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Abstract 

Home migration is used to tackle the home assign- 
ment problem in home-based sofnvare distributed shared 
memoiy systems. We propose an adaptive home migra- 
tion protocol to optimize the single-writer pattern which 
occurs frequently in distributed applications. Our ap- 
proach is unique in its use of a per-object threshold 
which is continuously adjusted to facilitate home migra- 
tion decisions This adaptive threshold is monotonously 
decreasing with increased likelihood that a particular ob- 
ject exhibits a lasting single-writer pattern. The threshold 
is tuned according to the feedback of previous home mi- 
gration decisions at runtime. We implement this new 
adaptive home migration protocol in a distributed Java vir- 
tual Machine that suppons truly parallel execution of 
multi-threaded Java applications on clusters. The analy- 
sis arid the experiments show that our new home migra- 
tion protocol demonstrates both the sensitivily to the lasting 
single-writer pattern and the robustness against the tran- 
sient single-writer paltern. In the latter case, the pmtocol 
inhibits home migration in order to reduce the home redi- 
rection overhead. 

Keywords: Cluster Computing, Distributed Shared Mem- 
ory, Home-based cache coherence protocol. 

1. Introduction 

In recent years, computer cluster has gradually been ac- 
cepted as a scalable and affordable parallel computing plat- 
form by both academia and industry [5]. Message passing is 
one of the major programming paradigms on clusters, with 
which the programmers are required to write explicit code 
to send and receive data in order to coordinate processes in 
different cluster nodes. 

I This rescarch is supported by Hong Kung RCC Cmt HKU-7030/01 E 
ilnd HKULargeEquipmenrCrant 01021001. 

As an alternative, software Distributed Shared Memory 
(DSM) [ I ]  systems promise a higher programmability com- 
pared with the message passing paradigm. Software DSM 
provides a globally shared memory abstraction across phys- 
ically distributed memory machines, and parallel prosam- 
mers do not need to write explicit communication code. 
However, designing a high-performance software DSM sys- 
tem is far from trivial because many issues specific to DSM, 
such as programmer interface, memory consistency, and 
cache coherence, need to be addressed effectively. 

The memory consistency model of a DSM system pro- 
vides a formal specification of how the memory system 
will appear to the programmers [3]. From the viewpoint 
of programmcrs, sequential consistency is the most intu- 
itive model, which requires that the memory accesses within 
each individual process follow the program order and writes 
be made atomically visible to all the processes. Though 
intuitive, sequential consistency suffers from poor petior- 
mance due to excessive data communication among ma- 
chines [131. In order not to suffer such inefficiency, attempts 
were made to relax the memory order constraints as im- 
posed by sequential consistency. L a y  release consistency 
(LRC) [ I  I ]  is one of the state-of-the-art relaxed consistency 
models widely used in software DSM systems. In LRC, a 
write will not be propagated to another process until that 
process acquires a lock. 

TreadMarks [ 121 adopts a multiple-writer cache coher- 
ence protocol to implement lazy release consistency. Tread- 
Marks uses twin and di f  techniques to support multiple pro- 
cesses writing on the same shared virtual memory page si- 
multaneously due to false sharing. On a write fault to a lo- 
cal cached page, a copy of that page, called twin, is cre- 
ated. Later, the diff, which is the local updates ever per- 
formed, can be figured out by comparing the current page 
with the previously saved twin. The protocol is considered 
to be homeless because the diffs are saved and managed at 
each process. 

Although TreadMarks’ homeless protocol can greatly al- 
leviate the false sharing problem, it may still suffer from 
heavy communication and protocol overheads [IO]. In or- 
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der to scrve a page fault, the faulting process has to fetch the 
diffs from cach process that has updated the page before the 
fault according to LRC, which causes multiple round-trip 
messages. Each diff needs to be applied once at each pro- 
cess that fetches that diff, which amounts to a large over- 
head. In addition, the diffs could consume a lot of memory, 
and cleaning the useless difk may trigger a global garbage 
collection. 

In order to address the above problems, a home-based 
protocol to implement LRC, which is called HLRC, was 
proposed [IO]. In the home-based protocol, each shared 
coherence unit has a home to which all writes (diffs) are 
propagnted and from which all copies are derived. It bas 
been shown that the home-based protocol is more scalable 
than the homeless protocol because the home-based proto- 
col maintains a simpler state, sends fewer messages, has a 
lower diR overhead, and consumes much less memory [IO]. 

