
Title Dynamic dictionary matching and compressed suffix trees

Author(s) Chan, HL; Hon, WK; Lam, TW; Sadakane, K

Citation Proceedings Of The Annual Acm-Siam Symposium On Discrete
Algorithms, 2005, p. 13-22

Issued Date 2005

URL http://hdl.handle.net/10722/45528

Rights Creative Commons: Attribution 3.0 Hong Kong License

Ho-Leung Chan*

Dynamic Dictionary Matching and
Compressed SutIix Trees

Wing-Kai Hon* Tak-Wah Lain* Kunihiko Sadakane*

A b s t r a c t

Recent breakthrough in compressed indexing data

structures has reduced the space for indexing a text (or

a collection of texts) of length n from O(n log n) bits to

O(n) bits, while allowing very efficient pat tern matching

[10, 13]. Yet the compressed nature of such indices also

makes them difficult to update dynamically. This paper

presents the first O(n)-bit representation of a suffix tree

for a dynamic collection of texts whose total length is

n, which supports insertion and deletion of a text T in

O(IT I log 2 n) time, as well as all suffix tree traversal op-

erations, including forward and backward suffix links.

This work can be regarded as a generalization of the

compressed representation of static texts. Our new suf-

fix tree representation serves as a core part in a compact

solution for the dynamic dictionary matching problem,

i.e., providing an O(d)-bit data structure for a dynamic

collection of patterns of total length d that can support

the dictionary matching query efficiently. When com-

pared with the O(dlog d)-bit suffix tree based solution

of Amir et al., the compact solution increases the query

time by roughly a factor of log d only. In the study of the

above results, we also derive the first O(n)-bit represen-

tation for maintaining n pairs of balanced parentheses

in O(log n / l o g log n) t ime per operation, matching the

t ime complexity of the previous O(n log n)-bit solution.

1 I n t r o d u c t i o n

This paper studies the compact solution of the following

dynamic data structure problems: generalized suffix

trees, dynamic dictionary matching, and parentheses

maintenance.

Suff ix Trees and D y n a m i c Dic t ionary Matching.

Given a text T of length n, a suffix tree [18, 24] for

~I'~epartment of Computer Science, The University of tlong
Kong, Hong Kong, {hlchan,wkhon,tw].am}¢cs.hku.hk

~Department of Computer Science and Communication Engi-
neering, Kyushu University, Japan, sada@csce, k y u s h u - u , a c . jp

T is a compact trie containing all suffixes of T, with

each leaf storing the position of the corresponding suffix

and each internal node storing a special pointer called a

suffix link. We assume tha t characters are chosen from a

constant size alphabet. A suffix tree occupies O(n tog n)

bits of space and supports finding all occurrences of a

given pat tern P in T in O(IPI + oct) time, where occ
denotes the number of occurrences. The notion of suffix

tree can be generalized for a collection of texts, storing

all suffixes of the texts in the collection. Such a suffix

tree allows pat tern searching to be performed over all

texts in O(IPl +oc t) time. Furthermore, McCreight [18]

showed tha t this generalized suffix tree can be updated

in O(t) t ime when a text of length t is inserted into or

deleted from the collection.

Suffix trees find application in other complicated

string matching problems (e.g., [12, 15]), for which

efficient solutions rely on not only the efficient pat tern

matching of suffix trees, but also the tree structure and

the provision of suffix links. Among such problems, the

dynamic dictionary matching problem is one of the most

well studied [1, 2, 3, 4, 5, 23], which is required to index a

collection of pat terns {P1, P2, . . . , Pk} with total length

d, so as to answer efficiently the occurrences of all Pi

in any given text T, and allow efficient insertion and

deletion of patterns. Most of the previous solutions for

dynamic dictionary matching are based on suffix trees.

In particular, Amir et al. [4] showed that updat ing a

pat tern P can be done in O(IPIlogd/loglogd) t ime

and a dictionary matching query for a text T takes

0 ((ITI + occ) log d~ log log d) time. 1

Compres sed Index ing D a t a S t ruc tures . The need

of indexing very long genome sequences (e.g., a human

genome contains 2.8G base pairs) has triggered the

research on compressed indexing da ta structures that

1SahinMp and Vishkin [23] devised a new data structure called
fat-tree, and improved the update time to O([PI), and query time
to O([T I +occ).

13

use O(n) bits instead of O(nlogn) bits. The past few

years have witnessed two breakthrough results. The

first one is the Compressed Suffix Arrays (CSA) by

Grossi and Vitter [13], and the second one is the FM-

index by Ferragina and Manzini [10]. These indexes are

compressed versions of suffix arrays [17], occupying only

O(n) bits, yet supporting efficient pa t tern searching.

Chan et al. [7] further showed that CSA and FM-index

can be combined together to index a dynamic collection

of texts {X1 ,X2 , - . . ,Xe}, allowing searching for any

given pat tern P in all Xi's in O(]P] logn + occlog 2 n)
time, and more importantly, they showed tha t these

O(n)-bi t da ta structures can be updated in O(IX I log n)

t ime when a text X is inserted or deleted. However,

CSA or FM-index does not represent a suffix tree in the

sense that the corresponding tree structure and suffix

links are not captured, and thus they are not sufficient

for solving tile dynamic dictionary matching problem.

