
Title User-centric adaptation of structured Web documents for small
devices

Author(s) Lum, WY; Lau, FCM

Citation
Proceedings - International Conference On Advanced
Information Networking And Applications, Aina, 2005, v. 1, p.
507-512

Issued Date 2005

URL http://hdl.handle.net/10722/45533

Rights

©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37884344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

User-Centric Adaptation of Structured Web Documents for Small Devices

Wai Yip Lum & Francis C.M. Lau
Department of Computer Science

The University of Hong Kong, Hong Kong
{wylum,fcmlau}@cs.hku.hk

Abstract

Content adaptation is a crucial step in making desktop-
oriented web resources available to mobile, small device
users. In this paper, we propose a decision engine compris-
ing a content analysis module and a negotiation module to
serve as the core of a content adaptation architecture. The
content analysis module parses a structured web document
originally intended for the desktop into small sections and
transforms the document into a form that is best suited for
rendering in a constrained mobile device. The transforma-
tion also provides the user with the best content value in an
adapted web page while preserving content integrity. With
the transformed document, the negotiation module selects
the best rendering parameters to be used in the synthesis of
an optimal adapted version of the content. The decisions
made are based on the user’s preference and QoS consider-
ations. We have built a prototype to demonstrate the viabil-
ity of our approach.

1 Introduction

The rapid development in mobile computing technol-
ogy has made available a tremendous amount of informa-
tion in the World Wide Web to mobile devices. An effi-
cient and effective content access mechanism is most crit-
ical for the mobile device users who tend to work under
many constraints. Despite constant advances in the hard-
ware technology, mobile devices continue to be limited in
their capabilities, and because of that, contents need to un-
dergo adaptation in order to satisfy the rendering require-
ment of the mobile device users. The growing variety of
device types would only add to the acuteness of this need.
Although the computational power of recent mobile devices
is always on the increase, their screen size continues to be
limited as these devices need to be lightweight and fit in
the pocket.This poses a challenge to any adaptation strategy
aiming to fit contents intended for larger displays in small
screens. This paper is on a feasible approach to meeting

this challenge. A good solution to this problem could bene-
fit millions of mobile users.

2 Related Work

To achieve good adaptation, the adaptation process needs
to be fully aware of the content structure. Content under-
standing can be facilitated by providing “wrappers” around
web sources [3]. A wrapper for a web source accepts
queries about information in the available pages, fetches
relevant pages from that source, extracts the requested in-
formation and returns the results in a structured form. To
enable these actions, the content in a page is parsed into
manageable sections, and special tokens are used to iden-
tify the beginning of a section, and other meaningful com-
ponents. Similarly in [1], syntactic features like table cells,
line breaks, etc. were used to split a web page into STUs
(semantic textual units). Then organizational information
(how the STUs are nested) can be extracted by such simple
rules as the upper level units should appear in more em-
phatic styles, e.g., bold font.

Since there are plenty of ways by which the author would
mark a section, simple token matching might not be suffi-
cient to discover the hierarchical structure of the content.
In this paper, we propose another approach to discovering
the logical sections in the content, which is “relationship-
aware” and has the intelligence to deal with more compli-
cated content structures that are common in modern web
sources.

The Function-based Object Model (FOM) [4] aims at
capturing the author’s intention by identifying the relevant
objects in a document. Every object in a homepage serves a
purpose, e.g., decoration, hyperlinking, or interaction with
the user. Based on object analysis, an understanding of the
content’s structure is derived. Nevertheless, such a content
adaptation is limited to only awareness of the content it-
self, but not the target user’s preference which is another
important factor in trying to achieve a higher degree of user
satisfaction. In our design, we provide a level of adaptation
which is based on the relationships of the elements in the

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

web document rather than just the individual objects’ func-
tionalities. In addition, the design is user-centric—i.e., it
takes into consideration the user’s preference.

