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ABSTRACT

Several recent approaches for robust speech recognition are devel-
oped based on the concept of stochastic vector mapping (SVM)
that perform a frame-dependent bias removal to compensate for
environmental variabilities in both training and recognition stages.
Some of them require the stereo recordings of both clean and noisy
speech for the estimation of SVM function parameters. In this pa-
per, we present a detailed formulation of an maximum likelihood
training approach for the joint design of SVM function parameters
and HMM parameters of a speech recognizer that does not rely on
the availability of stereo training data. Its learning behavior and
effectiveness is demonstrated by using the experimental results on
Aurora3 Finnish connected digits database recorded by using both
close-talking and hands-free microphones in cars.

1. INTRODUCTION

Using frame-dependent bias removal to compensate for environ-
mental variabilities has been studied in robust automatic speech
recognition (ASR) area for many years (e.g. [1, 9, 3, 8]). Several
recent approaches that perform a frame-dependent bias removal in
both training and recognition stages are developed based on the
concept of stochastic vector mapping (SVM) [4, 5, 11, 12]. The
SPLICE algorithm proposed in [4, 5] requires the stereo record-
ings of both clean and noisy speech for the estimation of SVM
function parameters. In many ASR applications, stereo data are
too expensive to collect. In [11], an environment compensated
minimum classification error (MCE) training approach was pro-
posed for the joint design of SVM function parameters and HMM
parameters of a recognizer that does not rely on the availability
of stereo data. To initialize MCE training, an environment com-
pensated maximum likelihood (ML) training approach was also
developed, but described only briefly in [12] due to the lack of
space. The effectiveness of the above approaches has been con-
firmed [12] in a series of benchmark test on Aurora2 connected
digits database [7]. In this paper, we present the detailed formula-
tion of the above ML training approach. Its learning behavior and
effectiveness is demonstrated by using the experimental results on
Aurora3 Finnish connected digits database. By doing so, readers
will have a better idea on how to use our approach in their ASR
applications.

The rest of the paper is organized as follows. In Section 2,
we describe the SVM functions we used. In Section 3, we present
the detailed formulation of our ML training approach. In Section
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4, we report the experimental results, and finally we conclude the
paper in Section 5.

2. STOCHASTIC VECTOR MAPPING FUNCTIONS

Let’s assume that a speech utterance corrupted by additive noise
and convolutional distortion has been transformed into a sequence
of feature vectors. Given a set of training data Y = {Yi}I

i=1,
where Yi is a sequence of feature vectors of original speech, sup-
pose that they can be partitioned into E environment classes, and
the D-dimensional feature vector y under an environment class
e follows the distribution of a mixture of Gaussians, p(y|e) =PK

k=1 p(k|e)p(y|k, e) =
PK

k=1 p(k|e)N (y; ξ
(e)
k , R

(e)
k ) , where

N (·; ξ, R) is a normal distribution with mean vector ξ and diago-
nal covariance matrix R. Readers are referred to [13] for the ap-
proach we used for the automatic clustering of environment condi-
tions from training data Y , the labelling of an utterance Y to a spe-
cific environment condition, and the estimation of the above model
parameters. Given the set of Gaussian mixture models (GMM)
{p(y|e)}, the task of frame-dependent SVM-based compensation
is to estimate the compensated feature vector x̂ from the original
feature vector y by applying the environment-dependent transfor-
mation F(y; Θ(ey)), where Θ represents the trainable parameters
of the transformation and ey denotes the corresponding environ-
ment class to which y belongs. We have studied two SVM func-
tions. The first one is borrowed from [5] and listed as follows:

x̂ � F1(y;Θ(e)) = y +

KX
k=1

p(k|y, e)b
(e)
k , (1)

where

p(k|y, e) =
p(k|e)p(y|k, e)PK
j=1 p(j|e)p(y|j, e) , (2)

and Θ(e) = {b(e)
k }K

k=1. The second SVM function we used is
borrowed from [4] and listed as follows:

x̂ � F2(y;Θ(e)) = y + b
(e)
k , (3)

where k = arg max
k′=1,...,K

p(k′|y, e) for the environment class e which

y belongs to, and Θ(e) = {b(e)
k }K

k=1.
In recognition, given an unknown utterance Y , the most sim-

ilar training environment class is identified first (e.g. [13]). Then,
the corresponding GMM and the mapping function are used to de-
rive a compensated version of X̂ from Y . For the convenience of
notation, we also use hereinafter F(Y ; Θ) to denote the compen-
sated version of the utterance Y by transforming individual fea-
ture vector yt as defined in previous SVM functions. After feature
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compensation, X̂ is finally recognized by an HMM-based recog-
nizer trained as described in the following section.

