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A b s t r a c t  

Recent breakthrough in compressed indexing data  

structures has reduced the space for indexing a text  (or 

a collection of texts) of length n from O(n log n) bits to 

O(n) bits, while allowing very efficient pat tern  matching 

[10, 13]. Yet the compressed nature of such indices also 

makes them difficult to update  dynamically. This paper 

presents the first O(n)-bit  representation of a suffix tree 

for a dynamic collection of texts whose total  length is 

n, which supports insertion and deletion of a text  T in 

O(IT I log 2 n) time, as well as all suffix tree traversal op- 

erations, including forward and backward suffix links. 

This work can be regarded as a generalization of the 

compressed representation of static texts. Our new suf- 

fix tree representation serves as a core part  in a compact  

solution for the dynamic dictionary matching problem, 

i.e., providing an O(d)-bit  data  structure for a dynamic 

collection of patterns of total  length d that  can support  

the dictionary matching query efficiently. When com- 

pared with the O(dlog d)-bit suffix tree based solution 

of Amir et al., the compact  solution increases the query 

time by roughly a factor of log d only. In the study of the 

above results, we also derive the first O(n)-bit  represen- 

tation for maintaining n pairs of balanced parentheses 

in O(log n / l o g  log n) t ime per operation, matching the 

t ime complexity of the previous O(n log n)-bit  solution. 

1 I n t r o d u c t i o n  

This paper  studies the compact solution of the following 

dynamic data  structure problems: generalized suffix 

trees, dynamic dictionary matching, and parentheses 

maintenance. 

Suff ix  Trees  and D y n a m i c  Dic t ionary  Matching.  

Given a text T of length n, a suffix tree [18, 24] for 
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T is a compact  trie containing all suffixes of T, with 

each leaf storing the position of the corresponding suffix 

and each internal node storing a special pointer called a 

suffix link. We assume tha t  characters are chosen from a 

constant size alphabet.  A suffix tree occupies O(n tog n) 

bits of space and supports  finding all occurrences of a 

given pat tern P in T in O(IPI + oct) time, where occ 
denotes the number of occurrences. The notion of suffix 

tree can be generalized for a collection of texts, storing 

all suffixes of the texts in the collection. Such a suffix 

tree allows pat tern  searching to be performed over all 

texts in O(IPl +oc t )  time. Furthermore, McCreight [18] 

showed tha t  this generalized suffix tree can be updated 

in O(t) t ime when a text  of length t is inserted into or 

deleted from the collection. 

Suffix trees find application in other complicated 

string matching problems (e.g., [12, 15]), for which 

efficient solutions rely on not only the efficient pat tern  

matching of suffix trees, but also the tree structure and 

the provision of suffix links. Among such problems, the 

dynamic dictionary matching problem is one of the most 

well studied [1, 2, 3, 4, 5, 23], which is required to index a 

collection of pat terns  {P1, P2, . . . ,  Pk} with total length 

d, so as to answer efficiently the occurrences of all Pi 

in any given text  T, and allow efficient insertion and 

deletion of patterns. Most of the previous solutions for 

dynamic dictionary matching are based on suffix trees. 

In particular, Amir et al. [4] showed that  updat ing a 

pat tern  P can be done in O(IPIlogd/loglogd) t ime 

and a dictionary matching query for a text  T takes 

0 ((ITI + occ) log d~ log log d) time. 1 

Compres sed  Index ing  D a t a  S t ruc tures .  The need 

of indexing very long genome sequences (e.g., a human 

genome contains 2.8G base pairs) has triggered the 

research on compressed indexing da ta  structures that  

1SahinMp and Vishkin [23] devised a new data structure called 
fat-tree, and improved the update time to O([PI), and query time 
to O([T I +occ). 
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use O(n) bits instead of O(nlogn) bits. The past  few 

years have witnessed two breakthrough results. The 

first one is the Compressed Suffix Arrays (CSA) by 

Grossi and Vitter [13], and the second one is the FM- 

index by Ferragina and Manzini [10]. These indexes are 

compressed versions of suffix arrays [17], occupying only 

O(n) bits, yet supporting efficient pa t tern  searching. 

Chan et al. [7] further showed that  CSA and FM-index 

can be combined together to index a dynamic collection 

of texts {X1 ,X2 , - . .  ,Xe}, allowing searching for any 

given pat tern  P in all Xi's in O(]P] logn + occlog 2 n) 
time, and more importantly,  they showed tha t  these 

O(n)-bi t  da ta  structures can be updated in O(IX I log n) 

t ime when a text  X is inserted or deleted. However, 

CSA or FM-index does not represent a suffix tree in the 

sense that  the corresponding tree structure and suffix 

links are not captured, and thus they are not sufficient 

for solving tile dynamic dictionary matching problem. 

