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Abstract: This article studies Bayesian analysis of contingency tables (or multi-

nomial data) where the cell counts are not fully observed due to reasons such as

nonresponse and misclassification, and derives the posterior distributions of the

unknown cell probabilities in terms of various types of generalized Dirichlet dis-

tributions. For some special situations such as grouped and nested Dirichlet dis-

tributions, the posterior means of the unknown cell probabilities can be obtained

in closed form by using inverse Bayes formulae and/or stochastic representation.

When closed-form expressions do not exist, we suggest using importance sampling

with a feasible proposal density to approximately compute the posterior quantities,

and propose a procedure for choosing an effective proposal density. Applications are

illustrated by sample surveys with nonresponse, crime survey data, death penalty

attitude data, and misclassified multinomial data.

Key words and phrases: Bayesian inference, grouped and nested Dirichlet distribu-

tions, incomplete data, inverse Bayes formulae, stochastic representation.

1. Introduction

Statistical procedures for the treatment of missing value problems have re-

ceived considerable attention in the past several decades. The advent of the EM

algorithm (Dempster, Laird and Rubin (1977)) has virtually revolutionized the

practice of frequentist statistics. In a Bayesian framework, the posterior den-

sity of the observed data may be difficult to calculate directly. By introducing

latent variables or unobserved data, the data augmentation algorithm (Tanner

and Wong (1987)) and the Markov chain Monte Carlo (MCMC) or the Gibbs

sampler (Gelfand and Smith (1990)) can be used to deal with such problems.

No closed-form expressions are obtained for these procedures because they are

iterative.

The inverse Bayes formulae (IBF) method of Ng (1995, 1997) can be used

to work out closed-form solutions to the incomplete-data problems for some situ-

ations. Tan and Tian (2001) obtained some extensive results on the applications

of the IBF method to a wide variety of statistical problems, including bivari-

ate normal/truncated normal/exponential distributions, a genetic linkage model,
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misclassified multinomial data, a reliability growth model with missing data, and

hierarchical models. With these applications it is argued that the IBF is a useful

tool for incomplete data in Bayesian settings. One aim of the paper is to further

show that Bayesian computation can be routinely performed by the IBF method

when the posterior is a grouped Dirichlet distribution.

This article focuses on Bayesian analysis of contingency tables with incom-

plete cell-counts and derives the posteriors of the unknown cell probabilities in

terms of various types of generalized Dirichlet distributions. For some special sit-

uations such as grouped and nested Dirichlet distributions, the posterior means

of the unknown cell probabilities can be obtained in closed form by using the IBF

or stochastic representation (SR). When closed-form expressions do not exist, we

suggest using importance sampling with a feasible proposal density to approxi-

mately compute the posterior quantities, and propose a procedure for choosing

an effective proposal density.

Beginning with the formulation of statistical problems, Section 2 provides a

closed-form solution by IBF, derives the SRs for the grouped and nested Dirich-

let distributions, and suggests importance sampling approximation for the gen-

eralized Dirichlet distributions. Section 3 presents applications of the proposed

methods to sample surveys with nonresponse, crime survey data, death penalty

attitude data, and misclassified multinomial data. In Section 4, we give an il-

lustrative example. Section 5 proposes a procedure for choosing an effective

proposal density in importance sampling. Finally, a discussion is given and some

mathematical proofs are put into the Appendix.

2. Formulation of Problems and Development of Methodology

2.1. Formulation of problems

Consider Bayesian analysis for the contingency tables with incomplete cell-

counts. Let Yobs = {y1, . . . , yn; y∗1, . . . , y
∗
m} denote the observed cell counts and

θ be the cell probability vector of interest, where θ ∈ Tn = {(θ1, . . . , θn)> :

θi ≥ 0, i = 1, . . . , n,
∑n

i=1 θi = 1}. When there exist some missing cell-counts,

the likelihood function L(θ|Yobs) contains two parts:
∏n

i=1 θ
yi

i — the product of

the powers of cell probabilities and
∏m

j=1(
∑n

i=1 γijθi)
y∗

j — the product of pow-

ers of linear combinations of cell probabilities over sets of categories not distin-

guished. The Dirichlet distribution D(α1, . . . , αn) is a natural prior distribution

with resulting posterior a generalized Dirichlet distribution. Its density is given

by f(θ|Yobs) = f(θ|a, b,Γ) = c−1 · gD(θ|a, b,Γ) with kernel

gD(θ|a, b,Γ) =

(

n
∏

i=1

θai−1
i

)

·
m
∏

j=1

(

n
∑

i=1

γijθi

)bj−1
, θ ∈ Tn, (2.1)
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where a = (a1, . . . , an)> with ai = yi + αi and b = (b1, . . . , bm)> with bj = y∗j + 1

are two known vectors, and Γ = (γij) is an n×m known scale matrix.