I t is natural to ask whether we can have a com-

pressed version of a suffix tree for a dynamic collection

of texts. Tha t is, we want to support queries about

the suffix tree structure (namely, parent, child, sibling,

edge label, and leaf label) and suffix links, while al-

lowing efficient update due to insertion and deletion of

texts. Sadakane [22] has made a step towards this goal;

his work gives an O(n)-bi t representation for a suffix

tree which can avoid storing pointers, but his work as-

sumes a static text (or a s ta t iccol lect ion of texts) so

that the underlying da ta structures are rigidly packed

together and thus cannot be updated efficiently. The

challenge for 'dynamizing' a compressed suffix tree lies

in two aspects: structural and algorithmic. Structurally,

the compressed suffix tree should not only be compact,

but also be flexible enough to allow efficient updates.

Algorithmically, we have to find efficient updat ing meth-

ods tha t are tailored for the underlying da ta structures.

This often requires support ing operations other than the

basic navigational operations for traversing the suffix

tree.

Compressed Suffix Trees. In this paper, we give

the first O(n)-bi t representation of a suffix tree that

allows efficient update. Our solution is comprised of

several dynamic data structures for representing CSA

and FM-index, as well as the tree structure. The lat-

ter inspires us to s tudy a compact representation for

maintaining a sequence of balanced parentheses (see

the discussion below). Retrieving an edge label and

leaf label requires O(log 2 n) time, while other naviga-

tion queries, including suffix links, can be performed

in O(logn) time. More importantly, we allow the re-

trieval of backward suffix links [24], which turns out to

be crucial for supporting efficient update of this rep-

resentation. Apparently, representing backward suffix

links is nlore demanding than tha t for the (forward) suf-

fix links, because each internal node of a suffix tree may

have more than one backward suffix link, while some in-

ternal nodes may have none. Nevertheless, we are able

to show tha t FM-index already allows us to recover the

backward suffix links efficiently.

As mentioned before, given a suffix tree representing

a collection of texts, one can use McCreight 's method

to insert or delete a text X efficiently. Note tha t Mc-

Creight 's insertion method updates the suffix tree by

adding suffixes of X one by one from the longest to the

shortest one. This creates a fundamental technical prob-

lem as both CSA and FM-index should be constructed

and updated in an ascending order of the suffixes; as

these indices are only well-defined for representing a col-

lection of texts and all their suffixes. This motivates us

to take an asymmetr ic approach with the provision of

the two types of suffix links. Precisely, insertion is based

on the framework of Weiner's suffix tree construction

method, where we star t from adding the shortest suf-

fix to the longest one, exploiting backward suffix links.

For deletion, it is based on McCreight 's method with

forward suffix links. Both can be done in O(IX I log 2 n)
time. Another interesting idea is tha t edge labels are

only implicitly stored by the compact da ta structures,

which can be computed efficiently when needed. Fur-

thennore, when the da ta structures are updated, the

correctness of the edge labels are automatical ly main-

tained.

Based on our compact representation of a suffix

tree, we can adapt the work of Amir et al. [4] to give

the first O(d)-bit solution for the dynamic dictionary

matching problem. Our solution supports updat ing of

a pat tern P in O(IPl log 2 d) time, and a dictionary query

for a text T in O((IT I + oct) log 2 d) time.

Pa ren theses Main tenance . To represent a gener-

alized suffix tree, we need a compact representation of

14

the tree structure. This can be done using a sequence

of balanced parentheses [16, 19]. For a sequence of n

pairs of balanced parentheses, the basic queries include

find-match and enclose, which find the position of the

matching parenthesis and the nearest pair of enclosing

parentheses, respectively. For the static case, the best

known solution is by Munro and Raman [19], which

supports these operations in O(1) t ime and occupies

only 2n + o(n) bits. When we need to maintain the

parentheses under insertion and deletion, the best re-

sult is by Amir et al. [4], which requires O (n l o g n)

bits, while supporting each operation, including an up-

date, in O(log n/log log n) time. In this paper, we pro-

pose the first O(n)-bit representation for maintaining

the balanced parentheses, with O(log n/log log n) t ime

per operation, thus matching the best result with space

complexity of O(n log n) bits.

As fbr theoretical interest, we observe that the clas-

sical problem for maintaining a sequence of bits under

updates, with rank and select queries supported, can be

reduced to the parentheses maintenance problem. Then

based on the lower bound result from Fredman and Saks

[11], we can conclude that for any da ta structure for the

parentheses maintenance, there exists a sequence of op-

erations requiring ft(log n/log log n) amortized t ime per

operation.

Finally, we also consider a more complicated op-

eration called double-enclose, which finds the nearest

parenthesis pair tha t encloses two input parenthesis

pairs. We show that with an O(n)-bit data structure,

this operation can be achieved in O(logn) time.

Organizat ion. The remaining of the paper is or-

ganized as follows. Section 2 gives a brief review on

the suffix trees, suffix arrays, CSA and FM-index. Sec-

tions 3, 4 and 5 are devoted to our solutions for the dy-

namic compressed suffix tree, parentheses maintenance

and dynamic dictionary matching, respectively.

2 P r e l i m i n a r i e s

In this section, we give a brief review on suffix trees

[18, 24], suffix arrays [17], Compressed Suffix Arrays

[13], and FM-index [10]. Let T[1..n] = T[1]T[2]---TIn]

be a string of length n over a finite alphabet E. For any

i = 1, . . . , n, T[i..n] is a suffix of T.