I t  is natural  to ask whether we can have a com- 

pressed version of a suffix tree for a dynamic collection 

of texts. Tha t  is, we want to support  queries about  

the suffix tree structure (namely, parent, child, sibling, 

edge label, and leaf label) and suffix links, while al- 

lowing efficient update  due to insertion and deletion of 

texts. Sadakane [22] has made a step towards this goal; 

his work gives an O(n)-bi t  representation for a suffix 

tree which can avoid storing pointers, but his work as- 

sumes a static text  (or a s ta t iccol lect ion of texts) so 

that  the underlying da ta  structures are rigidly packed 

together and thus cannot be updated efficiently. The 

challenge for 'dynamizing'  a compressed suffix tree lies 

in two aspects: structural  and algorithmic. Structurally, 

the compressed suffix tree should not only be compact,  

but also be flexible enough to allow efficient updates. 

Algorithmically, we have to find efficient updat ing meth- 

ods tha t  are tailored for the underlying da ta  structures. 

This often requires support ing operations other than  the 

basic navigational operations for traversing the suffix 

tree. 

Compressed Suffix Trees.  In this paper, we give 

the first O(n)-bi t  representation of a suffix tree that  

allows efficient update.  Our solution is comprised of 

several dynamic data  structures for representing CSA 

and FM-index, as well as the tree structure. The lat- 

ter inspires us to s tudy a compact  representation for 

maintaining a sequence of balanced parentheses (see 

the discussion below). Retrieving an edge label and 

leaf label requires O(log 2 n) time, while other naviga- 

tion queries, including suffix links, can be performed 

in O(logn) time. More importantly,  we allow the re- 

trieval of backward suffix links [24], which turns out to 

be crucial for supporting efficient update  of this rep- 

resentation. Apparently, representing backward suffix 

links is nlore demanding than tha t  for the (forward) suf- 

fix links, because each internal node of a suffix tree may 

have more than one backward suffix link, while some in- 

ternal nodes may have none. Nevertheless, we are able 

to show tha t  FM-index already allows us to recover the 

backward suffix links efficiently. 

As mentioned before, given a suffix tree representing 

a collection of texts, one can use McCreight 's  method 

to insert or delete a text  X efficiently. Note tha t  Mc- 

Creight 's  insertion method updates  the suffix tree by 

adding suffixes of X one by one from the longest to the 

shortest one. This creates a fundamental  technical prob- 

lem as both CSA and FM-index should be constructed 

and updated  in an ascending order of the suffixes; as 

these indices are only well-defined for representing a col- 

lection of texts  and all their suffixes. This motivates us 

to take an asymmetr ic  approach with the provision of 

the two types of suffix links. Precisely, insertion is based 

on the framework of Weiner's suffix tree construction 

method,  where we star t  from adding the shortest  suf- 

fix to the longest one, exploiting backward suffix links. 

For deletion, it is based on McCreight 's  method with 

forward suffix links. Both can be done in O(IX I log 2 n) 
time. Another interesting idea is tha t  edge labels are 

only implicitly stored by the compact  da ta  structures, 

which can be computed efficiently when needed. Fur- 

thennore,  when the da ta  structures are updated,  the 

correctness of the edge labels are automatical ly  main- 

tained. 

Based on our compact  representation of a suffix 

tree, we can adapt  the work of Amir et al. [4] to give 

the first O(d)-bit  solution for the dynamic dictionary 

matching problem. Our solution supports  updat ing of 

a pat tern  P in O(IPl log 2 d) time, and a dictionary query 

for a text  T in O((IT I + oct) log 2 d) time. 

Pa ren theses  Main tenance .  To represent a gener- 

alized suffix tree, we need a compact  representation of 
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the tree structure. This can be done using a sequence 

of balanced parentheses [16, 19]. For a sequence of n 

pairs of balanced parentheses, the basic queries include 

find-match and enclose, which find the position of the 

matching parenthesis and the nearest pair of enclosing 

parentheses, respectively. For the static case, the best 

known solution is by Munro and Raman [19], which 

supports  these operations in O(1) t ime and occupies 

only 2n + o(n) bits. When we need to maintain the 

parentheses under insertion and deletion, the best re- 

sult is by Amir et al. [4], which requires O ( n l o g n )  

bits, while supporting each operation, including an up- 

date, in O(log n/log log n) time. In this paper, we pro- 

pose the first O(n)-bit  representation for maintaining 

the balanced parentheses, with O(log n/log log n) t ime 

per operation, thus matching the best result with space 

complexity of O(n log n) bits. 

As fbr theoretical interest, we observe that  the clas- 

sical problem for maintaining a sequence of bits under 

updates, with rank and select queries supported, can be 

reduced to the parentheses maintenance problem. Then 

based on the lower bound result from Fredman and Saks 

[11], we can conclude that  for any da ta  structure for the 

parentheses maintenance, there exists a sequence of op- 

erations requiring ft(log n/log log n) amortized t ime per 

operation. 

Finally, we also consider a more complicated op- 

eration called double-enclose, which finds the nearest 

parenthesis pair tha t  encloses two input parenthesis 

pairs. We show that  with an O(n)-bit  data  structure, 

this operation can be achieved in O(logn)  time. 

