the 2 sphere centers. It is easy to see that for 3
spheres, there are totally 9 point correspondences, 6 from

camera
center

X

Z

Y

1Q

2Q

1r

2rt

Vin

T
0X 0 0Z( )

Figure 3. Bitangent planes to the 2 spheres with the intersection
line passing through the camera center and Vin. The 2 spheres are
on different sides of the planes.

the vertices of the cones and 3 from the sphere centers (ob-
tained as the intersections of the axis images). It should be
noted that all these 9 points are lying on a single plane. This
infers that these points only provide the geometry of the
plane, which are not sufficient for determining the epipolar
geometry (see [4]). To extend the conclusion, N spheres can
provide N2 point correspondences (N > 2). For the case
of 4 or more spheres in general positions, the points should
be distributed in a 3D world scene rather than on the same
plane. Hence, the camera geometry can be extracted easily
from the point features using classic algorithms [13, 3].

4. Recovery of Epipolar Geometry

4.1. Planar Parallax Geometry

Consider a pair of camera matrices P1 and P2 with
epipole ei, formed on the image of the camera Pi. The
fundamental matrix can be written in a plane plus parallax
representation, given by [4]

F = H−T[e1]× = [e2]×H, (7)

where H is a homography between the two views induced
by a world plane not passing through the two camera cen-
ters, and [e2]× is the 3×3 skew matrix satisfying [e2]×x =
e2×x. H can be determined from a minimum of four point
correspondences over the two views. By exploiting the ho-
mography, the epipole ei can be recovered from 2 more
points not on the plane for inducing the homography [4].

In [2], Cross et al. demonstated that if the apparent con-
tour of the object in the first view is transferred to the second
view via a homography induced by a world plane, the outer
bitangents to the apparent contour and the transferred con-
tour in the second view should be epipolar lines, and their
intersection point gives the epipole. This situation is illus-
trated in Figure 4. Backprojecting the apparent contours S1

and S2 of the object from both views gives 2 contours S′
1

and S′
2 in the world plane π. The geometry that the epipo-

lar plane O1O2X being tangent to the object at the frontier
point X results in a line L, which is the intersection of plane
π with this epipolar plane, being bitangent to these two con-
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Figure 4. Epipolar bitangency. The 2 contours S′
1 and S′

2 on the
plane π are the intersections of the plane π with the 2 cones formed
by backprojecting the apparent contours S1 and S2 of the object in
both views, respectively. The transferred contour in View 2 is ob-
tained by projecting S′

1 into View 2. x and x′ are the corresponding
outer epipolar tangent points.

tours. It follows that the outer bitangent to the images of the
2 contours S′

1, S′
2 in View 2 is an epipolar line. Hence, the

epipole ei can be determined by two outer epipolar bitan-
gent lines, and the fundamental matrix can thus be recov-
ered by (7).

4.2. Recovering Epipoles

In our work of recovering two view geometry from 3
spheres, a homography H between the two views is first
computed from the point correspondences induced by the
spheres (see Section 3). Note that the world plane is the
one passing through the 3 sphere centers. The degenerate
case that the plane passes through the camera centers can
be detected easily and may be avoided by carefully posi-
tioning the spheres. As indicated in [11, 8], generally, the
silhouettes of an object between two views can provide 2
outer epipolar tangent points, which correspond to 2 fron-
tier points on the surface of the object (see Figure 4). This
implies that 3 spheres can provide 6 frontier points, for the
computation of the fundamental matrix. Under perspective
projection, the frontier points would not all lie on the plane
for inducing the homography simultaneously, or it is equiv-
alent to say that they provide the viewing geometry off the
plane. The epipole ei can thus be recovered from them us-
ing the obtained homography. In our work, since the appar-
ent contour of a sphere is analytically expressed as a conic,
the transformation of the apparent contours and further the
computation of epipoles can be performed easily.

