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A FRAILTY MODEL FOR DETECTING NUMBER

OF FAULTS IN A SYSTEM

Yan Wang, Paul S. F. Yip and Y. Hayakawa

University of South Australia, University of Hong Kong and University of Wellington

Abstract: A frailty model for failure data is proposed to estimate the total num-

ber of faults in a system. The Littlewood model and Jelinski-Moranda are the

two particular cases of the proposed formulation. The two-stage estimating proce-

dure, a conditional likelihood and a Horvitz-Thompson estimator, is found to be

efficient. Simulation studies are given to assess the performance of the estimator.

Two examples are also presented.
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1. Introduction

We consider the problem of estimating the number of faults in a system (van
Pul (1993); Yip, Xi, Fong and Hayakawa (1999)). Let ν denote the unknown
number of faults initially present in a system, let Ni(t) be the counting process
for fault i and φi be its occurrence rate as a stochastic variable, i.e., the intensity
process for the counting process depends on an unobservable random variable.
Let Yi(t) indicate, by the value of 1 or 0, whether fault i has been removed
before t, thus Yi(t) is an observable non-negative predictable process. Let τ be
the duration of the study and Ft− denote the smallest σ-algebra generated by
{Ni(s), Yi(s), 0 ≤ s < t}.

Suppose that φi has a gamma distribution with parameters α and β, denoted
G(α, β), with density function f(φi|α, β) = {e−βφiφα−1

i βα}/Γ(α) (φi > 0). For
a given φi, the inter-failure times are independent and exponentially distributed
with rate φi. Let f(φi|F0) and L(φi|Ft−) denote the prior for φi and the likelihood
function for φi given Ft−, respectively. It can be shown that the posterior for φi,
denoted by π, is

π(φi|Ft−)∝f(φi|F0)L(φi|Ft−)=
βα

Γ(α)
φα−1

i e−βφiφ
Ni(t−)
i e−tφi ∝φ

α+Ni(t−)−1
i e−(β+t)φi.

Thus the posterior distribution for φi is gamma distributed: φi|Ft− ∼ G(α +
Ni(t−), β + t). The expectation of a G(a, b) variable is a/b. Conditional on
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Ft− the expectation of φi is {α +Ni(t−)}/(β + t). Hence, using the innovation
theorem (Aalen (1978)), the compensator of the counting process Ni(t) is given
by

λi(t) = Yi(t)
{
α+Ni(t−)

β + t

}
. (1)

The intensity function λi(t) depends on time and the number of times of
the ith individual fault has been detected. The formulation in (1) includes both
the removal and recapture sampling methods. For the case of removal, in which
Ni(t−) equals zero since the ith fault is removed from the system after being de-
tected. The model becomes the Littlewood model (Littlewood (1980); Andersen,
Borgan, Gill and Keiding (1993)). In addition, (1) also includes the recapture ex-
periment in which a counter is inserted at the location after the fault is detected
and the counter registers the number of revisit of a particular fault without caus-
ing the system failure (Nayak (1988)). The revisit information has been shown to
be important in determining the performance in estimating the number of faults
in a system (Lloyd, Yip and Chan (1999)). Furthermore, the proposed formula-
tion allows random removals which could happen in a recapturing process.

If we reparameterise the intensity in (1) by letting ε = 1/α, ω = β/α, then
we have

λi(t) = Yi(t)
{
1 + εNi(t−)

ω + εt

}
. (2)

This extension allows the case of ε ≤ 0 to have meaningful interpretation (Nielsen,
Gill, Andersen and Sørensen (1992)). Note that when ε = 0 (i.e., α = ∞) for
a removal experiment, the model reduces to Jelinski-Moranda model in software
reliability studies (Jelinski and Moranda (1972)).

The full likelihood function is given by

L(θ) =
ν!

(ν − n)!

∏
0≤t≤τ

{ ν∏
i=1

λi(t)dNi(t)(1− λi(t)dt)1−dNi(t)
}
, (3)

where n denotes the number of distinct faults being detected. This can be reduced
to

L(θ) =
ν!