Organizat ion.  The remaining of the paper  is or- 

ganized as follows. Section 2 gives a brief review on 

the suffix trees, suffix arrays, CSA and FM-index. Sec- 

tions 3, 4 and 5 are devoted to our solutions for the dy- 

namic compressed suffix tree, parentheses maintenance 

and dynamic dictionary matching, respectively. 

2 P r e l i m i n a r i e s  

In this section, we give a brief review on suffix trees 

[18, 24], suffix arrays [17], Compressed Suffix Arrays 

[13], and FM-index [10]. Let T[1..n] = T[1]T[2]---TIn] 

be a string of length n over a finite alphabet  E. For any 

i = 1, . . . ,  n, T[i..n] is a suffix of T. 

Suff ix  Tree .  The suffix tree is a compact  trie tha t  

contains all suffixes of T. Each edge is labeled by a pair 

of integers specifying a substring of T, and each leaf 

is labeled by the start ing position of the corresponding 

suffix of T. We also store a suffix link for each internal 

node, which is defined as follows. We define the path 
label of a node u as the string formed by concatenating 

the edge labels on the path  fi'om the root to u. Then, 

the suffix link of u is a pointer from u to another node 

v such that  the path label of v is the same as the pa th  

label of u with the first character removed. Note that  

suffix link for every internal node exists. A suffix tree 

can be stored in O(n log n) bits. 

A generalized suffix tree is a suffix tree containing 

the suffixes of all texts in a collection. Each edge is 

labeled by three integers, specifying which substring of 

which text. A generalized suffix tree can be updated 

efficiently to allow insertion or deletion of a text in the 

collection. Precisely, insertion or deletion of a text  of 

length t can be done in O(t) time. Searching where a 

pat tern  P appears  in the collection is also efficient, using 

O(IPI +occ) time, where occ denotes the total  number 

of occurrences. 

Suff ix  A r r a y s ,  C S A  a n d  F M - i n d e x .  By enu- 

merating the leaves of a suffix tree from left to right, we 

obtain the suffix array SA[1..n] of T, which is an array 

of integers such tha t  T[SA[i]..n] is the lexicographically 

i-th smallest suffix of T [17]. The main component of 

CSA is the function q [1..n] where qJ [i] = SA-1 [SA[i] + 1]. 

In other words, let i be the lexicographical order of the 

suffix T[SA[i]_n]. Then, q[i] gives the lexicographical 

order of the suffix T[SA[i] + 1..n]. The q array admits  

an O(n)-bi t  representation. We can count the number 

of occurrences of a pat tern  P in T using O(IP ] logn) 

queries to q [13]. 

The main component  of FM-index is the function 

count, which is defined based on the BFr array [6]. For 

i = 1 , . . . , n ,  BWT[i] is the character T[SA[i ] -  1]. For 

each character c c N and i = 1 , . . . , n ,  the function 

count(c, i) is the number of times character c appears  in 

BWT[1..i]. Similar to the • of CSA, count(c, i) admits an 

O(n)-bi t  representation. We can count the number of 

occurrences of a pat tern  P in T using O(IPI) queries to 

count [10]. See the figure below for an example of the 

~,  BWT and count functions. 
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In fact, CSA and FM-index can be generalized to 

index a collection of texts  {T1, T 2 , . . . ,  Tk } instead of a 

single text.  The definition is slightly changed as the 

suffix array now corresponds to all suffixes of all texts 

in the collection. We say St[i] = (j,~) if the suffix 

Tj [g.. I Tj I] is the lexicographically i- th suffix, and St[i] + 1 

now refers to the tuple (j, ~ + 1), which represents the 

suffix St[i] with the first character removed. Under 

this minor modification, CSA and FM-index are well- 

defined. In particular, Chan et al. [7] showed that  CSA 

and FM-index can be combined to index a dynamic 

collection of texts. The updat ing process can be 

summarized by the following lemma. 

LEMMA 2.1. ([7]) LetC = { T r , T 2 , . . . , T k }  be a set o f k  

distinct strings. Let n be the total length of all strings in 

C. We can maintain CSA and FM-index f o r g  in O(n)-  

bit space such that inserting or deleting a text T[1..t] 

takes O(t log n) time. Precisely, the updating is done by 

t steps, each taking O(logn)  time. For insertion, the 

i-th step produces the index for C U {Z[t - i + 1..t]}; .¢br 

deletion, the i-th step produces the index for (C - {T}) U 

{T[i + 1..t]}. 

In addition, the above index supports  retrieving any 

entry in O(logn)  time. For an St  entry, it can be 

computed in O(log2n) t ime using FM-index, and we 

denote this t ime as tSA. Also, we can perform pat tern  

searching based on the backward search algorithm [10], 

which is described as follows. 

LEMMA 2.2. ( [7] )  Given the FM-index for a dynamic 

collection of texts C. Let i be the lexicograph, ical order of 

some pattern P among all suffixes of texts in C. Then, 

for any character c, the FM-index supports a function 

F M  (i,c) that computes the lexicographieal order of cP 

among all suFfixes of texts in C. The time required is 

O(log n). 