Our aim is to compute posterior moments. Denote the simplex by Vn =

{(x1, . . . , xn)> : xi ≥ 0, i = 1, . . . , n,
∑n

i=1 xi ≤ 1}. It is easy to see that θ ∈ Tn

is equivalent to θ−n := (θ1, . . . , θn−1)
> ∈ Vn−1. The normalizing constant and

the posterior moments are given by

c = c(a, b,Γ) =

∫

Vn−1

gD(θ|a, b,Γ) dθ−n, (2.2)

E

( n
∏

i=1

θri

i

)

=
c(a+ r, b,Γ)

c(a, b,Γ)
, where r = (r1, . . . , rn)>. (2.3)

Dickey, Jiang and Kadane (1987) noted that (2.2) has a close relationship with

Carlson (1977)’s multiple hypergeometric function and (2.3) can be expressed

as ratios of such Carlson’s functions. One method proposed by Kadane (1985)

is multinomial expansion of the integrand, and the other is Laplace’s integral

method (Tierney and Kadane (1986)) which is approximate. However, both of

them are inconvenient for users.

In what follows, we give the closed-form expressions of (2.3), or equivalently

(2.2), for two special cases of grouped and nested Dirichlet distributions by IBF

and SR. For the generalized Dirichlet distribution, we suggest using importance

sampling with a feasible proposal density to approximately compute the posterior

moments.

2.2. Inverse Bayes formulae

We briefly introduce the IBF in the context of the general observed/missing

data. Tanner and Wong (1987) introduced the concept of data augmentation for

calculating the observed posterior density f(θ|Yobs) when the normalizing constant

is difficulty to compute. The idea is to introduce a latent variable z, which is

not observable or missing, such that the complete-data posterior f(θ|Yobs, z) and

the conditional predictive density f(z|Y0bs, θ) are available. Then f(θ|Yobs) can be

obtained as an iterative solution of an integral equation. Ng (1995, 1997) noticed

a simple analytic solution to that integral equation. Specifically, given f(θ|Yobs, z)

and f(z|Y0bs, θ), we have

f(θ|Yobs) =

{
∫

f(z|Yobs, θ)

f(θ|Yobs, z)
dz

}−1

=
f(θ|Yobs, z0)

f(z0|Yobs, θ)

{
∫

f(θ|Yobs, z0)

f(z0|Yobs, θ)
dθ

}−1

. (2.4)

The first equation of (2.4) is called a pointwise IBF and the last one a functionwise

IBF. Note that the functionwise IBF holds for some arbitrary z = z0. Section 3.1
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will give the closed-form expression of the posterior mean for grouped Dirichlet
distribution by using (2.4).

2.3. Grouped Dirichlet distribution

A generalized Dirichlet distribution (2.1) is called a grouped Dirichlet distri-

bution if its density is given by

f(θ|a, b) = c−1
1 ·

(

n
∏

i=1

θai−1
i

)

·
(

s
∑

j=1

θj

)b1−1(
n
∑

j=s+1

θj

)b2−1
, θ ∈ Tn, (2.5)

where a = (a1, . . . , an)> and b = (b1, b2)
>. We write θ ∼ GDn,2(a, b). Motivated

by the SR of a Dirichlet distribution (Fang, Kotz and Ng (1990), p.146), we
obtain an SR of θ ∼ GDn,2(a, b) as follows (see Appendix):

θi
d
= φiφs, i = 1, . . . , s− 1, θs

d
= (1 −

∑s−1
j=1 φj)φs,

θi
d
= φi(1 − φs), i = s+ 1, . . . , n− 1, θn

d
= (1 −

∑n−1
j=s+1 φj)(1 − φs),

(2.6)

where (φ1, . . . , φs−1)
>∼D(a1, . . . , as−1; as), φs∼Beta(

∑s
j=1aj+b1−1,

∑n
j=s+1aj+

b2 − 1), (φs+1, . . . , φn−1)
> ∼ D(as+1, . . ., an−1; an), and they are independent.