The asymmetry between the home copy and non-home 
copies in home-based protocols raises the home assignment 
problem. In home-based protocols, the home copy is al- 
ways valid. Accesses at the home node never incur com- 
munication overhead, while accesses at non-home nodes 
will trigger communication with the home node. There- 
fore, which node to act as the home will change the coher- 
ence data communication pattern, and influence the appli- 
cation performance. In fact, the optimal home assignment 
is  determined by the memory access patterns of the appli- 
cation. This inspires some dynamic home assignment pro- 
tocols that are able to adapt to runtime memory access pat- 
terns [9, 6, 15,71. 

In DSM applications, the single-wrifer access pattern 
happens if the shared coherence unit is only updated by one 
process for a certain period. It does not prohibit the shared 
coherence unit from being read by multiple processes at the 
same time. A few research projects [9,4, 141 have demon- 
strated that the single-writer pattern is common in DSM ap- 
plications. In this paper, we propose a novel home migration 
protocol to optimize the single-writer pattern. We only tar- 
get the single-writer pattern because home migration makes 
little difference in the multiple-writer situation so long as 
the home node is one of the writers. 

At runtime, an object can exhibit different access pat- 
terns during its lifetime. For example, an object can be up- 
dated by multiple writers concurrently, and then by a single 
writer exclusively: or an object can be updated by differ- 
ent writers sequentially, each persisting for sometime. Since 
home migration has to have the effect that the other pro- 
cesses would be informed of the new home, improper home 
migrations will degrade the performance by introducing a 
host of messages for new home notification. Therefore, it is 
a challenge to exploit the single-writer property as much as 
possible and at the same time maintain an acceptable level 
of home migration overhead. 

Our design of an efficient and precise home migration 
protocol introduces a per-object home migration thresh- 
old that is monotonously decreasing with increased likeli- 
hood that the corresponding object presents a lasting single- 
writer pattern. The threshold is continuously adjusted ac- 
cording to the feedback of previous home migration deci- 
sions. We show that this protocol is sensitive to the lasting 
single-writer pattern because the protocol can detect it as 
early as possible and the corresponding home migration is 
timely made. The protocol is also robust as it can avoid un- 
necessary home migrations, particularly when the applica- 
tions exhibit the transient single-writer pattern. 

We have implemented this home migration protocol in 
the global object space (GOS) of a distributed Java Virtual 
Machine (JVM) [7]. The distributed JVM transparently runs 
unmodified multi-threaded Java applications on a cluster, 
where Java threads are distributed to different cluster nodes 
to achieve parallelism. In the distributed JVM, the shared 
memory nature of lava threads calls for a GOS that “virtu- 
alizes” a single Java object heap spanning the entire clus- 
ter to facilitate transparent object accesses issued by dis- 
tributed Java threads. The COS is indeed a DSM service 
in an object-oriented system. The memory consistency of 
COS follows Java consistency that resembles LRC. 

The rest of the paper is organized as follows. Section 2 
surveys the related work. Section 3 discusses the home- 
based protocol and the home migration concept, as well 
as our previous approach. Section 4 elaborates on our new 
home migration protocol with the adaptive threshold. Sec- 
tion 5 presents the performance evaluation and in-depth dis- 
cussion. Section 6 concludes the paper. 

2. Related Work 

In J id ia  191, which is a page-based DSM system, those 
pages that are written by only one process between two bar- 
riers are recognized by the barrier manager and their homes 
are migrated to the single writing process. New home no- 
tifications are piggybacked on barrier messages. Similar to 
our approach. Jidia’s home migration protocol only opti- 
mizes the single-writer pattern. However, Jidia’s approach 
relies on the barrier synchronization. It will not work if the 
application does not use barriers or the DSM infrastructure 
does not expose the barrier function. For example, in our 
case, the Java programmers have to implement the barrier 
hy using more primitive synchronization operations such as 
lock/unlock/wait. Furthermore, since all the single-writer 
detection work is done centrally at the banier manager, it 
may cause considerable overhead when there are a fair num- 
ber of processes as well as shared pages. 
JUMP [6] adopts a migrating-home protocol in that the 

process requiring the page becomes the new home. The new 
home notification is broadcast to other processes at synchro- 
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nization points. Although this approach results in less diff- 
ing operations because the writes probably happen at the 
home node, the home migration decision ignores the in- 
herent memory access pattems of the application. If the 
accesses by the process at the new home do not persist, 
home migration will not improve the performance; instead, 
it could suffer from heavy home notification overhead. The 
worst case happens when the shared page is written by pro- 
cesses sequentially, which produces numerous home notifi- 
cation messages. 