3 C o m p r e s s e d  Suffix Tree  

In this section, we describe an O(n)-bi t  representation 

of a suffix tree for a dynamic collection of texts. We 

call such a representation a compressed suffix tree. Our 

main result is stated in the following theorem. 

THEOREM 3.1. Let C = {T1,T2, . . .  ,Tk} be a collection 

of texts with total length n. We can maintain a 

compressed suffix tree for C, which uses O(n)-bit  space 

and supports the following queries about the suFfix tree 

for C: finding the root in O(1) time, and finding the 

parent, left child, left sibling, right sibling, and svJfix 

link of a node in O(logn)  time. The edge label and leaf 

label can be computed in O(log 2n) time. Inserting or 

deleting of a text T in C can be done in O(ITl log2n) 

time. 

Roughly speaking, infornmtion about  a suffix tree 

is stored using the following O(n)-bi t  da ta  structures. 

1. The tree structure is represented by a list of bal- 

anced parentheses. 

2. Information about  suffix links and leaf labels can 

be deduced from CSA and FM-index. 

3. Information about  the edge labels is deduced from 

leaf labels together with an auxiliary da ta  structure 

called LCP which maintains the length of the 

longest common prefix between any two adjacent 

leaves. 

When a text  is inserted into or deleted from C, one 

naive way to update  the compressed suffix tree is to de- 

compress it back to the original suffix tree, perform up- 

date on the uncompressed suffix tree, and then compress 

it back to the above da ta  structures. Yet, such approach 

is very t ime consuming and requires O(n log n)-bit  work- 

ing space. We show tha t  we can update  the compressed 

suffix tree efficiently by working on the da ta  structures 

directly in the compressed format. Intuitively, our com- 

pressed suffix tree supports  the navigation operations of 

the normal suffix trees. Thus, we can sinmlate an up- 

dating algorithm for normal suffix tree, in order to de- 

termine how an update  changes the original suffix tree. 
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Then, we show how to convert the changes into actual 

modifications on the da ta  structures. Finally, we show 

how to implement the da ta  structures to support  the 

required updates efficiently. 

3.1 T r e e  S t r u c t u r e  a n d  N a v i g a t i o n  O p e r a t i o n s .  

The tree structure of a suffix tree is represented by 

a list of parentheses as follows: Traverse the suffix 

tree in a depth-first-search order; at the first t ime 

a node is visited, append a "(" to the list, and at 

the last t ime a node is visited, append a ")" to the 

list. Note tha t  the list of parentheses is balanced and 

each node in the suffix tree is represented by a pair 

of matching parentheses. Therefore, we can specify 

a node u in the suffix tree using the position of the 

open parenthesis that  represents u. To support  efficient 

navigation operations on the suffix tree, we require 

efficient operations on the balanced parentheses, as 

shown in the next lemma, where the proof of which is 

deferred to Section 4. 

LEMMA 3.1. We can maintain a list 13 of n paiT~ of 

balanced parentheses in O(n)-bit space and support each 

of the following operations in O(log n) time. 

• find-match(u): Find the matching parenthesis of u. 

• enclose(u): Find the nearest pair of matching 

parentheses that encloses u. 

• double-enclose(u,v): Find the nearest pair of 

matching parentheses that encloses both u and v. 

• rank-leaf(u), select-leaf(i): A pair of consecutive 

matching parentheses is called a leaf in B. The 

operation rank-leaf(u) counts the number of leaves 

from the beginning of B up to location of u. The 

operation select-leaf(i) finds the i-th leaf in 13. 

• insert(g, r), delete(g, r): Insert or delete the match- 

ing parentheses pair located at (~, r). 

For a node u, its parent is given by enclose(u), the 

left child is u + 1, the left sibling is find-match(u - 1), 

and the right sibling is find-match(u) + 1. 

Lowest c o m m o n  ances tor ,  leaf r ank  and  selec- 

tion, lef tmost  and  r igh tmos t  leaf. The list of balanced 

parentheses supports  other queries about the suffix tree. 

In particular, the lowest common ancestor of two nodes 

u and v is double-enclose(u,v). The rank of a leaf u, 

which is the lexicographical order of the suffix corre- 

sponding to it, is rank-leaf(u). The i-th leaf, which is 

the one corresponding to the lexicographically i-th suf- 

fix, is given by select-leaf(i). The leftmost leaf and the 

rightmost leaf of the subtree rooted at u can be found 

by rank-leaf(u- 1 ) +  1 and rank-leaf(find-match(u)), re- 

spectively. Each of the above operations takes O(log n) 

time. 

Leaf labels and suffix links are deduced from the 

tree structure, CSA, and FM-index as follows. 

Leaf  labels. For any leaf v, let i be its rank. The 

suffix corresponding to v has lexicographical order i 

among all suffixes in the suffix tree. Thus, the leaf label 

of v is SA[i], which can be found using the FM-index. 

Finding i and SA[i] takes totally O(log n + tSA) time. 