Text summarization was proposed in [2] where a web
page is broken into text units, each of which can be hid-
den, partially displayed, fully visible, or summarized. Al-
gorithms were introduced to search for the appropriate key-
word or key sentence for the text summarization. Neverthe-
less, the study focused on the textual elements only.

3 Relationship Discovery

In a document, some content elements are related. The
special treatment to be given to these elements because of
their relationships is as important as their semantic infor-
mation because the original document semantics may not
be presented properly if such a treatment is missing or the
relationships in question are not preserved over the adapta-
tion.

There are generally three types of elements making up a
document:

• Semantic element: which presents semantic informa-
tion. For example, the Anchor element and the Image
element, both of which contribute semantic informa-
tion to the web document.

• Container element: which encloses other elements, but
does not itself present any semantic information. For
example, the Table element, which acts as a container
of other elements.

• Layout element: which provides information to dictate
how other elements are to be presented. For example,
the Bold element and the Font element.

After identifying all the elements and their types, a web
document can then be mapped to its corresponding Content
Relationship Tree (CRT). A CRT is composed of nodes and
links. A node is either a semantic element or a container el-
ement. A link represents a relationship between two nodes.
The layout elements are presented as “attributes” of a node
in the CRT. Each semantic element can have multiple at-
tributes and the combination of these attributes determines
how the element is to be presented.

3.1 Relationship links

There are three types of relationship links in the CRT:
Comprising, Parallel, and Enriching.

• Comprising: This is the relationship between a con-
tainer element and each of its constituent components.
In the CRT, it is represented by a vertical parent-child

link between the container node and each of the com-
ponent nodes.

• Parallel: In a web document, some semantic elements
are complementary to each other in jointly presenting
some information. These elements usually have sim-
ilar outlook and functionalities. Parallel relationship
is the relationship between these complementary ele-
ments. In the CRT, it is represented by a horizontal link
between each pair of parallel semantic nodes/container
nodes.

• Enriching: Some elements provide little and very brief
information while some other elements expand on the
information by providing further, more detailed infor-
mation directly or through hyperlinking. Enriching re-
lationship is the relationship between these two types
of elements; the former type is called the summary
element and the latter type an enriching element. In
the CRT, enriching relationship is represented by a
vertical parent-child link between these two semantic
nodes/container nodes.

Figure 1 shows an example, where the CRT on the right
hand side after the processing exhibits the three types of re-
lationship as mentioned above. The shaded node represents
the container element; the others are semantic elements.

Figure 1. CRT with three types of relationship.

Comprising

Enriching

Parallel

Processing
at Enriching
point

3.2 Property matching

The comprising relationship can be discovered with a
simple tree traversal, but the other two relationships need
more intelligence. Each semantic element has a list of prop-
erty attributes to describe how its content is to be presented.
For a semantic element with n property attributes, we asso-
ciate an n-dimensional property vector with it.

property vector = (p1, p2, . . . , pn−1, pn)

To determine whether two semantic elements are parallel,
their property vectors are compared for the degree of simi-
larity. A similarity function, S(pi, qi), is used, where pi and

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

qi are property attributes. If the difference between them is
smaller than a certain threshold, maxdiffi, they are con-
sidered to be similar (and the function returns 1). The par-
allel matching score is then found by taking a dot product
between the similarity vector, s, and a parallel weighting
vector, w, where wi represents the relative importance of
the i-th attribute.

parallel matching score = s • w

=
∑

siwi

If the parallel matching score is larger than a threshold, tp,
then the two semantic elements are said to have a parallel
relationship.

Given a pair of container elements such as the table cells
in HTML, to determine whether they are parallelly related,
some more comparisons are required. The number of differ-
ent types of element, e.g., image or text, etc., is first com-
pared between the two container nodes. Then the parallel
matching heuristic comparison for the semantic nodes can
be applied sequentially to the elements in the container node
pair.