Suff ix Tree . The suffix tree is a compact trie tha t

contains all suffixes of T. Each edge is labeled by a pair

of integers specifying a substring of T, and each leaf

is labeled by the start ing position of the corresponding

suffix of T. We also store a suffix link for each internal

node, which is defined as follows. We define the path
label of a node u as the string formed by concatenating

the edge labels on the path fi'om the root to u. Then,

the suffix link of u is a pointer from u to another node

v such that the path label of v is the same as the pa th

label of u with the first character removed. Note that

suffix link for every internal node exists. A suffix tree

can be stored in O(n log n) bits.

A generalized suffix tree is a suffix tree containing

the suffixes of all texts in a collection. Each edge is

labeled by three integers, specifying which substring of

which text. A generalized suffix tree can be updated

efficiently to allow insertion or deletion of a text in the

collection. Precisely, insertion or deletion of a text of

length t can be done in O(t) time. Searching where a

pat tern P appears in the collection is also efficient, using

O(IPI +occ) time, where occ denotes the total number

of occurrences.

Suff ix A r r a y s , C S A a n d F M - i n d e x . By enu-

merating the leaves of a suffix tree from left to right, we

obtain the suffix array SA[1..n] of T, which is an array

of integers such tha t T[SA[i]..n] is the lexicographically

i-th smallest suffix of T [17]. The main component of

CSA is the function q [1..n] where qJ [i] = SA-1 [SA[i] + 1].

In other words, let i be the lexicographical order of the

suffix T[SA[i]_n]. Then, q[i] gives the lexicographical

order of the suffix T[SA[i] + 1..n]. The q array admits

an O(n)-bi t representation. We can count the number

of occurrences of a pat tern P in T using O(IP] logn)

queries to q [13].

The main component of FM-index is the function

count, which is defined based on the BFr array [6]. For

i = 1 , . . . , n , BWT[i] is the character T[SA[i] - 1]. For

each character c c N and i = 1 , . . . , n , the function

count(c, i) is the number of times character c appears in

BWT[1..i]. Similar to the • of CSA, count(c, i) admits an

O(n)-bi t representation. We can count the number of

occurrences of a pat tern P in T using O(IPI) queries to

count [10]. See the figure below for an example of the

~, BWT and count functions.

15

i

1

2

3

4

5

6

7

8

9

T = abbaaaba$

suffixes in

so r ted o rde r

$
a $

a a a b a $

a a b a $

a b a $

a b b a a a b a $

b a $

b a a a b a $

b b a a a b a $

SA[il

9

8

4

5

6

1

7

3

2

~[i BWT[i]

6 a

1 b

4 b

5 a

7 a

9 $
2 a

3 b

8 a

count("a", i) count("b", i)

In fact, CSA and FM-index can be generalized to

index a collection of texts {T1, T 2 , . . . , Tk } instead of a

single text. The definition is slightly changed as the

suffix array now corresponds to all suffixes of all texts

in the collection. We say St[i] = (j,~) if the suffix

Tj [g.. I Tj I] is the lexicographically i- th suffix, and St[i] + 1

now refers to the tuple (j, ~ + 1), which represents the

suffix St[i] with the first character removed. Under

this minor modification, CSA and FM-index are well-

defined. In particular, Chan et al. [7] showed that CSA

and FM-index can be combined to index a dynamic

collection of texts. The updat ing process can be

summarized by the following lemma.

LEMMA 2.1. ([7]) LetC = { T r , T 2 , . . . , T k } be a set o f k

distinct strings. Let n be the total length of all strings in

C. We can maintain CSA and FM-index f o r g in O(n)-

bit space such that inserting or deleting a text T[1..t]

takes O(t log n) time. Precisely, the updating is done by

t steps, each taking O(logn) time. For insertion, the

i-th step produces the index for C U {Z[t - i + 1..t]}; .¢br

deletion, the i-th step produces the index for (C - {T}) U

{T[i + 1..t]}.

In addition, the above index supports retrieving any

entry in O(logn) time. For an St entry, it can be

computed in O(log2n) t ime using FM-index, and we

denote this t ime as tSA. Also, we can perform pat tern

searching based on the backward search algorithm [10],

which is described as follows.

LEMMA 2.2. ([7]) Given the FM-index for a dynamic

collection of texts C. Let i be the lexicograph, ical order of

some pattern P among all suffixes of texts in C. Then,

for any character c, the FM-index supports a function

F M (i,c) that computes the lexicographieal order of cP

among all suFfixes of texts in C. The time required is

O(log n).

3 C o m p r e s s e d Suffix Tree

In this section, we describe an O(n)-bi t representation

of a suffix tree for a dynamic collection of texts. We

call such a representation a compressed suffix tree. Our

main result is stated in the following theorem.

THEOREM 3.1. Let C = {T1,T2, . . . ,Tk} be a collection

of texts with total length n. We can maintain a

compressed suffix tree for C, which uses O(n)-bit space

and supports the following queries about the suFfix tree

for C: finding the root in O(1) time, and finding the

parent, left child, left sibling, right sibling, and svJfix

link of a node in O(logn) time. The edge label and leaf

label can be computed in O(log 2n) time. Inserting or

deleting of a text T in C can be done in O(ITl log2n)

time.

Roughly speaking, infornmtion about a suffix tree

is stored using the following O(n)-bi t da ta structures.

1. The tree structure is represented by a list of bal-

anced parentheses.