3. JOINT ML TRAINING OF SVM FUNCTION
PARAMETERS AND CDHMMS

3.1. Our Approach

Let’s assume that each basic speech unit is modelled by a Gaus-
sian mixture continuous density HMM (CDHMM) in our speech
recognizer. Our environment compensated ML training approach
is to maximize, by adjusting SVM function parameters Θ and
CDHMM parameters Λ, the following likelihood function

L(Θ, Λ) =
IY

i=1

p(F(Yi; Θ)|Λ) (4)

defined on the training set Y . The detailed procedure to achieve
the above is described as follows:

Step 1: Initialization

First, a set of CDHMMs with diagonal covariance matrix, Λ =
{πs, ass′ , csm, µsm = [µsm1, ..., µsmD]Tr , Σsm = diag{σ2

sm1,
..., σ2

smD}, s, s′ = 1...S, m = 1...M}, are trained from multi-
condition training data Y as initial values of HMM parameters.
Initial values of the bias vectors b

(e)
k = [b

(e)
k1 , ..., b

(e)
kD]Tr are set to

be zero.

Step 2: Estimating SVM Function Parameters Θ

Second, given the HMM parameters Λ, for each environment class
e, Nb (cf. Fig. 1) EM iterations are performed to estimate the envi-
ronment dependent mapping function parameters Θ̄(e) to increase
the likelihood function L(Θ,Λ).

Let’s consider a particular environment class e and use Ie to
denote the subset of the subscript of training utterance Yi which
belongs to the environment class e. If the SVM function in Eq.
(1) is used for feature compensation, the auxiliary Q-function for
Θ(e) becomes

Qe =
X
i∈Ie

X
t

X
s

X
m

ζit(s, m) logN (yit

+
X

k

p(k|yit, e)b
(e)
k ; µsm, Σsm)

=
X
i∈Ie

X
t

X
s

X
m

ζit(s, m)Σ−1
sm(yit

+
X

k

p(k|yit, e)b
(e)
k − µsm)2 + Const . (5)

In the above equation, ζit(s, m) is the occupation probability of
Gaussian component m in state s, at time t of current compensated
observation, x̂t. It can be calculated with a Forward-Backward
procedure using training utterance X̂i (enhanced from Yi with cur-
rent Θ) against current HMM parameters Λ in the E-step. yit is the
t-th frame feature vector of utterance Yi. Const is a term irrelevant
to b

(e)
k . By setting the derivative of Qe with respect to b

(e)
k as zero,

we have
X
i∈Ie

X
t

X
s

X
m

X
k′

ζit(s, m)Σ−1
smp(k|yit, e)p(k′|yit, e)b

(e)
k′

=
X
i∈Ie

X
t

X
s

X
m

ζit(s, m)Σ−1
smp(k|yit, e)(µsm − yit) .(6)

Since above equation holds for all k, it is equivalent to solve the
root of vector B(e)

d =
ˆ
b
(e)
1d , ..., b

(e)
Kd

˜Tr
in the following equation:

A(e)
d B(e)

d = C(e)
d , (7)

where A(e)
d is a K × K matrix with the (k, k′)-th element being

a
(e)
d (k, k′) =

X
i∈Ie

X
t

ˆ X
s

X
m

ζit(s, m)

σ2
smd

˜
p(k|yit, e)p(k′|yit, e) ;

(8)
and C(e)

d is a K-dimensional vector [c
(e)
d (1), ..., c

(e)
d (K)]Tr with

c
(e)
d (k) =

X
i∈Ie

X
t

ˆ X
s

X
m

ζit(s,m)(µsmd − y
(d)
it )

σ2
smd

˜
p(k|yit, e)

(9)
for all k = 1, ..., K.

If the SVM function in Eq. (3) is used for feature compen-
sation, the EM updating formula for b

(e)
k can be derived similarly

with a much simpler result as follows:

b
(e)
kd =

P
i∈Ie

P
t,s,m 1[k, i, t]ζit(s,m)(µsmd − y

(d)
it )/σ2

smdP
i∈Ie

P
t,s,m 1[k, i, t]ζit(s, m)/σ2

smd

,

(10)
where

1[k, i, t] =

8<
:

1 if k = arg maxk′ p(k′|yit, e)

0 otherwise
. (11)

It is noted that the above updating formula is similar to the bias
estimation formula of feature-space stochastic matching approach
reported in [10].