Suffix links. Consider an internal node u. Let ue 

and u~ be the leftmost leaf and rightmost leaf in the 

subtree rooted at u, respectively. Let x and y be the 

leaf rank of ue and ur. ~[x] gives the rank of a leaf 

whose leaf label is that  of ue with the first character 

removed. Similarly, • [y] gives the rank of a leaf whose 

leaf label is that  of u~ with the first character removed. 

Let v be the lowest common ancestor of select-leaf(~[x]) 

and seleet-leaf(~[y]). We notice that  the path  label of 

v is tha t  of u with the first character removed. Thus, v 

is the node pointed by the suffix link of u. The above 

steps takes O(tog n) time. 

Finally, we describe an auxiliary da ta  structure 

called LCP for computing the edge labels. 

Edge labels. Recall that  for any node u, the edge 

label of u is the string on the edge from u's parent to 

u. More precisely, the edge label is represented by a 

tuple (j ,s ,g) such that  Tj[s..s + g -  1] is the string on 

the edge. To compute the edge labels, we dynamize 

Sadakane's LCP data  structure [21], which uses O(n) 

bits to store the length of the longest common prefix 

between any two adjacent leaves in the suffix tree. Then, 

the value LCP(i), which is the length of the longest 

common prefix between the i-th leaf and the (i + 1)- 

th leaf, can be retrieved in O(logn)  time. In addition, 

when we insert a new suffix to become the i-th leaf of 

the suffix tree, if we can find the lengths of the longest 

common prefix of this suffix with the original (i - 1)- 

th and i- th smallest suffix, we can update  the LCP in 

O(log n) t ime to reflect the insertion of this suffix. On 
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the other hand, when we delete the i-th smallest suffix, 

if we can find the length of the longest common prefix 

between the original (i - 1)-th and (i + 1)-th smallest 

suffix, we can perform the update in O(log n) time. 

Based on LCP, we can find the path label and then 

the edge label of a node u in O(logn + tsd) time as 

follows. If u is a leaf, then the path label of u is the leaf 

label. Otherwise, we find the rightmost leaf x rooted at 

u's leftmost child, and compute its rank i. We notice 

that  the path label of u is the longest common prefix 

between x and the leaf with rank i + 1, and its length 

is given by LCP(i ) .  Thus, with the leaf label of x and 

L C P ( i ) ,  we can deduce the path label of u. To find the 

edge label of u, we find the path label of u and the path 

label of u's parent. The edge label of u can be calculated 

accordingly. The process takes O(log n + t sA)  time. 

3.2 I n s e r t i n g  a n d  D e l e t i n g  a Tex t .  Assume that 

we have the list of balanced parentheses, CSA, FM- 

index and LCP representing the suffix tree for a col- 

lection of texts C. To insert a new text T into C, we 

update the data structures to reflect the change that 

all suffixes of T are inserted into the suffix tree. We 

perform the update in ITI rounds such that  in the i-th 

round, the i-th shortest suffix TI lT  I - i + 1..ITI] is in- 

serted as a new leaf into the suffix tree. Each round in- 

volves updating the list of balanced parentheses, CSA, 

FM-index and LCP. Thus, we maintain an invariance 

that  at the end of the i-th round, the data structures 

represent the compressed suffix tree for the collection 

C U {T[IT I - i + 1..ITI] }. 

In each round, updating CSA and FM-index can 

be done according to Lemma 2.1. The key concern 

is updating the list of balanced parentheses and LCP, 

which is done by the following two steps: calculating 

the new suffix tree information, and updating the data 

structures according to the new suffix tree. 

For the first step, we observe that  our compressed 

suffix tree supports the navigation operations on normal 

suffix tree, so we can make use of Weiner's algorithm 

to calculate the location of the new leaf. However, 

Weiner's algorithm involves the following notion of 

backward suffix links. 

DEFINITION 3.1. Consider a sui~fix tree for  a collection 

of  texts. For' any internal node u and any character c, 

the backward sui~Jix link of  u with respect to c is a pointer 

to the internal node v such that the path label of  v is the 

character c concatenated with the path label of  u. The 

backward suffix link is null i f  no such v exists. 

Note that  if the backward suffix link of u with 

respect to a character c points to a node v, then the 

suffix link of v points to u. Unlike the original Weiner's 

algorithm, we cannot store the backward suffix links 

for each internal node explicitly, because it would take 

O(n  log n) bits. Instead, we will show how to calculate 

it using our O(n)-bit data structures in O(log n) time. 

Yet, for our suffix tree representation, we also 

need to know the longest common prefix between tile 

newly added leaf and its two adjacent leaves in order 

to update the LCP. We show that  these lengths can 

be calculated efficiently fl'om the old LCP. After the 

information about the new suffix tree is obtained, we (:an 

proceed to the second step to update the data structures 

accordingly. 

Assume that  we are in the (i + 1)-th round of an 

update. That  is, the suffix S = T[]T I - i + 1..ITI] is 

just inserted into the suffix tree in the last round. Let 

c = T[]T I - i] be a character and we want to insert 

the suffix cS  into the suffix tree. The two steps go as 

follows. 