2. Information about suffix links and leaf labels can

be deduced from CSA and FM-index.

3. Information about the edge labels is deduced from

leaf labels together with an auxiliary da ta structure

called LCP which maintains the length of the

longest common prefix between any two adjacent

leaves.

When a text is inserted into or deleted from C, one

naive way to update the compressed suffix tree is to de-

compress it back to the original suffix tree, perform up-

date on the uncompressed suffix tree, and then compress

it back to the above da ta structures. Yet, such approach

is very t ime consuming and requires O(n log n)-bit work-

ing space. We show tha t we can update the compressed

suffix tree efficiently by working on the da ta structures

directly in the compressed format. Intuitively, our com-

pressed suffix tree supports the navigation operations of

the normal suffix trees. Thus, we can sinmlate an up-

dating algorithm for normal suffix tree, in order to de-

termine how an update changes the original suffix tree.

16

Then, we show how to convert the changes into actual

modifications on the da ta structures. Finally, we show

how to implement the da ta structures to support the

required updates efficiently.

3.1 T r e e S t r u c t u r e a n d N a v i g a t i o n O p e r a t i o n s .

The tree structure of a suffix tree is represented by

a list of parentheses as follows: Traverse the suffix

tree in a depth-first-search order; at the first t ime

a node is visited, append a "(" to the list, and at

the last t ime a node is visited, append a ")" to the

list. Note tha t the list of parentheses is balanced and

each node in the suffix tree is represented by a pair

of matching parentheses. Therefore, we can specify

a node u in the suffix tree using the position of the

open parenthesis that represents u. To support efficient

navigation operations on the suffix tree, we require

efficient operations on the balanced parentheses, as

shown in the next lemma, where the proof of which is

deferred to Section 4.

LEMMA 3.1. We can maintain a list 13 of n paiT~ of

balanced parentheses in O(n)-bit space and support each

of the following operations in O(log n) time.

• find-match(u): Find the matching parenthesis of u.

• enclose(u): Find the nearest pair of matching

parentheses that encloses u.

• double-enclose(u,v): Find the nearest pair of

matching parentheses that encloses both u and v.

• rank-leaf(u), select-leaf(i): A pair of consecutive

matching parentheses is called a leaf in B. The

operation rank-leaf(u) counts the number of leaves

from the beginning of B up to location of u. The

operation select-leaf(i) finds the i-th leaf in 13.

• insert(g, r), delete(g, r): Insert or delete the match-

ing parentheses pair located at (~, r).

For a node u, its parent is given by enclose(u), the

left child is u + 1, the left sibling is find-match(u - 1),

and the right sibling is find-match(u) + 1.

Lowest c o m m o n ances tor , leaf r ank and selec-

tion, lef tmost and r igh tmos t leaf. The list of balanced

parentheses supports other queries about the suffix tree.

In particular, the lowest common ancestor of two nodes

u and v is double-enclose(u,v). The rank of a leaf u,

which is the lexicographical order of the suffix corre-

sponding to it, is rank-leaf(u). The i-th leaf, which is

the one corresponding to the lexicographically i-th suf-

fix, is given by select-leaf(i). The leftmost leaf and the

rightmost leaf of the subtree rooted at u can be found

by rank-leaf(u- 1) + 1 and rank-leaf(find-match(u)), re-

spectively. Each of the above operations takes O(log n)

time.

Leaf labels and suffix links are deduced from the

tree structure, CSA, and FM-index as follows.

Leaf labels. For any leaf v, let i be its rank. The

suffix corresponding to v has lexicographical order i

among all suffixes in the suffix tree. Thus, the leaf label

of v is SA[i], which can be found using the FM-index.

Finding i and SA[i] takes totally O(log n + tSA) time.

Suffix links. Consider an internal node u. Let ue

and u~ be the leftmost leaf and rightmost leaf in the

subtree rooted at u, respectively. Let x and y be the

leaf rank of ue and ur. ~[x] gives the rank of a leaf

whose leaf label is that of ue with the first character

removed. Similarly, • [y] gives the rank of a leaf whose

leaf label is that of u~ with the first character removed.

Let v be the lowest common ancestor of select-leaf(~[x])

and seleet-leaf(~[y]). We notice that the path label of

v is tha t of u with the first character removed. Thus, v

is the node pointed by the suffix link of u. The above

steps takes O(tog n) time.

Finally, we describe an auxiliary da ta structure

called LCP for computing the edge labels.

Edge labels. Recall that for any node u, the edge

label of u is the string on the edge from u's parent to

u. More precisely, the edge label is represented by a

tuple (j ,s ,g) such that Tj[s..s + g - 1] is the string on

the edge. To compute the edge labels, we dynamize

Sadakane's LCP data structure [21], which uses O(n)

bits to store the length of the longest common prefix

between any two adjacent leaves in the suffix tree. Then,

the value LCP(i), which is the length of the longest

common prefix between the i-th leaf and the (i + 1)-

th leaf, can be retrieved in O(logn) time. In addition,

when we insert a new suffix to become the i-th leaf of

the suffix tree, if we can find the lengths of the longest

common prefix of this suffix with the original (i - 1)-

th and i- th smallest suffix, we can update the LCP in

O(log n) t ime to reflect the insertion of this suffix. On

17

the other hand, when we delete the i-th smallest suffix,

if we can find the length of the longest common prefix

between the original (i - 1)-th and (i + 1)-th smallest

suffix, we can perform the update in O(log n) time.