Similar to our distributed JVM, Jackal [I51 allows un- 
modified multi-threadcd Java programs to run on distributed 
memory parallel machines. However, Jackal follows a dif- 
ferent approach by directly compiling Java programs into 
distributed native code. In terms of functionalities, Jackal’s 
runtime system is comparable to our GOS. Jackal’s run- 
time system enables an optimization called lazy flushing. 
The home of a shared coherence unit is fixed. However, if a 
unit is not shared by any other node and some node requests 
a copy for write access, the requesting node becomes the ex- 
clusive owner. The later reads and writes will be performed 
locally as if they were at the home. If other nodes want to 
share the unit, the current exclusive owner needs to be noti- 
fied. Like JUMP’S migrating-home protocol, the drawback 
of lazy Rushing is that it ignores the application’s inherent 
access pattems. Frequent transitions from and to an exclu- 
sive owner will cause a lot of communication overhead, and 
thus the number of transition are set to a maximum of five 
times in Jackal. 

In homeless protocols that implement LRC, some page- 
based DSM systems [4, 141 can adapt between the single- 
writer protocol and the multiple-writer protocol. The single- 
writer protocol does not use twin and diff techniques. In- 
stead, one process must get the ownership of a shared page 
before writing on it. The single-writer pattern may benefit 
from the single-writer protocol because diff overhead and 
diff accumulation can be avoided. In the context of page- 
based DSMs, accesses to different objects residing at the 
same page are mingled at the page level. So it is difficult for 
them to detect access patterns in  applications with fine-grain 
sharing. In [4], the DSM system switches to the siugle- 
writer protocol when it observes that the diff overhead is 
larger than that of requesting the whole page. In [ 141, the 
DSM system switches to the single-writer protocol based 
on the approximate association between locks and the data 
they protect. 

3. Home Migration Basics 

In this section, we first introduce the concept of home 
migration, then discuss several mechanisms to notify the 
new home after the home migration. We will also present 
our previous home mibvation protocol. 

PI P2 (Home of X) 

Figure 1. Home-based Protocol for LRC with 
multiple-writer support 

3.1. Home Migration Concept 

Figure I illustrates the home-based multiple-writer pro- 
tocol that implements LRC. In the figure, X represents some 
shared coherence unit, which could be either an object or a 
virtual memory page. Its home is at the processor where 
process P2 resides. Assuming the write on X performed by 
process P1 causes a fault, because either the local cached 
copy is outdated according to LRC or X is not cached at all, 
~1 will then fault-in the valid copy from X’s home, P2. Be- 
fore P1 could write on the newly fetched copy, it needs to 
create a twin, which is simply a copy of X. Later, when PI 
releases the lock, it eagerly creates the diff, which is the 
difference between the current X and the previously saved 
twin, and sends the diff to the home. And the diff will be ap- 
plied to the home copy of X at the home. 

If P1 is the only writer of X, we can migrate X’s home 
from P2 to P1, to avoid the communication overhead in- 
cluding faulting in the shared data and the diff propagation, 
the diff overhead including creating and applying the diff, 
and the memory consumption caused by the twin and the 
diff. 

On the other hand, if both P1 and P2 write on X, it does 
not matter which node to become the home. 

3.2. Home Location Notification Mechanism 

We assume there is a way to determine the initial home 
for each unit. For example, all units are initially assigned 
a home node by a well known hash function. If the home 
of a shared coherence unit is subject to migration, we need 
some mechanism to inform other nodes of the new home lo- 
cation. There are three mechanisms: broadcast, home m n -  
agrr, and forwarding pointer. 
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Broadcast On home migration, no particular action needs 
to he done. The new home location is later broadcast 
to all the nodes at some appropriate time such as syn- 
chronization points. 

HomeManager The most updated home location of a 
unit is always recorded in a designated manager node, 
which is known to all nodes. On home migration, the 
new home location is posted to the manager node. If 
later a process cannot locate the home of some shared 
unit, i t  can visit the manager node to find out where the 
current home is. 

Forwarding Pointer On home migration, a forward- 
ing pointer is left in the former home to point to 
the new home. If later a process visits the for- 
mer home, it can always he redirected to the current 
home via the givcn forwarding pointer. 