3.2.1 C a l c u l a t i n g  t h e  N e w  Suffix Tree  In fo r -  

m a t i o n .  To calculate information about the new suffix 

tree, we need the use of backward suffix links. We first 

show how to calculate the backward suffix link of a node 

efficiently. 

LEMMA 3.2. Consider a compressed suffix tree for  a 

collection of  texts C = {T1, T 2 , . . .  , Tk } with total length 

n. For any internal node u and character' c, the 

backward suJ~x link off u with respect to c can be found  

in O(logn) time. 

Pro@ For any internal node u, let S be the path label 

of u. We first assume that the backward suffix link of 

u with respect to c exists. That  is, there is an internal 

node v with path label cS. Let a and b be the leftmost 

and rightmost leaf of u, respectively. Let x and y be 

the leftmost and rightmost leaf of v. For any internal 

node p and any leaf q in the subtree rooted at p, we let 

E(p,  q) be the concatenation of edge labels from p to q. 
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By the definition of a suffix tree, there is a leaf m 

in the subtree rooted at u such that  E ( u , m )  equals 

E(v,  x). As a is the leftmost leaf in the subtree rooted 

at u, E(u,  a) is either lexicographically smaller than 

or equal to E(v ,x ) .  In both cases, FM(rank-leaf(a),c) 
gives the leaf rank of x. Similarly, E(u,  b) is lexico- 

graphically equal to or greater than E(v,  y). If E(u,  b) 

is lexicographically equal to E(v,  y), FM( rank-leaf(b), c) 

is the leaf rank of y; otherwise, FM(rank-leaf(b), c) is 

one greater than the leaf rank of y. We will test 

both cases. We find the FM(rank-leaf(a), c)-th and the 

FM(rank-leaf(b),c)-th leaf, and find their lowest com- 

mon ancestor vq If the suffix link of v' points to u, then 

the backward suffix link of u with respect to c is v'. We 

repeat the test using the (FM(rank-leaf(b), c ) - l ) - t h  leaf. 

If both cases fail, we conclude that the backward suffix 

link of u with respect to c is null. The above steps take 

O(log n) time. [] 

L o c a t i o n  of the  leaf corresponding to cS. We 

follow Weiner's algorithm to determine where the leaf 

should be added. Let w be the leaf for the suffix S, 

whose location is known by the end of last round. We 

start at w, traverse up the tree and look for the first 

node u with a non-null backward suffix link with respect 

to c. 

If such a node u is found, we follow the backward 

suffix link to a node v. Let c' be the first character on 

the path from u to w. If there is no edge out of v with 

first character being d, then the leaf for cS is attached 

as a child of v. Otherwise, we let (v, v ~) be an edge going 

out of v with first character being c'. The leaf for the 

suffix cS should be attached to a new internal node on 

this edge. 

If no such node u is found when we traverse from 

w up to the root, the leaf for the suffix cS is attached 

to the root or to a new internal node on an edge out of 

the root. 

The above steps calculate location of the new leaf 

in O(e~ logn +tSA ) time, where ei > 1 is the number of 

edges traversed when we go up from the leaf w searching 

for the node u. The term tSA is needed because when 

we arrive at the node v or arrive at the root, we need 

to find the first character of each outgoing edge, which 

requires finding the edge labels. 

The  longest common  prefix information.  Recall 

that  the suffix S = T[IT I - i + 1..ITI] is inserted to 

the suffix tree in the last round, and now we want 

to insert the suffix cS into the suffix tree, where 

c = T[]T I - i ] .  We show how to calculate the longest 

common prefix between the leaf corresponding to cS 

and its two adjacent leaves efficiently. 

Let x be the lexicographical order of S among all 

suffixes in the suffix tree, which is known by the end 

of last round. Let j = F M ( x , c ) .  By Lemma 2.2, 

j is the lexicographical order of cS among all suffixes 

in the suffix tree, and the leaf representing cS will be 

inserted as the j - th  leaf in the suffix tree. The length 

of the longest common prefix between cS and the suffix 

corresponding to the (j - 1)-th leaf can be calculated as 

follows. 

LEMMA 3.3. The length of the longest common prefix 

between cS and the su]fix corresponding to the (j - 1)-th 

leaf can be found in O(logn + tsA) time. 

Proof. Let c'S' be the suffix corresponding to the ( j - 1 ) -  

th leaf, where c' is a character and S '  is a string. If 

c ¢ c', the longest common prefix of cS and c~S ' has 

length 0. Otherwise, we notice that the ~ ( j  - 1)-th 

leaf is the leaf corresponding to the suffix S/. Thus, the 

length of the longest common prefix between cS and 

c'S' is 1 + the longest common prefix between S and 

S', where S and S'  are the suffixes corresponding to 

the x-th and ~ ( j  - 1)-th leaf, respectively. We find the 

lowest common ancestor of the x-th and the ~ ( j  - 1)-th 

leaf. The length of the path label for the lowest common 

ancestor gives the length of the longest common prefix. 