Based on LCP, we can find the path label and then

the edge label of a node u in O(logn + tsd) time as

follows. If u is a leaf, then the path label of u is the leaf

label. Otherwise, we find the rightmost leaf x rooted at

u's leftmost child, and compute its rank i. We notice

that the path label of u is the longest common prefix

between x and the leaf with rank i + 1, and its length

is given by LCP(i) . Thus, with the leaf label of x and

L C P (i) , we can deduce the path label of u. To find the

edge label of u, we find the path label of u and the path

label of u's parent. The edge label of u can be calculated

accordingly. The process takes O(log n + t sA) time.

3.2 I n s e r t i n g a n d D e l e t i n g a Tex t . Assume that

we have the list of balanced parentheses, CSA, FM-

index and LCP representing the suffix tree for a col-

lection of texts C. To insert a new text T into C, we

update the data structures to reflect the change that

all suffixes of T are inserted into the suffix tree. We

perform the update in ITI rounds such that in the i-th

round, the i-th shortest suffix TI lT I - i + 1..ITI] is in-

serted as a new leaf into the suffix tree. Each round in-

volves updating the list of balanced parentheses, CSA,

FM-index and LCP. Thus, we maintain an invariance

that at the end of the i-th round, the data structures

represent the compressed suffix tree for the collection

C U {T[IT I - i + 1..ITI] }.

In each round, updating CSA and FM-index can

be done according to Lemma 2.1. The key concern

is updating the list of balanced parentheses and LCP,

which is done by the following two steps: calculating

the new suffix tree information, and updating the data

structures according to the new suffix tree.

For the first step, we observe that our compressed

suffix tree supports the navigation operations on normal

suffix tree, so we can make use of Weiner's algorithm

to calculate the location of the new leaf. However,

Weiner's algorithm involves the following notion of

backward suffix links.

DEFINITION 3.1. Consider a sui~fix tree for a collection

of texts. For' any internal node u and any character c,

the backward sui~Jix link of u with respect to c is a pointer

to the internal node v such that the path label of v is the

character c concatenated with the path label of u. The

backward suffix link is null i f no such v exists.

Note that if the backward suffix link of u with

respect to a character c points to a node v, then the

suffix link of v points to u. Unlike the original Weiner's

algorithm, we cannot store the backward suffix links

for each internal node explicitly, because it would take

O(n log n) bits. Instead, we will show how to calculate

it using our O(n)-bit data structures in O(log n) time.

Yet, for our suffix tree representation, we also

need to know the longest common prefix between tile

newly added leaf and its two adjacent leaves in order

to update the LCP. We show that these lengths can

be calculated efficiently fl'om the old LCP. After the

information about the new suffix tree is obtained, we (:an

proceed to the second step to update the data structures

accordingly.

Assume that we are in the (i + 1)-th round of an

update. That is, the suffix S = T[]T I - i + 1..ITI] is

just inserted into the suffix tree in the last round. Let

c = T[]T I - i] be a character and we want to insert

the suffix cS into the suffix tree. The two steps go as

follows.

3.2.1 C a l c u l a t i n g t h e N e w Suffix Tree In fo r -

m a t i o n . To calculate information about the new suffix

tree, we need the use of backward suffix links. We first

show how to calculate the backward suffix link of a node

efficiently.

LEMMA 3.2. Consider a compressed suffix tree for a

collection of texts C = {T1, T 2 , . . . , Tk } with total length

n. For any internal node u and character' c, the

backward suJ~x link off u with respect to c can be found

in O(logn) time.

Pro@ For any internal node u, let S be the path label

of u. We first assume that the backward suffix link of

u with respect to c exists. That is, there is an internal

node v with path label cS. Let a and b be the leftmost

and rightmost leaf of u, respectively. Let x and y be

the leftmost and rightmost leaf of v. For any internal

node p and any leaf q in the subtree rooted at p, we let

E(p, q) be the concatenation of edge labels from p to q.

18

By the definition of a suffix tree, there is a leaf m

in the subtree rooted at u such that E (u , m) equals

E(v, x). As a is the leftmost leaf in the subtree rooted

at u, E(u, a) is either lexicographically smaller than

or equal to E(v ,x) . In both cases, FM(rank-leaf(a),c)
gives the leaf rank of x. Similarly, E(u, b) is lexico-

graphically equal to or greater than E(v, y). If E(u, b)

is lexicographically equal to E(v, y), FM(rank-leaf(b), c)

is the leaf rank of y; otherwise, FM(rank-leaf(b), c) is

one greater than the leaf rank of y. We will test

both cases. We find the FM(rank-leaf(a), c)-th and the

FM(rank-leaf(b),c)-th leaf, and find their lowest com-

mon ancestor vq If the suffix link of v' points to u, then

the backward suffix link of u with respect to c is v'. We

repeat the test using the (FM(rank-leaf(b), c) - l) - t h leaf.

If both cases fail, we conclude that the backward suffix

link of u with respect to c is null. The above steps take

O(log n) time. []

L o c a t i o n of the leaf corresponding to cS. We

follow Weiner's algorithm to determine where the leaf

should be added. Let w be the leaf for the suffix S,

whose location is known by the end of last round. We

start at w, traverse up the tree and look for the first

node u with a non-null backward suffix link with respect

to c.