(ν − n)!

ν∏
i=1

{( ∏
0≤t≤τ

λi(t)dNi(t)
)
· exp

(
−

∫ τ

0
λi(t)dt

)}
. (4)

For the removal experiment, Littlewood (1980) suggested use of the maxi-
mum likelihood (ML) to estimate the parameters ω, ε (or α, β) and ν. However,
due to the complexity of the three highly non-linear likelihood equations, it is
difficult if not impossible to determine consistent estimates from the possible
multiple solutions of the likelihood equations. The same difficulty exists for al-
ternative estimation methods such as M-estimation. In fact, M-estimators using
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optimal weight functions are equivalent to the MLE. The simple M-estimators
for α, β and ν can be obtained by solving the equations

ν∑
i=1

∫ τ

0
kj(t)

[
dNi(t)− Yi(t)

{
α+Ni(t)
β + t

}
dt

]
= 0, (5)

j = 1, 2, 3, with weight function kj(t) = (β + t)tj−1, see Andersen et al.(1993).
The results, however, are highly unstable. Furthermore, for the recapture case,
the parameter ν cannot be separated from the estimating equation (5) and so we
are unable to solve (5) for ν̂.

In this paper we propose a two-step estimation procedure. First, with the
specified form of intensity (1) or (2), we are able to compute the conditional
likelihood of ω and ε (or α and β) using the observed failure information. The
second stage employs a Horvitz-Thompson (1952) type estimator which is the
minimum variance unbiased estimator if the failure intensity is known (Chen
(2001)). The score functions in the first stage reduce to two dimensional equations
that are tractable, and more applicable in practice.

2. Inference Procedure

Let pi = Pr(δi = 1) denote the probability of the ith fault being detected
during the course of the experiment. These probabilities are the same for all faults
under the model assumption and, with the application of Laplace transform, it
can be shown that pi = p(ω, ε) = 1 − (ω/(ω + ετ))1/ε. The likelihood function
given in (4) can be rewritten as L(θ) = L1 ∗ L2, where

L1 =
ν∏

i=1


∏

0≤t≤τ
λi(t)dNi(t) · exp (− ∫ τ

0 λi(t)dt)

pi


δi

(6)

L2 =
ν!

(ν − n)!

ν∏
i=1

{
exp

[
−

∫ τ

0
λi(t)dt

]1−δi

· pδi
i

}
, (7)

and δi indicates, by the value of 1 versus 0, whether or not the ith fault has
ever been detected during the experiment. Since the marginal likelihood L2

depends on the unknown parameter ν, we propose to make inference about θ =
(ω, ε)′ based on the conditional likelihood L1 which does not depend on ν. The
corresponding score function of the conditional likelihood L1 is given by

U(θ) = ∂ log(L1)/∂θ

=
ν∑

i=1

δi

{ ∫ τ

0

∂ log λi(t)
∂θ

dNi(t)−
∫ τ

0

∂λi(t)
∂θ

dt − ∂ log(pi)
∂θ

}
, (8)
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where λi(t) = Yi(t){(1 + εNi(t−))/(ω + εt)}.
Let θ̂ = (ω̂, ε̂)′ be the solution to U(θ) = 0. The usual arguments ensure

consistency and the convergence of ν
1
2 (θ̂ − θ) to N(0, I−1(θ)), where I(θ) =

E{ν−1A(θ)}, A(θ) = −∂U(θ)/∂θ′. The variance of θ̂ can be estimated by the
inverse of the negative of the first derivative of the score function, A−1(θ̂).