Note that the 3 spheres are bilateral symmetric w.r.t. the
plane passing through the 3 sphere centers. This geome-
try induces 2 epipoles in both View 1 and View 2, one for
the real solution and the other one for the projection of a
virtual camera center, as shown in Figure 5. Note that the
apparent contour and the transferred contour in Figure 5(c)
are very close to each other. This situation would, however,
not affect the computation of bitangent epipolar lines. This
is because the conics representing the contours can be esti-
mated with high precision. Now let’s consider the appear-

View 1 View 2

a b

c

false epipolar
lines

epipolar
lines

Figure 5. (a) and (b) are two views of a world scene with 3 spheres
and a planar pattern. Each apparent contour and the correspond-
ing transferred contour provide 4 outer bitangent lines. 2 of them
are the expected epipolar lines, and the other 2 the epipolar lines
w.r.t. a virtual camera. (c) shows the apparent contour and the
transferred contour in the marked rectangular in View 2.

plane passing through
sphere centers

virtual camera

2e
'e

v

contour
generator

1O

2O

1 'O

Figure 6. The virtual camera and Camera 1 are bilateral symmetric
w.r.t. the plane π passing through the 3 sphere centers. Both real
cameras are on one side of plane π, and the virtual camera is on
the other side. v is the vanishing point of the norm direction of
plane π.

ance of the virtual camera by taking View 2 as an example.
As shown in Figure 6, the virtual camera is a mirror ver-
sion of Camera 1 about the plane π. Hence backprojecting
the apparent contours of a sphere from Camera 1 and the
virtual camera gives the 2 identical contours on the plane
π. Projecting these 2 identical contours onto View 2 results
in 4 outer bitangent epipolar lines, 2 for the virtual cam-
era and 2 for Camera 1. Correspondingly, the intersection
points are the projections of the virtual camera center O′

1

and the center of Camera 1 O1. The analysis for View 1 is
similar.

The true epipole can be easily distinguished from the two
solutions. A direct method is to select the correct one man-
ually by integrating the world scene information from im-
ages, like in Figure 5 (a), (b). If the radii of the 3 spheres
are equal, the true epipole can be automatically selected in-
stead. As shown in Figure 6, the line connecting O′

1 and
O1 is orthogonal to plane π. Its image line e2e′ in View 2
should pass through vanishing point v. For the case where
both O1 and O2 are on the same side of π, the 3 points v,
e′ and e2 keep the relationship that e′ is within the line seg-
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ment ve2. This relationship can be exploited to get the true
epipole. It is known that v and the vanishing line l of π have
a pole-polar relationship w.r.t. the absolute conic ω, given
by

l = ωv = K-TK−1v,

where K is the calibration matrix [4]. When the radii of the
spheres are equal, it is not difficult to conclude that the im-
age of Vout in Figure 4 is lying on l. 3 spheres can provide
3 such points, which are sufficient to determine l. As for K,
it can be easily recovered from 3 spheres by applying the
algorithm presented in [12]. v can thus be computed from
the obtained l and K. The real epipole e2 is chosen to be
further away from v. On the contrary, if the two cameras
are on different sides of the plane π, the one closer to v is
chosen instead. If the radii of the 3 spheres happen to be un-
equal, vanishing point v can still be recovered by involving
a third view. Like the line e2e′ in Figure 6, the third camera
provides another line passing through v. This line together
with line e2e′ determine v uniquely.

To conclude, 3 spheres can provide 9 point features (pla-
nar geometry) and 6 frontier points (viewing geometry off
the plane determined by the 9 points) for computing the
fundamental matrix between two views. The fundamental
matrix can be easily recovered in the form of a plane plus
parallex expression with the point features providing the ho-
mography and the frontier points determining the epipole.
Extending the situation to N (N > 3) spheres, there should
be N2 point features and 2N frontier points for two views.
The point features alone can determine the epipolar geom-
etry using classic algorithms as discussed in Section 3. Al-
ternatively, if our algorithm is applied instead, the situation
of having two solutions for the epipole would not happen as
long as not all sphere centers are on the same plane. This is
because additional spheres break the symmetry in the con-
figuration. Compared with the algorithm in [5] which re-
quires a minimum number of 4 quadrics in the computation
of fundamental matrix, our method needs only 3 spheres,
and further it can be easily performed.

5. Experimental Results

To test the usefulness and effectiveness of our algorithm,
experiments on using 3 and 4 spheres, respectively, were
conducted. For the 3 spheres case, both simulated and real
data experiments were performed. The camera used in the
real data experiment was a Canon A95 digital camera.

5.1. Three Spheres Experiment

To understand the implementation of the algorithm, the
procedure is briefly summarized below:

1. Estimate the conics in the two images.

iFp

jFp

ip

jp

ip'

jp'

View 1 View 2

T
iFp'

T
jFp'

Figure 7. Two views of a sphere with an associated fundamental
matrix F. p and p′ are the outer epipolar tangent points. Fp and
FTp′ are the corresponding epipolar lines.