With the broadcast and home manager mechanisms, it is 
possible that the broadcast or update to the manager hap- 
pens after some node tries to fault in a copy from the home 
node. Then the former home is already obsolete, hut the new 
home is still not known. This situation needs to he handled 
carefully, for example, by waiting for sometime before re- 
peating the fault-in again. Notice that this situation will not 
happen with the forwarding pointer mechanism. 

Of the three mechanisms, which is superior depends on 
the memory access patterns of the applications and how fre- 
quent the home migration is. If after a home migration, all 
the other nodes need to visit the new home, then the broad- 
cast mechanism is superior to the others because a well im- 
plemented broadcast operation should he efticient for noti- 
fying all. Otherwise, the heavyweight broadcast may cause 
a large overhead. The merit of the forwarding pointer mech- 
anism is that it does not need to broadcast the new home lo- 
cation on home migration. However, the redirection effect 
may cascade where multiple home migrations may form a 
distributed chain of home forwarding pointers. Therefore, 
a process may he redirected multiple times before coming 
upon the current home, which is called redirection accumu- 
lation. It could cause significant overhead when home mi- 
gration happens frequently. The manager mechanism strikes 
a balance between the home notification cost and the home 
miss cost. However, on a home miss, the process needs to 
visit the old home, the manager, and the new home in se- 
quence, which is heavyweight compared with the broadcast 
mechanism and the forwarding pointer mechanism in the 
absence of redirection accumulation. 

3.3. Home Migration with Fixed Threshold 

In our previous work [71, we proposed a home migra- 
tion protocol to optimize the single-writer pattern. We de- 
signed and implemented a COS support for distributed N M  

running on clusters. To match the Java memory model, 
the coherence unit in our COS is a Java object. We use 
a home-based cache coherence protocol to implement the 
Java memory model that resembles LRC. We also use twin 
and diff techniques to support concurrent multiple writers 
on the same object. In our experiments, the home migra- 
tion optimization gives very positive performance improve- 
ment. 

In order to detect the single-writer access pattern, the 
COS monitors all home accesses as well as non-home ac- 
cesses at the home node. With the cache coherence proto- 
col, the object request can he considered a remofe read and 
the diff received on synchronization points a remote write. 
To monitor the home accesses, the access state of the home 
copy will be set to invalid on acquiring a lock and to read- 
only on releasing a lock. Therefore, the home access faults 
can he trapped and returned after the access is recorded. We 
call the write fault at home node the home write, and the 
read fault at home node the home read, respectively. 

At the home node, we define an object’s consecutive re- 
mote writes to he those issued from the same remote node 
and not interleaved with the writes from either the home 
node or other remote nodes. Note that under the Java mem- 
ory model, the remote writes are only reflected to the home 
node on synchronization points. Therefore the number of 
consecutive writes is the number of synchronizations dur- 
ing which the object is only updated by that node. At run- 
time, the COS continuously monitors consecutive remote 
writes for each object. We also introduce a predefined home 
migration threshold that represents some prior knowledge 
on the single-writer pattern. We follow a heuristic that an 
object is in the single-writer pattern if the number of con- 
secutive remote writes exceeds the home migration thresh- 
old. If the single-writer pattern is detected, when the ob- 
ject is requested again by the writing node, not only the ob- 
ject is replied, hut also its home is migrated. We adopt the 
forwarding pointer mechanism to notify others of the new 
home location. When an obsolete home node is requested 
for an object, it simply replies with the valid home node lo- 
cation. 

4. Home Migration with Adaptive Threshold 

Our previous home migration protocol uses a fixed home 
migration threshold that represents some prior knowledge 
on the single-writer pattern. As soon as the number of ob- 
served consecutive remote writes is larger than the thresh- 
old, the home migration will happen. This home migration 
protocol is different from all the other approaches discussed 
in the related work section by its unique continuous runtime 
adaptation to the per-object access pattern. The assumption 
is that the access history can he used to predict the future be- 
havior. 
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However, this protocol is still not satisfactory. Above all, 
it is difficult to decide the fixed home migration threshold. 
If it is too large, which implies a lazy migration policy, the 
home migration will be less sensitive to the single-writer 
pattern. thus causing unnecessary remote access overhead. 
If the home could be migrated earlier, more remote accesses 
could be transFormed to local accesses. On the contrary, if 
the threshold is too small, it implies an eager migration pol- 
icy. Although sensitive to the single-writer pattern, it will 
be less capable of avoiding unnecessary home migrations. 
If the single-writer pattern is transient in that it repeats for a 
very limited times, then the threads on the new home node 
may not perform any more accesses after the home migra- 
tion. Thus the home migration decision will not gain any 
performance improvement, but suffer from the home redi- 
rection overhead. We observe that the transient single-writer 
pattern is not worthy of home migration. The home migra- 
tion protocol should capitalize on the lasting single-writer 
pattern. 