Since the probability of being detected is p(θ), it is natural to estimate the
population size ν by the Horvitz-Thompson estimator (Horvitz and Thompson
(1952)):

ν̂ =
ν∑

i=1

δi

p(θ̂)
=

n

p(θ̂)
, (9)

where n denotes the number of distinct faults detected. To compute the variance
of ν̂, we have ν̂(θ)−ν =

∑ν
i=1[δi/(p−1)]. By a Taylor series expansion and some

simple probabilistic arguments,

ν−
1
2 {ν̂(θ̂)− ν} = ν−

1
2

ν∑
i=1

[
δi

p
− 1

]
+H ′(θ)ν

1
2 (θ̂ − θ) + op(1), (10)

where H(θ) = E{Ĥ(θ)}, Ĥ(θ) = ν−1 ∂ν̂(θ)
∂θ = −ν−1

{
n∂p/∂θ

p2

}
.

It follows from the Multivariate Central Limit Theorem and the Cramér-
Wold device that ν−

1
2 {ν̂(θ̂)−ν} converges in distribution to a zero-mean normal

random variable. The variance for the first term on the right side of (10) is

ν−1
ν∑

i=1

Var (δi)
p2

= ν−1
ν∑

i=1

p(1− p)
p2

,

which can be estimated by ν−1 ∑ν
i=1

δi(1−p)
p2 = ν−1 n(1−p)

p2 . The variance for the
second term is H ′(θ)I−1(θ)H(θ). The covariance between the two terms is zero.
A consistent variance estimator for ν−

1
2{ν̂(θ̂)− ν} is then given by

ŝ2 = ν̂−1(θ̂)
n(1− p̂)

p̂2
+ Ĥ ′(θ̂)ν̂(θ̂)A−1(θ̂)Ĥ(θ̂), (11)

where Ĥ(θ) = ν−1(∂ν̂/∂θ) and p̂ = (1− ω̂/(ω̂ + ε̂τ))1/ε̂.

3. Simulation Studies

A number of simulation studies were conducted to examine the performance
of the estimator. For the selected values of the parameters ω and ε, we generated
detection time Tij , i = 1, . . . , ν of each fault i according to different distributions
as follows:

φi, i = 1, . . . , ν, i.i.d. G(1/ε, ω/ε),
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Tij |φi(j = 1, . . . , ni), i.i.d. exp(φi), until
∑ni+1

j=1 Tij > τ , where ni denotes
the number of times fault i being detected during the experiment.

Different combinations of population sizes and failure intensities were con-
sidered for removal and recapture experiments. The results are given in Tables 1
and 2 respectively. The population size varies from 100 to 5000. In the simula-
tions, we used the gamma distributions G(1, 1) for the occurrence rate φ, that is,
ω = 1 and ε = 1. In the removal experiment, the probabilities of being detected
are 0.8 and 0.9, which correspond to τ = 4 and τ = 9, respectively. The settings
are the same as those in van Pul (1993) for removal studies, while for the re-
capture experiment, with more information available, the detection probability
can be smaller to achieve comparably good estimates. In our simulations, we
set p = 0.7 and p = 0.9. For each combination of ν and p, 5000 replications
were simulated to estimate the mean, the sample standard deviation (SD), and
the mean of the estimated standard error (AV(SE)) of population size ν and the
parameters ω and ε. The behavior of ν̂ for removal and recapture experiments
are illustrated by the histograms in Figures 1 and 2, respectively.

For the removal studies shown in Table 1, we cannot get a comparably good
estimator of ν̂ with small number of faults in the system; ω can be estimated
relatively well in contrary with ε̂, which has a larger range. As shown in Figure 1,
the distributions of ν̂ are not symmetric with a long right tail. However, with the
increase of the total number of faults and detection probability, the performance
of the proposed method improves and appears satisfactory.

Table 2 gives similar results for a recapture study. The results in the recap-
ture study are better than those described above. This is not surprising because
more information is available in recapture experiment, see Lloyd et al. (1999),
Yip (1998), and Yip et al. (1999). As shown in Figure 2, the distributions of ν̂
(also ω̂ and ε̂) are positively biased for small ν. As ν and the detection proba-
bility increase, this bias slowly disappears: the means of estimated parameters
are close to the true values and the estimated standard errors seem to agree
reasonably well with sample standard deviations. For recapture experiments,
when detection probabilities are high, both ν̂ and ŝ are almost unbiased, even
for ν = 50.