Step 3: Estimating CDHMM Parameters Λ

Third, we transform each training utterance using the relevant map-
ping function with parameters Θ̄(e). Using the environment com-
pensated utterances, Nh (cf. Fig. 1) EM iterations are performed
to re-estimate CDHMM parameters Λ̄, with an increase of the like-
lihood function L(Θ̄, Λ).

Step 4: Repeat Step 2 and Step 3 Ne times (cf. Fig. 1).

After the above steps, we obtain the Θ̄ and Λ̄ as an ML esti-
mation of mapping function parameters and CDHMM parameters,
which can be used for recognition directly or as initial values for
further joint MCE training as described in [11]. The above training
procedure is illustrated in Fig. 1.

3.2. Discussion

It is noted that solving D equations in Eq. (7) involves an in-
verse operation of D K × K matrices. To reduce computational
complexity, the following hybrid approach is actually used in our
experiments when the SVM function in Eq. (1) is used for feature
compensation:

• In Step 2 of the above ML training procedure, Eq. (3) is
used for feature compensation and Eq. (10) is used for up-
dating Θ(e);

• In Step 3 of the above ML training procedure and in recog-
nition stage, Eq. (1) is used for feature compensation.

Of course, another scenario is to use Eq. (3) consistently in all
the steps of ML training as well as in recognition stage. In the
next section, we report experimental results of the above two ap-
proaches which are referred as SVM1 and SVM2 respectively.
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Estimate HMM Parameters 

 
Estimate SVM Parameters 

timesN b

timeseN

timeshN

Training Data

SVM + HMM

Feature Compensation 

Fig. 1. An illustration of our joint ML training procedure.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

We use Aurora3 database to verify our algorithm. Aurora3 con-
tains utterances of connected digits in four European languages,
namely Finnish, Spanish, German and Danish. All utterances were
recorded by using both close-talking (CT) and hands-free (HF) mi-
crophones in cars under several driving conditions to reflect some
realistic scenarios for typical in-vehicle ASR applications. For
each language, the database is divided into three subsets accord-
ing to matching degree between training data and test data: Well-
Matched condition (WM), Middle Mismatched condition (MM)
and High Mismatched condition (HM). In the following discus-
sions, only the results on Finnish Database [2] under well-matched
condition are used.

The front-end used in our experiments is the ETSI Advanced
Front-End (AFE) as described in [6]. A feature vector sequence is
extracted from the input speech utterance via a sequence of pro-
cessing modules that include noise reduction, waveform process-
ing, cepstrum calculation, blind equalization, and “server feature
processing”. Each frame of feature vector has 39 features that con-
sists of 12 MFCCs (C1 to C12), a combined log energy and C0

term, and their first and second order derivatives. All the feature
vectors are computed from a given speech utterance, but the fea-
ture vectors that are sent to the speech recognizer and the training
module are those corresponding to speech frames, as detected by
a VAD module described in Annex A of [6].

Each digit is modelled as a whole word left-to-right CDHMM
with 16 emitting states, 3 Gaussian mixture components with di-
agonal covariance matrices per state. Besides, two pause mod-
els, “sil” and “sp”, are created to model the silence before/after
the digit string and the short pause between any two digits. The
“sil” model is a 3-emitting state CDHMM with a flexible transition
structure as that of HMM described in [7]. Each state is modelled
by a mixture of 6 Gaussian components with diagonal covariance
matrices. The “sp” model consists of 2 dummy states and a single
emitting state which is tied with the middle state of “sil”.

During recognition, an utterance can be modelled by any se-
quence of digits with the possibility of a “sil” model at the be-
ginning and at the end and a “sp” model between any two digits.
All of the recognition experiments are performed with the search
engine of HTK3.0 toolkit.

Two sets of CDHMMs are trained by using all training data
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Fig. 2. Learning behavior of two ML training approaches under
two experimental settings.

without SVM-based feature compensation under ML and MCE
criterion respectively, where the MCE-training is initialized by the
ML-trained models. The performance (word error rate in %) of
these two baseline systems are 3.95% and 2.82%, respectively.

In SVM experiments, all the training data are clustered into
8 different environment classes, of which each is modeled by a
GMM consisting of 32 Gaussian components [13]. Therefore,
there are 8×32 = 256 bias vectors to be estimated as the mapping
function parameters.