The challenge here is to choose a threshold that yields 
both sensitivity and robustness for the single-writer pat- 
tern. By robustness we mean taking no migration action for 
the transient single-writer pattern, and by sensitivity the ap- 
proach responds actively to the lasting single-writer pattern. 
Furthermore, it is anticipated that different objects may have 
different access behaviors. It is more reasonable to use dif- 
ferent thresholds on different objects. 

Based on the above discussion, we propose a novel home 
migration protocol with an adaptive threshold. The adaptive 
threshold is monotonously decreasing with increased like- 
lihood that an object presents the lasting singlewriter pat- 
tern. A lower threshold will allow home migration to hap- 
pen more quickly. The adaptive threshold is continuously 
adjusted at runtime according to  the feedback of previous 
home migration decisions for each object. 

4.1. Runtime Feedback 

In order to measure the feedback of previous home mi- 
gration decisions, the COS will observe exclusive home 
writes and redirected object requests at runtime. 

We define exclusive home write to be that there is no re- 
mote write between an exclusive home write and an ear- 
lier home write. Clearly, exclusive home writes reflect the 
single-write pattern happening at the home node. So it rep- 
resents a positive feedback of previous home migration de- 
cisions. 

A redirected object request reflects the home redirection 
effect due to home migration. It represents a negative feed- 
back of previous home migration decisions. Redirected ob- 
ject requests take the redirection accumulation into account. 
For example, if an object request is redirected for three 
times before reaching the current home node, the number 

of redircctcd object requests will be considered to be three 
instead of one. 

In addition, it is observed that exclusive home writes 
and redirected object requests are associated with different 
costs. The home redirection overhead, which is measured 
by redirected object requests, is equal to the round-trip time 
for a unit-sized message. The benetits due to home migra- 
tion are from eliminated pairs of object fault-ins and ditT 
propagations. They are measured by exclusive home writes, 
and are related to the object size. Therefore, we introduce 
the home access coe$cient which is the overhead ratio of 
one eliminated pair of object fault-in and diff propagation 
to one home redirection. Here we mainly consider the com- 
munication overhead. 

4.2. Formalization of Adaptive Home Migration 
Protocol 

We formalize the idea of object home migration with 
adaptive threshold as follows. For each object, we have: 

C; : the number of consecutive remote writes since the 

Ti : the value of the adaptive home migration threshold 

0 Tinit : the initial threshold, which is equal to 1. 

R; : the number of redirected object requests since the 
(i - 1)th home migration. 

E; : the number of exclusive home writes since the (i - 
1)th home migration. 

a : the home access coeficient. Its deduction is shown 
in the appendix. 

X : the feedback coeficient. It is set to 1 to make the 
home migration threshold he sensitive enough to the 
feedhack of previous home migrations. 

mi : the ha[f-peak length in bytes, which is the mes- 
sage length required to achieve half of the asymptotic 
bandwidth [8]. 

Home migration decision is taken when the following 

(i ~ 1)th home migration. 

since the (i - 1)th home migration. 

condition is met: 
Ci = Ti (1) 

Adaptive home migration threshold, Ti, is calculated by 

Ti =max{(Ti-~ + A ( &  -aEi)),T<,it} (2) 

(3) 
where 

To = Ti"<, = 1 
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Equation (2) is the core ofthe above equations, which de- 
termine> the adaptive home migration threshold. Both thc 
positive feedback (exclusive home writes) and the nega- 
tive feedback (redirected object requests) of previous home 
migrations will affect the current threshold. The positive 
feedback tends to indicate that the object presents a last- 
ing single-writer pattern, thus decreases the threshold. Re- 
member the threshold is monotonously decreasing with 
increased likelihood of the lasting single-writer pattern. 
While the negative feedback tends to indicate that the object 
presents the transient single-writer pattem, thus increases 
the threshold. We also take the home access coefficient 
into account. Whenever the home migration condition, i.e., 
Equation (I), is met, a home migration takes place. All these 
computations are done by the GOS at the home node of the 
object. 