Simulation experiments were also conducted to study the effects of ignor-
ing heterogeneity. We generated data from the homogeneous Jelinski-Moranda
model. The results of estimating ν are also given in Table 2. The ν̂ derived from
assuming a Jelinski-Moranda are substantially underestimated. The estimated
standard errors are also biased downward and the coverages are unsatisfactory.

Simulation studies were performed to compare the proposed method with the
full ML estimators for removal experiment, i.e., the Littlewood model. Table 3
gives the estimation results of the proposed two-step method and Method II (van
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Table 1. Summary of simulation results for removal studies with ω = 1.0, ε = 1.0.
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ν̂ 93.26 12.76 20.40 98.84 8.25 10.03

ω̂ 1.06 0.1668 0.2516 1.12 0.1872 0.2318

ε̂ 0.59 0.5248 0.8923 0.83 0.4689 0.6176

Breakdown Prob. 42.5% Breakdown Prob. 29.3%

ν = 1000

p = 0.8 p = 0.9

Mean SD AV(SE) Mean SD AV(SE)

ν̂ 1005.33 88.81 98.71 1002.31 34.57 34.42

ω̂ 1.02 0.0869 0.0902 1.01 0.0656 0.0676

ε̂ 1.00 0.3799 0.4341 1.00 0.2110 0.2157

Breakdown Prob. 8.2% Breakdown Prob. 2.4%
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p = 0.8 p = 0.9

Mean SD AV(SE) Mean SD AV(SE)

ν̂ 5012.95 204.96 209.61 5002.58 72.88 75.03

ω̂ 1.00 0.0372 0.0376 1.00 0.0303 0.0299

ε̂ 1.01 0.1835 0.1870 1.00 0.0935 0.0948

Breakdown Prob. 0% Breakdown Prob. 0%

Figure 1. Histogram of ν̂ for removal experiment with ω = 1.0 and ε = 1.0.
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Table 2. Summary of simulation results for recapture studies with ω = 1.0, ε = 1.0.
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(73.21) (5.09) (2.12) (89.99) (2.99) (0.07)

ω̂ 1.03 0.2327 0.2612 1.10 0.1250 0.1223
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Note: Numbers inside the brackets are the estimates obtained ignoring frailty in the model.

Figure 2. Histogram of ν̂ for recapture experiment with ω = 1.0 and ε = 1.0.
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Pul (1993), p.94) for solving the full likelihood. For convenience of comparison,
the set-up for the simulations is identical with that of van Pul (1993). We
generated failure times according to the Littlewood model with ω = 1, ε = 1,
and different values of ν (100, 1000 and 10,000). In the simulations we carried
out the Newton-Raphson iterative procedure to solve the estimating equations
(8), while van Pul (1993) took much more effort to search for the roots of the
three non-linear equations from the full likelihood equations. Comparison of the
two types of estimators show that the proposed estimators do not differ much
from the full MLE even when the sample size is not large.

Furthermore, we performed simulations with other frailty models of varying
degree of heterogeneity, with the results summarized in Table 4. The failure
intensities are generated from gamma distributions with different coefficients of
variation (CV). The sample size is 500. The estimation results of Chao’s sam-
ple coverage method (Chao and Lee (1992)) are also given for comparison. One
sees that the non-parametric sample coverage estimator underestimates the pop-
ulation size with a large relative mean square error, while the present proposal
performs satisfactorily.

Table 3. Mean square errors for θ̃ and θ̂

(a) ν=100 (b) ν=1000 (c) ν=10000
ν̃ 0.0237 0.0060 0.0006
ω̃ 0.0461 0.0052 0.0007
ε̃ 0.5767 0.1322 0.0101
ν̂ 0.0208 0.0079 0.0008
ω̂ 0.0318 0.0079 0.0007
ε̂ 0.4432 0.1441 0.0175

Note: θ̂ - the estimator of the two-step method
θ̃ - the estimator of method II (van Pul (1993)).