For two semantic elements having an enriching relation-
ship, one element is identified as the summary element and
the other one the enriching element. As the purpose of the
summary element is to announce a subject while the enrich-
ing element is to provide more detailed descriptions, their
layout properties could be quite different. In other words,
to determine the enriching relationship, the same algorithm
is applied but dissimilarity is considered this time. Sim-
ilarly, the discovery of enriching relationship between two
container nodes will use dissimilarity of types, numbers and
properties of comprising elements.

3.3 Parameter Determination

For the parallel matching method just described, there
are three types of parameters that need to be determined: the
threshold maxdiffi for each property attribute, the parallel
weighting vector w and the parallel threshold tp.

To determine maxdiffi, we use a statistical method
with a training set of records. In our experiment, 500 par-
allel relationship records were collected and the difference
of pi and qi for each record was computed. The distribu-
tions were plotted as a graph, as demonstrated in Figure 2.
The norm (maxdiffi) was applied to these differences to
decide whether the attributes are similar or dissimilar. If
the attribute difference is smaller than the norm, it is con-
sidered a small difference and the two attributes in question
are treated as similar.

After determining the threshold maxdiffi for all the
property attributes, the records in the parallel training set
are input to the similarity function S(pi, qi) to generate a set

Figure 2. Distribution graph for determining
attribute threshold.

of similarity vectors. A counting vector, c, is then formed,
where ci represents the number of similar pairs (number of
1’s returned) for the i-th attribute in the set of similarity
vectors. The parallel weighting vector, w, is then found by:

wi =
ci∑
cj

.

The variation of identification accuracy with the value of the
parallel/enriching threshold can be recorded. The identifi-
cation accuracy is taken as the percentage of records identi-
fied correctly. The parallel threshold tp is the point with the
highest identification accuracy, as shown in Figure 3, which
is 0.79.

Figure 3. Parallel relationship identification
accuracy with training set.

With the results from the relationship extraction process,
a CRT for the content (like the one shown in Figure 1) can
be produced which will be used intensively in the following
step where further content analysis is carried out.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

4 Logical Section Discovery

A logical section is a group of semantic elements that
exist as a unit. It can be separated from the original web
document without affecting the semantics of both itself and
other semantic elements. With the logical sections, a web
document can then be split into pages and displayed in de-
vices with a limited screen size. In other words, it can serve
as an elementary building block in content adaptation and
presentation. But to discover such a logical section is not
an easy task since the relationships in some web documents
could be quite complex. We propose a relationship-aware
discovery methodology to tackle the problem.

A good logical section should have the following fea-
tures:

• There is a strong coupling between the elements within
the the logical section. These elements are closely re-
lated and should serve the same purpose. These ele-
ments should be presented with the same adaptation
settings.

• Between logical sections, the coupling is weaker such
that the sections can be presented in different styles if
necessary.

Algorithm 1 Logical Section Discovery
LS-Discovery(testnode)

1. if (testnode // with testnode’s right siblings)

2. LS ← U(testnode, last // siblings)

3. if (width(LS) > PSA)

4. LS ← U(testnode, siblings with width(LS <
PSA))

5. if (width(resultant horizontal LS’s) > PSA)

6. add a line break

7. if (LS cannot fit in Sremain and there exists vertical
// relationship)

8. break the vertical // relationship > Sremain

9. LS ← U(testnode, last // siblings)

10. else

11. add current node to LS

Algorithm 1 is the proposed logical section discovery al-
gorithm that looks for the proper logical section to be used
for negotiation in the next step. The algorithm first tries to

obtain a set of parallel (indicated by // in the algorithm) sib-
lings and puts them in the Logical Section LS. The union
U(a, b) is to perform node aggregation on the parallel sib-
lings from node a to node b with all the descendants. If the
current node exhibits no parallel relationship with others,
then the logical section would contain only this node (line
11). If the horizontal dimension of the logical section (re-
turned by the function width) exceeds the Preferred Scrol-
lable Area (PSA) defined by the user, the logical section
will be trimmed such that only those elements in the logical
section with horizontal dimension smaller than PSA will
be returned (line 4).