Further, (ξ1, . . . , ξn−1)
> ∼ D(d1, . . . , dn−1; dn) implies that (ξ1, . . . , ξn)> ∼ D(d1,

. . . , dn), where ξn = 1 −
∑n−1

j=1 ξj. Using the moments of Dirichlet and Beta
distributions, one can calculate the high-order moments of a grouped Dirichlet,
for instance,

E(θi) = E(φi) · E(φs) =
ai

∑s
j=1 aj

·
(
∑s

j=1 aj)+b1−1

(
∑n

j=1 aj)+b1+b2−2
, i = 1, . . . , s− 1,

E(θi) = E(φi) · E(1−φs) =
ai

∑n
j=s+1aj

·
(
∑n

j=s+1 aj)+b2−1

(
∑n

j=1aj)+b1+b2−2
, i=s+1, . . . , n−1.

(2.7)
It is easy to generalize these results to the more general case of a grouped

Dirichlet distribution with t partitions, denoted by θ ∼ GDn,t(a, b). Its density
is

c−1
2 ·

(

n
∏

i=1

θai−1
i

)

·
t
∏

j=1

(θsj−1+1 + · · · + θsj
)bj−1, θ ∈ Tn, (2.8)

where 0 = s0 < 1 ≤ s1 < · · · < st = n. Similarly, an SR of θ ∼ GDn,t(a, b)
with parameter vectors a = (a1, . . . , an)> and b = (b1, . . . , bt)

> is given by (see
Appendix)

θi
d
= φiφs1

, i = 1, . . . , s1 − 1, θs1

d
= (1 −

∑s1−1
j=1 φj)φs1

,

θi
d
= φiφs2

, i = s1 + 1, . . . , s2 − 1, θs2

d
= (1 −

∑s2−1
j=s1+1 φj)φs2

,
...

...
...

θi
d
= φiφst , i = st−1 + 1, . . . , st − 1, θst

d
= (1 −

∑st−1
j=st−1+1 φj)φst ,

(2.9)
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where (φ1, . . . , φs1−1)
>∼ D(a1, . . . , as1−1; as1

), (φs1+1, . . . , φs2−1)
>∼ D(as1+1, . . . ,

as2−1; as2
), . . . , (φst−1+1, . . . , φst−1)

>∼D(ast−1+1, . . . , ast−1; ast), (φs1
, φs2

, . . . , φst)
>

∼ D(
∑s1

k=1 ak + b1 − 1,
∑s2

k=s1+1 ak +b2 − 1, . . . ,
∑st

k=st−1+1 ak + bt − 1), and they

are independent. Then the moments of θ can be obtained via (2.9).

2.4. Nested Dirichlet distribution

A generalized Dirichlet distribution (2.1) is called a nested Dirichlet distri-

bution if its density is given by

c−1
3 ·

(

n
∏

i=1

θai−1
i

)

·
n−1
∏

j=1

(

j
∑

k=1

θk

)bj−1
, θ ∈ Tn, (2.10)

where a = (a1, . . . , an)> and b = (b1, . . . , bn−1)
>. We write θ ∼ NDn,n−1(a, b). As

shown in the Appendix, we have the following SR:

θi
d
= (1 − φi−1)

n−1
∏

j=i

φj , φ0 ≡ 0, i = 1, . . . , n, (2.11)

where φj ∼ Beta(
∑j

k=1(ak + bk − 1), aj+1), j = 1, . . . , n− 1, and φ1, . . . , φn−1 are

mutually independent. Furthermore, from (2.11), we have θ1+· · ·+θi
d
=
∏n−1

j=i φj,

i = 1, . . . , n− 1. Then, for example, we obtain

E(θi) = ai ·E(θ1 + · · · + θi)/{
i−1
∑

k=1

(ak + bk − 1) + ai}, i=1, . . . , n,

E(θ1+ · · · +θi) =
n−1
∏

j=i

{
j
∑

k=1

(ak+bk − 1)/[
j
∑

k=1

(ak+bk−1)+aj+1]}, i=1, . . . , n− 1.