If such a node u is found, we follow the backward

suffix link to a node v. Let c' be the first character on

the path from u to w. If there is no edge out of v with

first character being d, then the leaf for cS is attached

as a child of v. Otherwise, we let (v, v ~) be an edge going

out of v with first character being c'. The leaf for the

suffix cS should be attached to a new internal node on

this edge.

If no such node u is found when we traverse from

w up to the root, the leaf for the suffix cS is attached

to the root or to a new internal node on an edge out of

the root.

The above steps calculate location of the new leaf

in O(e~ logn +tSA) time, where ei > 1 is the number of

edges traversed when we go up from the leaf w searching

for the node u. The term tSA is needed because when

we arrive at the node v or arrive at the root, we need

to find the first character of each outgoing edge, which

requires finding the edge labels.

The longest common prefix information. Recall

that the suffix S = T[IT I - i + 1..ITI] is inserted to

the suffix tree in the last round, and now we want

to insert the suffix cS into the suffix tree, where

c = T[]T I - i] . We show how to calculate the longest

common prefix between the leaf corresponding to cS

and its two adjacent leaves efficiently.

Let x be the lexicographical order of S among all

suffixes in the suffix tree, which is known by the end

of last round. Let j = F M (x , c) . By Lemma 2.2,

j is the lexicographical order of cS among all suffixes

in the suffix tree, and the leaf representing cS will be

inserted as the j - th leaf in the suffix tree. The length

of the longest common prefix between cS and the suffix

corresponding to the (j - 1)-th leaf can be calculated as

follows.

LEMMA 3.3. The length of the longest common prefix

between cS and the su]fix corresponding to the (j - 1)-th

leaf can be found in O(logn + tsA) time.

Proof. Let c'S' be the suffix corresponding to the (j - 1) -

th leaf, where c' is a character and S ' is a string. If

c ¢ c', the longest common prefix of cS and c~S ' has

length 0. Otherwise, we notice that the ~ (j - 1)-th

leaf is the leaf corresponding to the suffix S/. Thus, the

length of the longest common prefix between cS and

c'S' is 1 + the longest common prefix between S and

S', where S and S' are the suffixes corresponding to

the x-th and ~ (j - 1)-th leaf, respectively. We find the

lowest common ancestor of the x-th and the ~ (j - 1)-th

leaf. The length of the path label for the lowest common

ancestor gives the length of the longest common prefix.

The above steps take O(logn + tsm) time, which is

dominated by the time to find the path label. []

Calculating the length of the longest common prefix

between cS and the suffix corresponding to the j - th leaf

is identical.

3.2.2 U p d a t i n g t h e D a t a S t r u c t u r e s . After the

information about new suffix tree is known, we update

the data structures to actually reflect the change that

the suffix cS is inserted into the suffix tree. CSA

and FM-index can be updated in O(logn) time by

Lemma 2.1. It remains to update the list of balanced

parentheses and LCP.

19

Recall that the list of balanced parentheses repre-

sents the tree structure of the suffix tree. The previous

calculation finds where the leaf corresponding to the

suffix cS is at tached to the suffix tree, so the list of

parentheses can be updated accordingly. There are two

cases where the new leaf is inserted. If the leaf is at-

tached as the x-th child of an existing node u, we insert

a pair of consecutive matching parentheses, such that

it is enclosed by the parentheses representing u, and its

location represents the x-th child of u. Otherwise, the

leaf is a t tached to a newly created internal node m on

some existing edge. Let (u, v) be the edge where u is the

parent of v. We insert a pair of parentheses representing

m, which is inside 'u and immediately enclosing v. We

also insert a pair of consecutive matching parentheses

within m. The above steps takes O(logn) time.

Finally, we update LCP according to the calculated

values of the longest common prefix. Recall that

L C P (j) is the length of longest common prefix between

the j - t h leaf and the (j + 1)-th leaf. Assume tha t cS is

inserted as j - leaf of the suffix tree, we need to change the

value of L C P (j - 1) to the length of the longest common

prefix between cS and the originally (j - 1) - t h leaf. Also,

we need to insert a new value as L C P (j) , which is the

length of the longest common prefix between cS and the

originally j - t h leaf. It takes O(log n) t ime to update the

LCP.

3 .2 .3 O v e r a l l T i m e C o m p l e x i t y . Consider the i-

th round where we are inserting the i- th shortest suffix

of T into the suffix tree. We calculate the new suffix

tree information in O(ei log n + tSA) time, where e~ > 1

is the number of edges traversed when we calculate

the locations to insert the new leaf. Then we perform

the changes on the data structures in O(logn) time.

Note tha t it takes more t ime to calculate how the

da ta structures are changed, than actually perform

the change. The total t ime to insert a text T is

O(~i=l. . iTi e~ log n + [r I • tsA). Similar to the analysis

of the Weiner's algorithm, we can show ~ = l . . I r l ei _<

31TI, so the t ime to insert T is O (I r [(l o g n + tSA))

= O(ITIlog2n) . Note tha t once the list of balanced

parentheses, CSA, FM-index and LCP are updated, the

data structures represent the updated suffix tree. In

particular, the edge labels are updated automatically.

When we delete a text T fl'oru C, we delete all

suffixes of T from the suffix tree start ing from the

longest one. We first locate the leaf for the suffix T and

then reverse the steps of insertion. I t takes O(]T I log 2 n)

t ime to delete all suffixes of T.