Table 4. Simulation results for heterogeneous models with ν=500

Estimator CV Ave(ν̂) sd(ν̂) Ave(ŝe(ν̂)) RMSE
0.58 486.6 13.9 13.8 19.2
0.71 483.8 13.5 13.7 21.2

Chao & Lee 1.00 477.7 14.0 14.5 26.6
1.12 474.7 14.3 15.0 29.4
0.58 500.3 18.6 17.9 17.8
0.71 500.3 18.8 18.6 18.6

Two-step 1.00 500.9 21.5 20.8 20.9
1.12 500.5 22.9 23.6 23.6

Note: Ave(ν̂) = Σ ν̂i/R; ŝd(ν̂)2 = Σ(ν̂i − Ave(ν̂))2/(R − 1); Ave{ŝe(ν̂)} =
{Σ ŝe(ν̂i)}/R; RMSE2 = Σ

(
ν̂i−ν

ν

)2 /
R; R = 1000 is the number of simulations.
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4. Examples on Reliability Data

The proposed method is applied to two data sets. The first is from a reliabil-
ity project concerning an information system for registering aircraft movements
Moek (1983,1984). Failure data collected during the testing stage can be found in
Table 5. The proposed conditional likelihood is maximized at ω̂ = 0.36(0.0001)
and ε̂ = 0, which indicates that the Jelinski-Moranda model is the best model.
The corresponding estimate for the total number of faults is ν̂=45.53 (2.37),
which is close to the full likelihood estimator ν = 44.5(1.98). The estimated
detection probability is thus around 0.95. Using the M-estimates in (5), sug-
gested in Andersen et al. (1993), we obtain ω̂ = 0.196(0.007), ε̂ = 0.089(0.102)
and ν̂ = 46.4(10.14) based on the 43 failures reported. The M-estimates with-
out the optimal weights obviously perform worse than the proposed conditional
likelihood estimates.

For the recapture experiment, each fault is detected, corrected and a counter
is inserted to record the number of revisits of a particular fault. To use the
dataset, we generated interfailure times for each of the detected faults in Table 5
from an exponential distribution with the maximum likelihood estimate of the
failure intensity φ̂ = 5.4 (Andersen et al., 1993), the data on their recapture
times are given in the third column of Table 5. The estimated number of total
faults in the system using the recapture data is ν̂ = 45.24(1.60).

The second example considers the dataset in van Pul ((1993), Appendix). It
comprised 165 distinct faults, recorded in Table 6. The time of the last observed
failure, 1.0472, was chosen as the stopping time of the experiment, τ . Figure 3
gives a total time on test (TTT) plot of the data, which graphically suggests an
exponential failure intensity (van Pul (1993)). We fitted the proposed removal
method, giving the estimates ω̂ = 0.377(0.029), ε̂ = 0 and ν̂ = 175.92(4.22).
The estimated parameter ε̂ turned out to be zero, which suggests the Jelinski-
Moranda model is the appropriate model within a larger class, with the failure
rate φ̂ = 2.654(0.204). The estimated detection probability is p̂ = 0.95.

5. Discussion

The proposed model in this paper is a unified one which comprises both re-
moval and recapture models. Our motivation of the recapture debugging model is
to obtain extra information on the failure intensity φ and the remaining number
of faults ν, so that better estimation can be achieved. The conditional likelihood
with a Horvitz-Thompson estimator is proposed. The resulting estimators are
asymptotically equivalent to the full likelihood estimators, confirmed by simula-
tion studies. Sanathanan (1972) also showed the asymptotic equivalence of the
unconditional and conditional MLE. The proposed estimators perform estimators
perform well in small samples when capture probabilities are high, especially for
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Table 5. Real and simulated failure times of the Moek’s data (1984)