2.5. Generalized Dirichlet distribution

Now we calculate the posterior moments (2.3). Our suggestion is first to

find a proposal density h(·) defined on Vn−1, and then to estimate c(a, b,Γ) =
∫

Vn−1
{gD(x|a, b,Γ)/h(x)}h(x)dx by

ĉ(a, b,Γ) =
1

M

M
∑

k=1

gD(x(k)|a, b,Γ)

h(x(k))
, (2.12)

where x(1), . . . , x(M) is an i.i.d. sample of size M from h(·). Feasible choices

of h(·) include a Dirichlet distribution D(a1, . . . , an−1; an), a grouped Dirichlet

distribution with suitable parameter vectors a and b, and a nested Dirichlet dis-

tribution with corresponding parameter vectors a and b. They can be simulated

from Beta distributions via (2.6), (2.9) and (2.11).
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In Section 5, we propose an effective proposal density in importance sampling

for better efficiency. Quasi-Monte Carlo methods can be used in calculating

(2.12), readers are referred to Fang, Wang and Bentler (1994).

3. Applications

3.1. Sample surveys with nonresponse

Let n denote the total number of questionnaires sent out. Suppose n1 in-

dividuals respond but n2 = n − n1 do not. Of these n1 respondents, there are

y1 individuals whose answers are classified into category A1 and the remaining

y2 are in A2. Denoting the respondents by R and the nonrespondents by NR,

the observed counts and the corresponding cell probabilities may be summarized

in Table 1 with π1· as the parameter of interest. Park and Brown (1994) used

the frequentist approach and Albert and Gupta (1985) and Chiu and Sedransk

(1986) used the Bayesian approach to study this nonresponse problem. Employ-

ing the IBF and the SR of the grouped Dirichlet distribution, we can obtain the

exact expression for a Bayesian estimate of π1· in dichotomous and polytomous

cases.

Table 1. 2 × 2 observed counts and corresponding cell probabilities.

Categories R NR Total Categories R NR Total

A1 y1 z A1 π11 π12 π1·

A2 y2 n2 − z A2 π21 π22 π2·

Total n1 n2 n Total π·1 π·2 1

First we consider the dichotomous case. The observed data is denoted by

Yobs = (y1, y2;n2)
>, where n2 = n − (y1 + y2). A natural latent variable z is

introduced by writing n2 = z + (n2 − z) and the corresponding cell probabil-

ity π·2 = π12 + π22. The likelihood function for the complete-data (Yobs, z) is

L(Yobs, z|π) ∝ πy1

11π
y2

21π
z
12π

n2−z
22 . If we take D(π|α11, α21, α12, α22) as the prior of

π, then the complete-data posterior distribution is f(π|Yobs, z) = D(π|y1+α11, y2+

α21, z + α12, n2 − z + α22). Noting that the conditional predictive density of z

given Yobs and π is Binomial(n2, π12/π·2), i.e., f(z|Yobs, π) =
(n2

z

)(

π12

π·2

)z(π22

π·2

)n2−z
,

z = 0, 1, . . . , n2, we have, using the pointwise IBF (2.4),

f(π|Yobs) =

{

n2
∑

z=0

f(z|Yobs, π)

f(π|Yobs, z)

}−1

= c−1(α11, α21, α12, α22)π
y1+α11−1
11 πy2+α21−1

21 πα12−1
12 πα22−1

22 πn2

·2 ,
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where c(α11, α21, α12, α22) =
∑n2

z=0

(n2

z

)

B(y1+α11, y2 +α21, z+α12, n2−z+α22).

Gunel (1984, p.742) showed that B(a1, a2, a3, a4) = B(a1, a2)B(a3, a4)B(a1 +

a2, a3 + a4) for ai > 0 (i = 1, . . . , 4), and
∑n

s=0

(n

s

)

B(s+ a, n− s+ b) = B(a, b).

By these identities, we obtain c(α11, α21, α12, α22) = B(y1 +α11, y2 +α21)B(n1 +

α·1, n2 +α·2)B(α12, α22). The Bayesian estimate of π11 is c(α11 +1, α21, α12, α22)

over c(α11, α21, α12, α22), i.e., π̂11 = (y1 +α11)/(n+α··), where α·· = α11 +α21 +

α12 + α22. Similarly, π̂12 = (n2 + α·2)α12/{(n + α··)α·2}. Therefore, the Bayes

estimator of π1· = π11 + π12 is (y1 + α1· + n2α12/α·2)/(n+ α··).