The above steps take O(logn + tsm) time, which is 

dominated by the time to find the path label. [] 

Calculating the length of the longest common prefix 

between cS and the suffix corresponding to the j - th  leaf 

is identical. 

3.2.2 U p d a t i n g  t h e  D a t a  S t r u c t u r e s .  After the 

information about new suffix tree is known, we update 

the data structures to actually reflect the change that  

the suffix cS is inserted into the suffix tree. CSA 

and FM-index can be updated in O(logn) time by 

Lemma 2.1. It remains to update the list of balanced 

parentheses and LCP. 
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Recall that  the list of balanced parentheses repre- 

sents the tree structure of the suffix tree. The previous 

calculation finds where the leaf corresponding to the 

suffix cS is at tached to the suffix tree, so the list of 

parentheses can be updated accordingly. There are two 

cases where the new leaf is inserted. If the leaf is at- 

tached as the x-th child of an existing node u, we insert 

a pair of consecutive matching parentheses, such that  

it is enclosed by the parentheses representing u, and its 

location represents the x-th child of u. Otherwise, the 

leaf is a t tached to a newly created internal node m on 

some existing edge. Let (u, v) be the edge where u is the 

parent of v. We insert a pair of parentheses representing 

m, which is inside 'u and immediately enclosing v. We 

also insert a pair of consecutive matching parentheses 

within m. The above steps takes O(logn)  time. 

Finally, we update  LCP according to the calculated 

values of the longest common prefix. Recall that  

L C P ( j )  is the length of longest common prefix between 

the j - t h  leaf and the (j  + 1)-th leaf. Assume tha t  cS is 

inserted as j - leaf  of the suffix tree, we need to change the 

value of L C P ( j  - 1) to the length of the longest common 

prefix between cS and the originally ( j - 1 ) - t h  leaf. Also, 

we need to insert a new value as L C P ( j ) ,  which is the 

length of the longest common prefix between cS and the 

originally j - t h  leaf. It  takes O(log n) t ime to update  the 

LCP. 

3 .2 .3  O v e r a l l  T i m e  C o m p l e x i t y .  Consider the i- 

th round where we are inserting the i- th shortest suffix 

of T into the suffix tree. We calculate the new suffix 

tree information in O(ei log n + tSA) time, where e~ > 1 

is the number of edges traversed when we calculate 

the locations to insert the new leaf. Then we perform 

the changes on the data  structures in O(logn)  time. 

Note tha t  it takes more t ime to calculate how the 

da ta  structures are changed, than  actually perform 

the change. The total  t ime to insert a text  T is 

O(~i=l. . iTi e~ log n + [ r  I • tsA). Similar to the analysis 

of the Weiner's algorithm, we can show ~ = l . . I r l  ei _< 

31TI, so the t ime to insert T is O ( I r [ ( l o g n  + tSA)) 

= O(ITIlog2n) .  Note tha t  once the list of balanced 

parentheses, CSA, FM-index and LCP are updated,  the 

data  structures represent the updated suffix tree. In 

particular, the edge labels are updated automatically. 

When we delete a text  T fl'oru C, we delete all 

suffixes of T from the suffix tree start ing from the 

longest one. We first locate the leaf for the suffix T and 

then reverse the steps of insertion. I t  takes O(]T I log 2 n) 

t ime to delete all suffixes of T. 

4 P a r e n t h e s e s  M a i n t e n a n c e  

In this section, we consider compressed data  structures 

for maintaining a list of n pairs of balanced parentheses. 

We first show an O(n)-bi t  da ta  structure tha t  supports  

finding the matching parenthesis, the nearest enclosing 

parentheses, and updating in O(log n~ loglogn)  time. 

Then, we give another O(n)-bi t  da ta  s tructure that  

supports  finding the nearest enclosing parentheses for 

two given parentheses and updat ing in O(logn)  time. 

Together, they prove Lemma 3.1. 

Finding  the  match ing  and nearest  enc los ing  

parentheses .  We divide the list of n pairs of 

parentheses into segments of length log 2 n / l o g  log'n to 

2 log 2 n / l o g  log n. The segments are stored in leaves of 

a B-tree, and each internal node of the B-tree has log¼ n 
1 

to 2 log :s n children. For each internal node, as the num- 

ber of children is small, we can build a searchable partial  

sum data  structure[20] on information of the children, 

which allows a number of queries and updates  in con- 

stant  time. As a result, finding the matching and near- 

est enclosing parentheses takes t ime proportional  to the 

height of the tree, which is O(log n / l o g l o g  n). Details 

are as follows. 

We will consider the enclose operation only. For an 

internal node u, let close[i] be the number of unmatched 

closing parentheses in the subtree rooted at the i-th 

child of u. We fnrther divide these unmatched closing 

parentheses into two types: those with matching paren- 

theses located in a subtree rooted at some other child of 

u (calling them near-unmatched closing parentheses); 

and those with matching parentheses located outside 

the tree rooted at u (calling them far-unmatched clos- 

ing parentheses). We store these two numbers for the 

i- th child as near-close[i] and far-close[i] respectively. 