fault # first subsequent simulated failure times
1 880 64653 329685 520016
2 4310 305937 428364 432134 576243
3 7170 563910
4 18930 186946 195476 473206
5 23680 259496 469180
6 23920 126072 252204 371939
7 26220 251385
8 34790 353576
9 39410 53878 147409 515884
10 40470 371824 466719
11 44290 83996 327296 352035 395324 494037
12 59090 61435 222288 546577
13 60860 75630 576386
14 85130
15 89930 205224 292321 294935 342811 536573 553312
16 90400 228283 334152 360218 368811 377529 547048
17 90440 511836 511967
18 100610 367520 429213
19 101730 162480 534444
20 102710 194399 294708 295030 360344 511025
21 127010 555065
22 128760
23 133210 167108 370739
24 138070 307101 451668
25 138710 232743
26 142700 215589
27 169540 299094 428902 520533
28 171810 404887
29 172010 288750
30 211190
31 226100 378185 446070 449665
32 240770 266322 459440
33 257080 374384
34 295490 364952
35 296610
36 327170 374032 430077
37 333380
38 333500 480020
39 353710
40 380110 433074
41 417910 422153 479514 511308
42 492130
43 576570
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Table 6. Failure dataset from van Pul ((1993), Appendix)

0.0020 0.0052 0.0066 0.0106 0.0146 0.0189 0.0231 0.0253 0.0286 0.0309 0.0315
0.0323 0.0332 0.0337 0.0377 0.0446 0.0460 0.0533 0.0547 0.0578 0.0628 0.0656
0.0719 0.0739 0.0740 0.0779 0.0792 0.0802 0.0810 0.0848 0.0852 0.0863 0.0872
0.1021 0.1040 0.1043 0.1061 0.1087 0.1125 0.1178 0.1180 0.1191 0.1192 0.1196
0.1212 0.1215 0.1220 0.1221 0.1260 0.1261 0.1262 0.1291 0.1303 0.1331 0.1370
0.1375 0.1394 0.1406 0.1436 0.1437 0.1452 0.1460 0.1464 0.1481 0.1482 0.1494
0.1496 0.1497 0.1504 0.1523 0.1533 0.1534 0.1536 0.1538 0.1539 0.1552 0.1618
0.1713 0.1750 0.1767 0.1773 0.1856 0.1871 0.1930 0.1963 0.1994 0.2015 0.2029
0.2040 0.2053 0.2062 0.2141 0.2143 0.2152 0.2199 0.2250 0.2302 0.2304 0.2314
0.2323 0.2763 0.2864 0.2888 0.2959 0.3016 0.3017 0.3029 0.3048 0.3055 0.3057
0.3154 0.3156 0.3211 0.4036 0.4144 0.4188 0.4196 0.4207 0.4214 0.4296 0.4298
0.4300 0.4302 0.4379 0.4471 0.4569 0.4688 0.4821 0.4975 0.5013 0.5176 0.5295
0.5611 0.5687 0.5712 0.5744 0.5783 0.5834 0.6032 0.6323 0.6602 0.6761 0.6911
0.7036 0.7105 0.7461 0.7570 0.7596 0.7626 0.7655 0.8052 0.8133 0.8204 0.9009
0.9059 0.9220 0.9296 0.9605 0.9752 0.9928 1.0063 1.0139 1.0289 1.0375 1.0472
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Figure 3. Scaled TTT plot of the failure data set from van Pul (1993)

recapture experiments. Ignoring frailty would seriously underestimate the pop-
ulation size and give a misleading smaller standard error (Chao (1987), Yip et
al. (1999)).

The proposed two-step estimator further provides an algorithm for solving
the Littlewood model. Different methods have been discussed to solve the like-
lihood equations (Moek (1984); Geurts, Hasselaar and Verhagen (1988); van
Pul (1993)). However, these procedures are generally complicated. The pro-
posed score equations (8) are more tractable: standard methods like the Newton-
Raphson procedure or downhill simplex methods can be used to search the equa-
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tion roots. In practice we suggest using the method I estimators of van Pul
(1993),

√
n-consistent, as the initial value for ω and ε separately.
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