The generalization of the above IBF analysis to the polytomous case is

straightforward. Here we apply the SR of a grouped Dirichlet distribution as

an alternative approach. The corresponding observed frequencies and cell prob-

abilities are displayed in Table 2 with π1·, . . . , πk· as the parameters of interest.

The likelihood function for the observed data is proportional to (
∏k

i=1 π
yi

i1) · πn2

·2 ,

and the prior of π can be taken as D(α). After introducing the reparametriza-

tion θ = (θ1, . . . , θk, θk+1, . . . , θ2k)
> with θi = πi1 and θk+i = πi2 for i = 1, . . . , k,

we know that the observed posterior of θ is proportional to (
∏2k

i=1 θ
yi+αi−1
i ) ·

(
∑k

j=1 θj)
0(
∑2k

j=k+1 θj)
n2 , where yi = 0 for i = k + 1, . . . , 2k. This means

that θ ∼ GD2k,2(y + α, b), where y = (y1, . . . , y2k)
>, α = (α1, . . . , α2k)> and

b = (1, n2 + 1)>. By (2.7), it is easy to see that the Bayes estimator of π1· is

π̂1· = E(θ1 + θk+1) = (y1 +α1 +αk+1 +
n2αk+1

αk+1+···+α2k
)/(n+α·) with α· =

∑2k
i=1 αi,

which coincides with Eq. (2.16) in Basu and Pereira ((1982), p.351).

Table 2. k × 2 observed counts and corresponding cell probabilities.

Categories R NR Total Categories R NR Total

A1 y1 A1 π11 π12 π1·

...
...

...
...

...
...

Ak yk Ak πk1 πk2 πk·

Total n1 n2 n Total π·1 π·2 1

3.2. Crime survey data

Consider the data set in Table 3 obtained via the National Crime Survey

conducted by the U.S. Bureau of the Census (Kadane (1985)). Households are

interviewed to see if they had been victimized by crime in the preceding six-month

period. The occupants of the same housing unit were reinterviewed again six

months later to determine if they had been victimized in the intervening months,

whether these were the same people or not. Discarding 115 households, which is

equivalent to the assumption of missing at random (MAR) or ignorable missing

mechanism (Little and Rubin (1987)), Schafer ((1997), p.45, p.271) analyzed
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this data set by the EM algorithm from a frequentist perspective. In a Bayesian

framework, this data set was originally analyzed by Kadane (1985). Now we

denote the probability that a household is crime-free (victimized) in both periods

by θ1 (θ4), that it is crime-free (victimized) in period 1 and victimized (crime-free)

in period 2 by θ2 (θ3). Naturally, θ· =
∑4

j=1 θj = 1, and θj > 0 for j = 1, . . . , 4.

One of the goals is to obtain the Bayes estimator of θj.

Table 3. Victimization results from the national crime survey in Kadane (1985).

1st Visit\2nd Visit Crime-free Victims Nonresponse

Crime-free 392 (n1, θ1) 55 (n2, θ2) 33 (n12)

Victims 76 (n3, θ3) 38 (n4, θ4) 9 (n34)
Nonresponse 31 (n13) 7 (n24) 115 (n1234)

NOTE: Notations for the observed frequencies of households and probabili-

ties are in parentheses.

3.2.1. Nonignorable missing mechanism

Under the assumption of a nonignorable missing mechanism, we have a total

of 15 free-parameter π = (πij), a 4 × 4 matrix, see Table 4. These {πij} are

not identifiable unless there is a prior distribution for π. At present, πij can be

decomposed as

πij = θjλij , i, j = 1, . . . , 4, (3.1)

where λ·j = λ1j + · · ·+λ4j = 1 and θj = π1j + · · ·+π4j for j = 1, . . . , 4. Naturally,

λij denotes the corresponding conditional probability, reflecting the prior infor-

mation of nonignorability. For instance, λ11 (λ41) is the conditional probability

that a household responds (does not respond) in both interviews given that this

household is crime-free in both periods. Therefore, in Table 4, responding set

R12̄ represents that a household responds in the 1st interview but does not in the