2. Extract the point features from the conics and then
compute a homography H over the two views.

3. Transfer the conics in one view to the other view using
H and determine the epipole e using bitangents.

4. Refine epipole e using frontier points.

In Step 2 of the algorithm, only 6 of 9 point features
were exploited in the computation of H. This is because the
projections of Vout are far away from the image centers,
and including these points in the computation affects the
precision of H greatly. To achieve a high precision in the
estimated epipolar geometry, the epipole e obtained in Step
3 is refined further. The cost function to be minimized is the
residual error given by the geometric distances between the
outer epipolar tangent points and the transformed epipolar
lines as shown in Figure 7, written as

ξ(e) =
1
2n

n∑
i=1

d(p′
i, F(e)pi) + d(pi, FT(e)p′

i), (8)

where n is the number of froniter points and function d is
the point-to-line Euclidean distance expressed in pixels.

In the synthetic data experiment, 3 spheres with unequal
radii were generated and rendered with different colors. The
image resolution was 640×480. Two views of the scene
were taken in the recovery of the epipolar geometry as
shown in Figure 8. The apparent contours of the spheres
were extracted using Canny’s edge detector and conics were
fitted to these contours by a robust least square ellipse fit-
ting algorithm. After refinement of the epipole e, the resid-
ual error ξ is not zero but 0.0216 pixels. This may be due
to the fact that there exist quantization noise in the rendered
image, and the conics failed to represent the apparent con-
tours without error. The ground truth for the epipole ei is
shown in the first row of Table 1, and in the second row are
the recovered parameters by our algorithm. The third row
displays the difference of the parameters in pixels. The er-
rors in the table are quite small compared with the ground
truth. The maximum distance between the recovered fea-
ture points over the two images (not including Vout) and
the ground truth is 0.14 pixels. The point Vout is unstable,
and the error would become bigger as it moves away from
the image center.
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X

View 1 View 2Y

Figure 8. Two views of the 3 synthetic spheres. The lines in the
image are the recovered outer tangent epipolar lines.

Data e1x e1y e2x e2y

Ground truth 1074.1 -375.28 -551.61 -174.37
Recovered 1083.2 -382.95 -542.54 -169.95

Difference(pixels) 9.2 7.7 9.1 4.4
Table 1. Epipoles for synthetic data experiment.

View 1 View 2

Figure 9. Two views of the 4 spheres and a planar pattern. The
lines in the image are the computed outer tangent epipolar lines.

In the real data experiment, 3 ping pong balls were used,
and a planar pattern was taken for evaluating the perfor-
mance. The image revolution was 640×480. The two views
of the spheres and the pattern are shown in Figure 5(a),(b).
After refinement of the epipole, the residual error ξ is 0.022
pixels. By using the obtained fundamental matrix, the com-
puted residual error for the points on the planar pattern is
0.16 pixels.

5.2. Four Spheres Experiment

To test the accuracy of the recovered point features, the
points from 4 spheres were only exploited in the computa-
tion of the fundamental matrix. In the experiment, 4 spheres
were placed in general positions to ensure that the point fea-
tures extracted from the spheres would not lie on the same
plane. The two views are shown in Figure 9. Like the 3
spheres experiment, 6 of the 16 point features were not in-
cluded in the computation of the fundamental matrix. The
residual error of the frontier points is 0.04 pixels. The points
from the planar pattern were then exploited to evaluate the
performance, and the residual error ξ is 0.32 pixels, which
demonstrates the high precision of the obtained fundamen-
tal matrix.

6. Conclusion

We have proposed a simple and effective algorithm for
recovering the epipolar geometry from spheres. We found

that besides the outer epipolar tangent constraints, point fea-
tures over the views could be extracted from the apparent
contours of the spheres. We have shown how the point
features and the outer epipolar tangent constraints from 3
spheres can be combined nicely in the recovery of the fun-
damental matrix. The method does not require any initial
guess of parameters nor involve any high dimensional non-
linear minimization. The procedure of recovering epipolar
geometry from 4 or more spheres is discussed. The exper-
iments on using both 3 and 4 spheres demonstrate the ro-
bustness and the effectiveness of our algorithm.
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