The initial threshold is set to 1 in order to speed up the 
initial data relocation if possible. It is possible that the initial 
data layout is not optimal with respect to the data access he- 
havior, particularly when the writing nodes of single-writer 
objects are not their home nodes. A small initial home mi- 
gration threshold could alleviate this situation. We rely on 
the adaptive threshold mechanism to adjust the threshold 
automatically after the initial home migration. 

5. Performance Evaluation 

Our distributed JVM implementation is based on the 
Kaffe JVM [2] which is an open-source JVM. The COS 
is integrated with the hytecode execution engine in just-in- 
time compiler mode. The detailed implementation of the 
COS is described in our previous paper 171. A Java appli- 
cation is started in one cluster node. When a Java thread is 
created, it is automatically dispatched to a free cluster node 
to achieve parallel execution. Unless specified otherwise, 
the number of threads created is the same as the number of 
cluster nodes in all the experiments. When an object is cre- 
ated, the creation node becomes its default home node. Ex- 
ceptionally, we distribute the homes of large objects, such 
as array objects, among the nodes in a round-robin fashion 
in order to achieve load balance. 

We conducted the performance evaluation on a PC clus- 
ter with 2GHz Pentium 4 processors, running Linux kernel 
2.4.22, and connected by a high-performance Foundry Net- 
works' Fast-Ethemet switch. 

The home migration protocol introduced in this paper is 
very lightweight. All the computations related to the adap- 
tive home migration threshold, which are mainly simple 
integer arithmetic, coexist with the communication. Com- 
pared with the communication overhead, their overhead 
is almost negligible. The GOS needs to allocate mem- 
ory for the adaptive threshold, consecutive remote writes, 
redirected object requests, and exclusive home writes, for 

each shared Java object. The GOS distinguishes distributed 
shared objects among all objects at runtime, which are 
reachable Crum ill least (WO threads residing on diflerent 
cluster nodes. Only distributed shared objects will have this 
extra memory consumption. So the memory consumption 
of the adaptive home migration protocol is well contained. 

5.1. Application Performance 

We evaluatc several multi-threaded Java applications on 
our distributed JVM. The applications include ( I )  ASP, to 
compute the shortest paths between any pair of nodes in 
a g a p h  of 1024 nodcs using a parallel version of Floyd's 
algorithm; (2) SOR, which performs red-black successive 
over-relaxation on a 2-D matrix of size 2048 x 2048 for 
a number of iterations: (3) Nbody, to simulate the motion 
of 2048 particles due to gravitational forces between each 
other over a number of simulation steps using the algo- 
rithm of Barnes & Hut; (4) TSP, to solve the Traveling 
Salesman Problem by finding the shortest way of visiting 
12 cities and returning to the starting point with a paral- 
lel branch-and-bound algorithm. Several optimizations, in- 
cluding home migration, synchronized method shipping, 
and connectivity-based object pushing, are applied in the 
COS. The detailed analysis of performance result without 
the adaptive home migration protocol can he found in our 
previous paper [7]. 

Figure 2 shows the execution times against the number 
of processors when the home migration protocol is enabled 
and disabled respectively. NoHM represents the situation 
when home migration is disabled. HM represents the sit- 
uation that the adaptive threshold home migration protocol 
proposed in this paper is enabled. 

Among all four applications, home migration improves 
the performance of ASP and SOR a lot. In ASP and SOR, 
the data are in the 2-D matrices that are shared by all 
threads. In Java, a 2-D matrix is implemented as an array 
object whose elements are also array objects. Many ofthese 
array objects exhibit the single-writer access pattern after 
they are initialized. The shared data are allocated to differ- 
ent cluster nodes in a round robin manner initially. How- 
ever, their original homes are not the writing nodes. The 
home migration protocol automatically makes the writing 
node the home node to eliminate remote accesses. 

Home migration has little impact on the performance of 
the other two applications, Nbody and TSP, due to the lack 
of single-writer pattern in them. This fact also indicates that 
our home migration protocol has little negative side effect 
because of its lightweight design. 

In Figure 3, we further compare the performance of two 
home migration protocols. One is FT representing the fixed 
threshold home migration protocol used in our previous pa- 
per [7], where we set the fixed threshold to 2 in order to 
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avoid thc heavy home rcdircction overhead due to unneccs- 
sary home migration decisions. The other is AT representing 
the home migration protocol with adaptive threshold pro- 
posed in this paper. We present the improvement of AT over 
FT in terms of reduced execution time, numher of messages, 
and network traffic against different problem sizes. In ASP, 
we scale the size of the graph. In SOR, we scale the size of 
the 2-D matrix. In this experiment, both ASP and SOR run 
on eight cluster nodes. 