The remaining elements not in the trimmed logical sec-
tion will become the target for the next iteration. There is
also the case where the newly formed resultant set of logi-
cal sections (the current existing logical sections combined
with the new one) exceeds the horizontal threshold; the new
logical section will wrap below the preceding one (line 6).

The parallel relationships can exhibit different browsing
behavior in different scenarios. For instance, in an HTML
table, td (table column) tags are defined first, and the col-
lections of td’s will form a tr (table row). Based on this
observation, a very long table with many rows can be fur-
ther adapted at the row level to suit the constrained page
size. This helps to increase the page utilization. If the resul-
tant logical sections cannot fit in the remaining spatial size,
Sremain (spatial consumption of each page is constrained
by a spatial threshold), the vertical relationship will be bro-
ken (line 8), such that the row elements can be more flexible
in consuming the spatial size of the page and at the same
time to increase the rendering capability of a large table in
a very constrained mobile device. But simply fitting the
remaining portion of a table in a new page would greatly
reduce the content integrity as the other related elements
(such as the caption of the table) are absent from the new
content page. In our design, we try to detect any broken
enriching point when a new page of content is created. The
re-creation of the summary element preceding the broken
enriching relationship will enhance the content integrity, as
shown in Figure 4 (where the “MARKETPLACE” header
re-appears in a continuing page).

5 Negotiation

The decision engine proposed in this paper executes a
“negotiation” process between the data structure containing
the user’s preference information and a decision function
of the engine.The negotiation process entails a systematic
traversal of score nodes by a negotiation algorithm. A score
node represents a particular rendering choice of a logical
section. This is an iterative heuristic search to try to find the
best score that meets the rendering constraints. The result
is the most optimal score node found by the algorithm. The

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

adaptation strategy as encoded in the node will be fed to the
realization module to synthesize the actual version of the
adapted content.

In our prototype, we use an Ordered Relation Score
Tree (ORST) Negotiation Algorithm [5] to do such heuris-
tic search, whereby the score node which is most preferable
by a specific user will be explored first. This will lead to a
good resulting score. Detailed explanation of the negotia-
tion algorithm can be found in [5].

Algorithm 2 The Negotiation process

1. Add all the nodes to the pool

2. while (Post-order tree walk to find a node ‘testnode’ in
the pool that is not Processed)

3. LS = LS-Discovery(testnode)

4. Get the score node’s adaptation settings from score
tree

5. if decision(score-node, Pd, Pn, LS) != True

6. go to 4 to get next node from the score tree

7. else

8. if (LS.first has broken enriching)

9. add the summary node to LS

10. Set LS to Processed

11. Adapt(LS, score-node)

12. if decision(score-node, Pd, Pn, LS) != True for all
nodes

13. Create a new page

With the components introduced above, the overall nego-
tiation process can be summarized by Algorithm 2. A pool
is maintained during the entire process for those nodes that
have yet to be processed. A post-order tree walk is applied
to search for a node in the pool (line 2). The Logical Sec-
tion Discovery Algorithm is invoked and a proper logical
section would result (line 3). The Score Tree Negotiation
Algorithm will iteratively find a score node (including the
adaptation settings) in the user-specific score tree that would
give a True value at the Decision Logic. The goal of the op-
eration of the decision logic is to find the best scoring node
corresponding to a version of the content that is renderable
given those real-time parameters. During the process to lo-
cate the optimal node, for each score node to be examined,
the decision engine will generate a binary decision (True or
False) based on the client device capability Pd, the network

parameters Pn, the adaptation settings stored in the score
node, and the Logical Section LS itself:

T ||F ← decision(score-node, Pd, Pn, LS)

where score-node provides the setting of various quality
axes. The binary decision True indicates that the content af-
ter transcoding according to the adaptation settings as spec-
ified in this score node is renderable in the target device
with its particular capability in the current network envi-
ronment. The binary decision False means otherwise. The
decision function, decision(), interacts with the score node
data structure iteratively in a negotiation until a satisfactory
score node that returns True is found. If a broken enrich-
ing relationship is detected in the initial logical section, the
summary node will be added to the logical section (line 9).
The nodes within the logical section will then be set to ‘Pro-
cessed’ (line 10) and the logical section will be adapted ac-
cording to the adaptation settings encoded in the score node
(line 11). If the logical section cannot give rise to a True
score node after finishing the tree traversal, it means that
the logical section may be too large to fit in the remaining
space. In this case, a new page is created to render the sec-
tion (line 13).