4 P a r e n t h e s e s M a i n t e n a n c e

In this section, we consider compressed data structures

for maintaining a list of n pairs of balanced parentheses.

We first show an O(n)-bi t da ta structure tha t supports

finding the matching parenthesis, the nearest enclosing

parentheses, and updating in O(log n~ loglogn) time.

Then, we give another O(n)-bi t da ta s tructure that

supports finding the nearest enclosing parentheses for

two given parentheses and updat ing in O(logn) time.

Together, they prove Lemma 3.1.

Finding the match ing and nearest enc los ing

parentheses . We divide the list of n pairs of

parentheses into segments of length log 2 n / l o g log'n to

2 log 2 n / l o g log n. The segments are stored in leaves of

a B-tree, and each internal node of the B-tree has log¼ n
1

to 2 log :s n children. For each internal node, as the num-

ber of children is small, we can build a searchable partial

sum data structure[20] on information of the children,

which allows a number of queries and updates in con-

stant time. As a result, finding the matching and near-

est enclosing parentheses takes t ime proportional to the

height of the tree, which is O(log n / l o g l o g n). Details

are as follows.

We will consider the enclose operation only. For an

internal node u, let close[i] be the number of unmatched

closing parentheses in the subtree rooted at the i-th

child of u. We fnrther divide these unmatched closing

parentheses into two types: those with matching paren-

theses located in a subtree rooted at some other child of

u (calling them near-unmatched closing parentheses);

and those with matching parentheses located outside

the tree rooted at u (calling them far-unmatched clos-

ing parentheses). We store these two numbers for the

i- th child as near-close[i] and far-close[i] respectively.

The values open[i], near-open[i] and far-open[i] are de-

fined similarly.

We build a searchable partial sum data structure[20]

on the close array, which maintains an array of at most
1

2 log a n integers and supports the operations sum(j) =

20

E ~ : i close[i] and search(x) = min{j lsum(j) >_ x} in

O(1) time. We also build the searchable partial sum

data structure on the each of the remaining five arrays.

Given a parenthesis i, 2 to find the open parenthesis

enclosing i, we traverse down the tree to locate the leaf

containing i. We scan the leaf to search for an open

parenthesis enclosing i. If no such parenthesis is found,

we traverse up the tree. We maintain an invariance that

whenever we leave a node u, we know the number of

unmatched closing parentheses inside the subtree rooted

at u that are to the left of i. This information can be

maintained in O(1) time, based on the searchable partial

sum data structures. Furthermore, at any internal

node v, we can determine in constant time whether the

enclosing parenthesis is in the tree rooted at v. If yes,

we traverse down the tree looking for that parenthesis.

The whole process takes time proportional to the height

of the tree, which is O(log n / l o g log n).

F i n d i n g t h e d o u b l e - e n c l o s e p a r e n t h e s e s . W e di-

v i d e the list of parentheses into segments of length log n

to 2 logn. The segments are stored as leaves of a red-

black tree. For each internal node, we store informa-

tion about its two children, so finding the double-enclose

parentheses takes time proportional to the height of the

red-black tree, which is O(log n). Details are as follows.

Let excess(e,i) be the number of open parentheses

minus the number of closing parentheses in the range

[g, i]. For a range [g, rl, we say rain-excess(g, r) = io,
if for g < i < r, excess(g, i) is minimized when i = i0.

The nearest enclosing parentheses for both g and r is

the nearest enclosing parentheses for min-excess(g,r).
Thus, finding double-enclose(e, r) is reduced to finding

rain-excess(g, r).
Furthermore, we observe that for any b E [g, r], min-

excess(g,r) is either rain-excess(g, b) or min-excess(b +
1, r). Precisely, let i~ and ig denote the former and

latter term. Then, min-excess(g, r) is 'i~ if excess(e, i~) <
excess(e, b) + excess(b + 1, i~'), and it is ig otherwise.

Based on this observation, we store extra informa-

tion in red-black tree to allow efficient calculation of the

function rain-excess. Precisely, for each internal node

u, let x and y be the leftmost and rightmost paren-

theses in the subtree rooted at u; we store two values

ZWe refer to a parenthesis in the list by its index. Parenthesis
i < j i f i i s o n the left o f j .

i and excess(x,i), where i is min-excess(x,y). Then,

rain-excess(g, r) for any g and r can be computed when

we traverse from the leaf containing g, and from the

leaf' containing r, to their lowest common ancestor in

the red-black tree. This gives the following lemma and

concludes the section.

LEMMA 4.1. Given two parentheses g and r, we can find
min-excess(g, r) in O(logn) time.

5 Dynamic Dictionary Matching

Given a dynamic collection of patterns 7) =

{P1, R2, . . . , Pk} of total length d, we want to maintain

an index on 7) such that when an arbitrary text T is

given, we can efficiently answer the dictionary match-

ing query which locates the occurrences of all patterns

in T.
V~re follow the idea of Amir et al. [4], and main-

tain a compressed suffix tree for the collection of pat-

terns. Dictionary matching query is basically done by

a traversal on the suffix tree based on T. As required

by [4], we also maintain a data structure which for any

internal node u of the suffix tree, reports all patterns in

7) that are prefix to the path label of u. This is useful

for reporting occurrences of I)atterns when we deduce

that tile path label of u is matching some part of T.