The values open[i], near-open[i] and far-open[i] are de- 

fined similarly. 

We build a searchable partial  sum data  structure[20] 

on the close array, which maintains an array of at most  
1 

2 log a n integers and supports  the operations sum(j) = 
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E ~ : i  close[i] and search(x) = min{j lsum(j  ) >_ x} in 

O(1) time. We also build the searchable partial sum 

data structure on the each of the remaining five arrays. 

Given a parenthesis i, 2 to find the open parenthesis 

enclosing i, we traverse down the tree to locate the leaf 

containing i. We scan the leaf to search for an open 

parenthesis enclosing i. If no such parenthesis is found, 

we traverse up the tree. We maintain an invariance that 

whenever we leave a node u, we know the number of 

unmatched closing parentheses inside the subtree rooted 

at u that  are to the left of i. This information can be 

maintained in O(1) time, based on the searchable partial 

sum data structures. Furthermore, at any internal 

node v, we can determine in constant time whether the 

enclosing parenthesis is in the tree rooted at v. If yes, 

we traverse down the tree looking for that parenthesis. 

The whole process takes time proportional to the height 

of the tree, which is O(log n / l o g  log n). 

F i n d i n g  t h e  d o u b l e - e n c l o s e  p a r e n t h e s e s .  W e  di-  

v i d e  the list of parentheses into segments of length log n 

to 2 logn. The segments are stored as leaves of a red- 

black tree. For each internal node, we store informa- 

tion about its two children, so finding the double-enclose 

parentheses takes time proportional to the height of the 

red-black tree, which is O(log n). Details are as follows. 

Let excess(e,i) be the number of open parentheses 

minus the number of closing parentheses in the range 

[g, i]. For a range [g, rl, we say rain-excess(g, r) = io, 
if for g < i < r, excess(g, i) is minimized when i = i0. 

The nearest enclosing parentheses for both g and r is 

the nearest enclosing parentheses for min-excess(g,r). 
Thus, finding double-enclose(e, r) is reduced to finding 

rain-excess(g, r ). 
Furthermore, we observe that for any b E [g, r], min- 

excess(g,r) is either rain-excess(g, b) or min-excess(b + 
1, r). Precisely, let i~ and ig denote the former and 

latter term. Then, min-excess(g, r) is 'i~ if excess(e, i~) < 
excess(e, b) + excess(b + 1, i~'), and it is ig otherwise. 

Based on this observation, we store extra informa- 

tion in red-black tree to allow efficient calculation of the 

function rain-excess. Precisely, for each internal node 

u, let x and y be the leftmost and rightmost paren- 

theses in the subtree rooted at u; we store two values 

ZWe refer to a parenthesis in the list by its index. Parenthesis 
i < j  i f i i s o n  the left o f j .  

i and excess(x,i), where i is min-excess(x,y). Then, 

rain-excess(g, r) for any g and r can be computed when 

we traverse from the leaf containing g, and from the 

leaf' containing r, to their lowest common ancestor in 

the red-black tree. This gives the following lemma and 

concludes the section. 

LEMMA 4.1. Given two parentheses g and r, we can find 
min-excess( g, r) in O(logn) time. 

5 Dynamic Dictionary Matching 

Given a dynamic collection of patterns 7) = 

{P1, R2, . . . ,  Pk} of total length d, we want to maintain 

an index on 7) such that when an arbitrary text T is 

given, we can efficiently answer the dictionary match- 

ing query which locates the occurrences of all patterns 

in T. 
V~re follow the idea of Amir et al. [4], and main- 

tain a compressed suffix tree for the collection of pat- 

terns. Dictionary matching query is basically done by 

a traversal on the suffix tree based on T. As required 

by [4], we also maintain a data structure which for any 

internal node u of the suffix tree, reports all patterns in 

7) that  are prefix to the path label of u. This is useful 

for reporting occurrences of I)atterns when we deduce 

that tile path label of u is matching some part of T. 

To do so, we intuitively mark all the internal nodes of 

the suffix tree whose path label matches a pattern in 

7). Then, to report patterns that are prefix to the path 

label of u, we report all the marked nodes on the path 

from u to the root. This marked tree structure can be 

represented compactly by a list of the balanced paren- 

theses, and maintained based on Lemma 3.1. To report 

occurrences of all patterns in T, it takes O(IT I log 2 d) 

time to traverse the compressed suffix tree and takes 

O(occlog 2 d) time to report the occ occurrences. Since 

both the compressed suffix tree and the list of parenthe- 

ses allow efficient updates, we obtain a compact solution 

for the dynamic dictionary matching problem as follows. 

THEOREM 5.1. Let 7) = {P1,P2, . . .  ,Pk} be a dynamic 
collection of patterns with, total length d. We can 
maintain an O(d)-bit index for 7), such that a dictionary 
matching query for a text T takes O( (IT I + occ) log 2 d) 

time. Inserting or deleting a pattern P in 7) takes 
O(IP I log 2 d) time. 
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