As can be seen in Figure 3, AT improves the perfor- 
mance of ASP and SOR compared with FT. The major rea- 
son comes from that FT uses a threshold that is not suit- 
able to these applications. In FT, we choose 2 for a balance 
between sensitivity and robustness of the fixed threshold 
home migration protocol. However, in ASP and SOR, with 
2 as the threshold actually postpones the data relocation in 
the initial phase. In other words, with 2 as the threshold is 
not sensitive enough in this case. Here, a smaller thresh- 
old performs better. Notice that 2 for the threshold may be 
a good choice for some other applications. Instead, AT does 
not have such problem of choosing a appropriatc thresh- 
old value. In AT, we choose the smallest threshold to speed 
up the initial data relocation and rely on the adaptive proto- 
col to continuously tune the threshold according to runtime 
observations. 

In ASP and SOR, since the performance improvement of 
AT over ET comes from the eliminated remote accesses due 
to timely home migration by AT, it should depend on the 
communication overhead in each iteration which is a func- 
tion of the problem size. This is what we observe in SOR 
the performance improvement increases when the problem 
size is scaled up. However, the situation in ASP is a lit- 
tle more complicated. In ASP, we observe that the perfor- 
mance improvement almost stays constant when the proh- 
lem size is scaled up. This is because ASP requires n it- 
erations to solve an n-node graph problem and the perfor- 
mance improvement due to quicker home migration in AT 
is amortized among all iterations. 

5.2. Sensitivity and Robustness Analysis 

In order to clearly examine the performance differ- 
ence between home migration protwols with differ- 
ent fixed thresholds and that with the adaptive thresh- 
old, we carefully design a synthetic benchmark program 
that predominantly presents the single-writer pattem. Fig- 
ure 4 shows the source code skeleton run by each thread. 
In the benchmark, after a thread acquires the lock of oh- 
ject lock0, it will update a shared counter for a num- 
her of times, which we refer to as the repetition of the 
single-writer pattern. It is represented by r in the code. The 
home migration protocols try to change the home of this 
shared counter object to improve the performance. In or- 

while (true) { 
synchronized (lockO) { 

break; 
if (counter.interna1 >= n) { 

I 
counter.internal++; 
for (int j = O ;  j<r- l ;  j + + )  { 

counter.internal++; 
synchronized (lockl) ( 

I 
1 

I 
11 Some simple arithmetic 
11 computation goes here. 

1 

Figure 4. Source code skeleton run by each 
thread 

der to reflect these updates to the home copy, each up- 
date is enclosed in a synchronized block. Notice after this 
thread releases lock0, it may acquire it again, or an- 
other thread may get the chance to acquire it. For example, 
if the repetition of single-writer pattern is 4, the actual con- 
secutive writing times could be a multiple of 4, such as 
8, 16. This happens randomly at runtime. We also em- 
bed some computation in the benchmark to make it 
more realistic. We measure the performance of differ- 
ent home migration protocols against different repetitions 
of single-writer pattern. 

In the expcriment. we s ta t  with eight working threads 
all running on the nodes other than the one where the ap- 
plication is started. All synchronization operations are dis- 
tributed ones that are sent to the node where the application 
is staned. So all the performance differences come from the 
effects of different home migration protocols. 

Figure 5 (a) shows the normalizedexecution time against 
different repetitions of the single-writer pattem. NM de- 
notes no home migration. ET1 denotes home migration with 
a fixed threshold of 1. IT2 denotes home migration with a 
fixed threshold of 2. F T I  always performs home migration 
more eagerly than FT2. AT denotes the protocol proposed 
in this paper. For each repetition, the times are normalized 
to the largest one among them. 

Figure 5 (b) shows the normalized message number 
against different repetitions of the single-writer pattern. For 
each repetition, the message numbers are normalized to the 
largest one among them. We further break down the mes- 
sages into four categories: ob j denotes normal object fault- 
in without home migration happening at the same time, mig 
denotes object fault-in with home migration, dif f denotes 
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Figure 5. Effec ts  of h o m e  migration protocols against repetition of single-writer pattern 

diff propagation, and r e d i r  denotes object home redirec- 
tion. We do not consider synchronization messages because 
they a e  invariable in  all cases as mentioned before. 