4.2. A Comparison of Learning Behavior in Likelihood

To understand the learning behavior of two ML training approaches,
i.e., SVM1 and SVM2, their learning curves under two settings,
Nb = 1, Nh = 1, Ne = 5 and Nb = 3, Nh = 3, Ne = 5,
are illustrated in Fig. 2 (a) and (b) respectively. In the above
curves, the horizontal axis is the cumulative number of updating
times of either SVM or HMM parameters, and the vertical axis is
the average log likelihood per frame, i.e. logL(Θ,Λ)

Total number of frames
.

SVM2 approach can guarantee a monotonic increase of its like-
lihood function, while SVM1 approach cannot because a hybrid
approach is used in our implementation. For SVM1 curves, we
only include those points with likelihood values obtained in Step
3 of the ML training procedure because the likelihood function
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Table 1. Word error rate (in %) of ML/MCE-trained models based
on stochastic vector mapping with different mapping functions
(SVM1 vs SVM2) and iteration numbers (Nb, Nh, Ne) as defined
in Fig. 1 under WM condition of Finnish language.

Mapping Function (Iteration Number) ML MCE
Baseline (without SVM) 3.95 2.82

SVM1 (Nb = 1, Nh = 1, Ne = 1) 3.49 2.36
SVM2 (Nb = 1, Nh = 1, Ne = 1) 3.51 2.57
SVM1 (Nb = 1, Nh = 1, Ne = 5) 3.62 2.60
SVM2 (Nb = 1, Nh = 1, Ne = 5) 3.68 2.74
SVM1 (Nb = 1, Nh = 5, Ne = 1) 3.33 2.34
SVM2 (Nb = 1, Nh = 5, Ne = 1) 3.34 2.60
SVM1 (Nb = 3, Nh = 3, Ne = 5) 3.65 2.65
SVM2 (Nb = 3, Nh = 3, Ne = 5) 3.68 2.68

in this step is consistent with the original one. Apparently, both
approaches have a good learning behavior in terms of increasing
the likelihood functions. Note that different likelihood functions
are used in SVM1 and SVM2 approaches because different SVM
functions are used for feature compensation.

4.3. A Comparison of Recognition Performance

Different choices of mapping functions and iteration numbers will
lead to different results of parameter estimation. Such differences
will be reflected not only in the likelihood value, but more impor-
tantly, in the recognition performance of final ML-trained models.
Furthermore, as suggested in [12], the environment compensated
MCE training approach will use ML-trained models as seed mod-
els for joint MCE training. Therefore, different ML-trained seed
models will result in different recognition performance of MCE-
trained models. In order to compare recognition performance with
different setup of ML training procedure and to identify a “good”
setting of relevant control parameters, a series of experiments are
conducted and their results are summarized in Table 1.

By comparing each pair of rows for SVM1 and SVM2 with
the same setting for (Nb, Nh, Ne), it is observed that no big dif-
ference is made by different forms of SVM1 and SVM2 in terms
of the final recognition performance for ML-training. This ob-
servation is consistent with the one in the study of SPLICE ap-
proach [5]. However, for MCE-training, SVM1 performs better
than SVM2. By comparing those rows for SVM1 or SVM2 with
different settings for (Nb, Nh, Ne), it is observed that the setting
Nb = 1, Nh = 5, Ne = 1 gives the best recognition performance.
A detailed analysis of our results reveals that multiple iterations
for updating SVM function parameters in Step 2 of our ML train-
ing procedure is harmful in terms of improving recognition perfor-
mance, while multiple iterations for updating HMM parameters in
Step 3 is helpful. In comparison with the ML/MCE-trained base-
line systems without using SVM for feature compensation, the two
best SVM-based systems can reduce the word error rates by 15.7%
and 17% for ML and MCE training respectively.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented a detailed formulation of an envi-
ronment compensated ML training approach for the joint design of
the SVM-based feature compensation module and HMM parame-
ters of a speech recognizer. For readers who have interest to try
our approach, our recommendations are: (1) You can take either

form of SVM functions we studied here; (2) Set Nb = 1, Ne = 1
and run several iterations (i.e. Nh) for training HMM parameters.

Although we have demonstrated the usefulness of the SVM-
based approaches for several robust ASR applications where di-
versified yet representative training data are available, the perfor-
mance improvement of SVM-based approaches is less significant
in the case of that there is a severe mismatch between training
and testing conditions. In order to improve the performance fur-
ther, one possibility is to perform unsupervised online adaptation
of SVM function parameters. We have conducted a study along
this direction and will report its results elsewhere.
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