6 Web Document Adaptation System

We have implemented a prototype that hosts the discov-
ery logic and the decision engine as discussed in the pre-
vious sections to demonstrate the practical viability of our
approach. The system operates on web documents that are
in HTML format.

A web page is treated by the system as follows. The
whole web page is segmented into three pages according to
its structure, as shown in Figure 4. After having included
the logical sections for the table on the left hand side of the
original web page (the ‘SEARCH CENTERS’ table) in the
second page of the adapted web content, Sremain is deemed
not large enough to hold all the elements from the table on
the right hand side (the ‘MARKETPLACE’ table). The re-
maining space is only enough to render a subset of the table
rows.In order to push the spatial consumption of each con-
tent page, the page utilization policy is to let the user get
the most out of a single web page. The system breaks the
table, but the broken enriching element is detected and the
summary description (the summary node) will appear in the
new, continuing content page again so as to maintain con-
tent integrity.

The two partitions containing an image and a text de-
scription side by side near the bottom of the original web
page are identified as parallel due to the similarity in their
layout. But the horizontal arrangement of the table cells ex-
ceeds the PSA value, and so the concerned logical section
is wrapped.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

Figure 4. Adapting a web page: (a) the original
page; (b) page 1 of adapted content; (c) page
2; (d) page 3.

(a)

(b)

(c) (d)

Other than adapting the page to a small screen size, we
also carried out experiments to show the adaptability of our
system to different types of contexts, as shown in Figure 5.

7 Conclusion

Our system design incorporates two unique components:
a relationship-aware content analysis engine and a negotia-
tion model. We believe with these components, the system
can deliver good adapted contents to the mobile clients with
good user satisfaction. Our initial experiments have pro-
duced results that support our belief.

Acknowledgement

This project is supported in part by a Hong Kong RGC
grant (“A holistic approach to structured web document
viewing in small devices”).

References

[1] O. Buyukkokten, O. Kaljuvee, H. Garcia-Molina, A.
Paepcke, and T. Winograd, Efficient Web Browsing
on Handheld Devices using Page and Form Summa-
rization, ACM Transactions on Information Systems

Figure 5. Context-awareness: (a) user prefers
color; (b) user prefers delivery time; (c) more
stringent delivery time; (d) large bandwidth
on WAP phone; (e) small bandwidth.

(a) (b) (c)

(d) (e)

(TOIS), Volume 20, Issue 1 (January 2002), pp. 82–
115.

[2] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, See-
ing the whole in parts: text summarization for web
browsing on handheld devices, WWW10, May 2001,
Hong Kong, China, pp. 652–662.

[3] N. Ashish, C. Knoblock, Wrapper Generation for
Semi-structured Internet Sources, ACM SIGMOD
Record, 26(4), 8–15, 1997.

[4] J. Chen, B. Zhou, J. Shi, H. Zhang, F. Qiu,
Function-based object model towards website adapta-
tion. WWW 2001: 587-596.

[5] W.Y. Lum and F.C.M. Lau, A Context-Aware Deci-
sion Engine for Content Adaptation, IEEE Pervasive
Computing, Vol. 1, No. 3, July-September 2002, 41–
49.

[6] W.Y. Lum and F.C.M. Lau, On Balancing Between
Transcoding Overhead and Spatial Consumption in
Content Adaptation, Mobicom 2002, Atlanta, USA,
September 2002, 239–250.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