In the message breakdown, the communication overhead 
without home migration includes ob j  and d i f  f .  They are 
the overheads that the home migration protocol tries to re- 
duce. Under situations with home migration, the total num- 
ber of object fault-in equals to ob j  plus mig, and r e d i r  
is the negative impact of home migration. 

We have several observations with Figure 5. Firstly, 
when the repetition of the single-writer pattern is large 
enough, e.g. 16, the benefit from home migration is quite 
obvious. As seen, 87.2% of object fault-ins and diff prop- 
agations are eliminated by FT1. In other words, remote 
read/write changes to home readwrite. We can expect even 
better performance improvement due to home migration 
when the repetition is larger. 

Secondly, when the repetition of the single-writer pattern 
is not large enough, the benefit from home migration may 
not pay off when compared to the home redirection over- 
head. Particularly, when the object's home and the lock's 
home are at the same node, as in the situation without 
home migration, the diff propagation can he piggyhacked 
on synchronization messages. This explains why home mi- 
gration protocols incur much less messages hut still perform 
roughly the same as that without home migration when the 
repetition of the single-writer pattern is 8. 

Thirdly, in all cases, IT1 is more sensitive than IT2 to- 
wards the single-writer pattern in that the message numbers 
of object fault-in and diff propagation in FT1 are less than 
those in FT2. FTI changes more remote reaawrite to lo- 
cal redwri te .  When the repetition is relatively large, such 

as 8 and 16, AT performs as well as FTI in this aspect. This 
fact confirms our claim that AT presents good sensitivity to- 
wards the lasting single-writer pattern. 

Finally, when the repetition is relatively small, such as 
2 or 4, i.e. the transient single-writer pattern, fixed thresh- 
old home migration protocols incur a lot of redirection over- 
head. This shows that fixed threshold protocols usually do 
not have robustness against the transient single-writer pat- 
tern, except in some individual cases, e.g., FT2 prohibits 
home migration when the repetition is two. As we can see, 
AT demonstrates better robustness than fixed threshold pro- 
tocols in this aspect. AT is able to detect the transient single- 
writer pattern and strike a good balance between performing 
home migration to reduce remote accesses and prohibiting 
home migration to reduce the redirection overhead. When 
the repetition is relatively small, such as 2 or 4, AT greatly 
reduces the home redirection messages. 

6. Conclusion 

In this paper, we propose a home migration protocol 
with adaptive threshold, which can he used to optimize 
the single-writer access pattern in home-based DSMs. An 
adaptive threshold is introduced for each object and it is 
monotonously decreasing with increased likelihood that the 
object presents the lasting single-writer pattern. The thresh- 
old is continuously adjusted according to the feedback of 
previous home migration decisions at runtime. 

The experiments c o n h  our claim that this protocol is 
intelligent in that it is robust against the transient single- 
writer pattern, thus avoiding unnecessary home migrations; 
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and it is sensitive to the lasting single-writer pattcm, thus 
eliminating remote object accesses. 

Our research shows that by exploiting abundant runtime 
information in the strongly-typed Java language, such a 
per-object access patterns, we can design more intelligcnt 
cache coherencc protocols for DSM systems. However, this 
is rather diflicult or even impossible in page-bascd DSMs 
which emulate a flat shared memory space. 

In the future,’we will test this protocol in more real, 
complicated DSM applications to  further evaluate its per- 
formance. We will research on other heuristics to improve 
the effectiveness of home migration and to try to reduce its 
negative impacts. 
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Appendix 

A. Deduction of the Home Access Coefficient 

Hockney [8] has proposed a model to  characterize the 
communication time (in ps) for a point-to-point operation 
as follows, where the communication overhead, t (m),  is a 
linear function of the mcssage length m (in bytes). 

to  is the start-up time in ps 

T, is the asymptotic bandwidth in MBIs. 

Recall that the home access coefficient is the overhead 
ratio of one eliminated pair of object fault-in and diff prop- 
agation to one home redirection. Here w e  mainly consider 
the communication overhead. We assume the object size is 
o, the diff size is d, and the home redirection is a unit-sized 
message. Then we have 

\ I  

t o  + 
(7) 

The half-peak length, dcnoted by rn+ bytes, is the mes- 
sage length required to achieve half of the asymptotic band- 
width. It can be derived using the relationship 

mi =tor, (8) 

Based on mi >> 1 and o > d, we derive Equation (4). 
which we restate here: 
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