To do so, we intuitively mark all the internal nodes of

the suffix tree whose path label matches a pattern in

7). Then, to report patterns that are prefix to the path

label of u, we report all the marked nodes on the path

from u to the root. This marked tree structure can be

represented compactly by a list of the balanced paren-

theses, and maintained based on Lemma 3.1. To report

occurrences of all patterns in T, it takes O(IT I log 2 d)

time to traverse the compressed suffix tree and takes

O(occlog 2 d) time to report the occ occurrences. Since

both the compressed suffix tree and the list of parenthe-

ses allow efficient updates, we obtain a compact solution

for the dynamic dictionary matching problem as follows.

THEOREM 5.1. Let 7) = {P1,P2, . . . ,Pk} be a dynamic
collection of patterns with, total length d. We can
maintain an O(d)-bit index for 7), such that a dictionary
matching query for a text T takes O((IT I + occ) log 2 d)

time. Inserting or deleting a pattern P in 7) takes
O(IP I log 2 d) time.

21

R e f e r e n c e s

[1] A. Aho and M. Corasick. Efficient String Matching:

An Aid to Bibliographic Search. Communications of
the ACM, 18(6):333-340, 1975.

[2] A. Amir and M. Farach. Adaptive Dictionary Match-
ing. In Pzvceedings of Symposium on Foundations of
Computer Science, pages 760-766, 1991.

[3] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and

K. Park. Dynamic Dictionary Matching. Journal of
Computer and System Sciences, 49(2):208-222, 1994.

[4] A. Amir, M. Faraeh, R. Idury, A. La Poutre, and
A. Schaffer. Improved Dynamic Dictionary Matching.
Information and Computation, 119(2):258-282, 1995.

[5] A. Amir, M. Farach, and Y. Matias. Efficient Random-
ized Dictionary Matching Algorithms (Extended Ab-

stract). In Proceedings of Symposium on Combinatorial
Pattern Matching, pages 262-275, 1992.

[6] M. Burrows and D. J. Wheeler. A Block-sorting Loss-

less Data Compression Algorithm. Technical Report
124, Digital Equipment Corporation, Paolo Alto, Cali-
fornia, 1994.

[7] H. L. Chan, W. K. Hon, and T. W. Lain. Compressed

Index for a Dynamic Collection of Texts. In Proceedings

of Symposium on Combinatorial Pattern Matching,
pages 445-456, 2004.

[8] W. I. Chang and E. L. Lawler. Sublinear Approximate

String Matching and Biological Applications. Algorith-
mica, 12(4/5):327-344, 1994.

[9] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson,
O. White, and S. L. Salzberg. Alignment of whole
genomes. Nucleic Acids Research, 27(11):2369-2376,
1999.

[10] P. Ferragina and G. Manzini. Opportunistic Data

Structures with Applications. In Proceedings of Sympo-
sium on Foundations of Computer Science, pages 390-
398, 2000.

[11] M. L. Fredman and M. E. Saks. The Cell Probe Com-

plexity of Dynamic Data Structures. In Proceedings of

Symposium on Theory of Computing, pages 345-354,
1989.

[12] R. Grossi and G. F. Italiano. Suffix Trees and their
Applications in String Algorithms. In Proceedings of
South American Workshop on String Processing, pages
57-76, 1993.

[13] R. Grossi and J. S. Vitter. Compressed Suffix Arrays
and Suffix Trees with Applications to Text Indexing

and String Matching. In Proceedings of Symposium on
Theory of Computing, pages 397-406, 2000.

[14] R. Grossi, A. Gupta and J. S. Vitter. When Indexing

Equals Compression: Experiments with Compressing

Suffix Arrays and Applications. In Proceedings of

A CM-S1AM Symposium on Discrete Algorithms, pages
636--645, 2004.

[15] D. Gusfield. Algorithms on Strings, Trees and Se-

quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, New York, 1997.

[16] G. Jacobson. Space-efficient Static Trees and Graphs.
In Proceedings of Symposium on Foundations of Com-
puter Science, pages 549-554, 1989.

[17] U. Manber and G. Myers. Suffix Arrays: A New
Method for On-Line String Searches. SIAM Journal
on Computing, 22(5):935-948, 1993.

[18] E. M. McCreight. A Space-economical Suffix Tree Con-
struction Algorithm. Journal of the ACM, 23(2):262-
272, 1976.

[19] J. I. Munro and V. Raman. Succinct Representation of
Balanced Parentheses and Static Trees. SlAM Journal
on Computing, 31(3):762-776, 2001.

[20] R. Raman, V. Raman, and S. S. Rao. Succinct
Dynamic Data Structures. In Proceedings of Workshop
on Algorithms and Data Structures, pages 426-437,
2001.

[21] K. Sadakane. Succinct representations of Icp infbrma-
tion and improvements in the compressed suffix arrays.

In P~vceedings of ACM-SIAM Symposium on Discrete
Algorithms, pages 225-232, 2002.

[22] K. Sadakane. Compressed Suffix rIYees with Ful| Func-

tionality. Theory of Computing Systems, accepted.
[23] S. C. Sahinalp and U. Vishkin. Efficient Approxinmte

and Dynamic Matching of Patterns Using a Labeling
Paradigm. In Proceedings of Symposium on Founda-

tions of Computer Science, pages 320-328, 1996.
[24] P. Weiner. Linear Pattern Matching Algorithms. In

Proceedings of Symposium on Switching and Automata
Theory, pages 1-11, 1973.

22