2nd, and the other responding sets have analogous interpretations. Obviously,

A1 (A4) represents the category that a household is crime-free (victimized) in

both periods. In this way, we can write λ11 = Pr(R12|A1), λ21 = Pr(R12̄|A1),

λ31 = Pr(R1̄2|A1) and λ41 = Pr(R1̄2̄|A1). The likelihood function is proportional

to

4
∏

j=1

π
nj

1j · (π21 + π22)
n12(π23 + π24)

n34(π31 + π33)
n13(π32 + π34)

n24

(

4
∑

j=1

π4j

)n1234

,

(3.2)

and the prior density can be taken as f(π) ∝
∏4

i=1

∏4
j=1 π

αij−1
ij . The posterior

density is proportional to
∏4

j=1 π
nj+α1j−1
1j

∏4
i=2

∏4
j=1 π

αij−1
ij · (π21 + π22)

n12(π23 +
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π24)
n34(π31 + π33)

n13(π32 + π34)
n24(

∑4
j=1 π4j)

n1234 , which can be rewritten as, by

a straightforward reparametrization,

4
∏

i=1

ξni+α1i−1
i ·

8
∏

i=5

ξ
α2,i−4−1
i · ξα31−1

9 ξα33−1
10 ξα32−1

11 ξα34−1
12 ·

16
∏

i=13

ξ
α4,i−12−1
i

·
(

4
∑

j=1

ξj
)0(

6
∑

j=5

ξj
)n12

(

8
∑

j=7

ξj
)n34

(

10
∑

j=9

ξj
)n13

(

12
∑

j=11

ξj
)n24

(

16
∑

j=13

ξj
)n1234

. (3.3)

Compared with (2.8), we know that (3.3) is a grouped Dirichlet distribution with

t = 6 partitions. Then (2.9) can be employed to derive the expectation of ξi,

i = 1, . . . , 16. For instance,

E(ξ1) =
n1 + α11

n+ α··
, E(ξ5) =

α21(α21 + α22 + n12)

(α21 + α22)(n+ α··)
,

E(ξ9) =
α31(α31 + α33 + n13)

(α31 + α33)(n+ α··)
, E(ξ13) =

α41(α4· + n1234)

α4·(n+ α··)
,

(3.4)

where n =
∑4

i=1 ni + n12 + n34 + n13 + n24 + n1234, α4· =
∑4

j=1 α4j , and α·· =
∑4

i=1

∑4
j=1 αij . Therefore, the Bayes estimator for θ1 is given by

θ̂1 = E(θ1) = E(ξ1) +E(ξ5) +E(ξ9) +E(ξ13). (3.5)

By analogy, the respective posterior means of θ2, θ3 and θ4 can also be obtained.

Table 4. Parameter structure of nonignorable missing mechanism.

Categories R12 R12 R12 R12 R12̄ R12̄ R1̄2 R1̄2 R1̄2̄ Prob.

A1 π11 0 0 0 π21 0 π31 0 π41 θ1
A2 0 π12 0 0 π22 0 0 π32 π42 θ2
A3 0 0 π13 0 0 π23 π33 0 π43 θ3
A4 0 0 0 π14 0 π24 0 π34 π44 θ4

Counts n1 n2 n3 n4 n12 n34 n13 n24 n1234 n\1

SOURCE: Kadane (1985). NOTE: R12, R12̄, R1̄2, and R1̄2̄ denote the responding sets.

How do we determine the values of all αij in the prior density? In practice,

what we know about is the joint prior of the original parameters {θj} and {λij},

rather than π specified by f(θ, λ1, . . . , λ4), where θ = (θ1, . . . , θ4)
> and λj =

(λ1j , . . . , λ4j)
> for j = 1, . . . , 4, as defined in (3.1). We would like to clarify the

relation between f(θ, λ1, . . . , λ4) and f(π). Consider the more general case for

(3.1) with i = 1, . . . , k and j = 1, . . . ,m. The Jacobian of the transformation

(3.1) is
∏m

j=1 θ
k−1
j . Paulino and Pereira (1992) showed that π ∼ D({αij}) is



198 GUO-LIANG TIAN, KAI WANG NG AND ZHI GENG

equivalent to saying that










θ = (θ1, . . . , θm)> ∼ D(α·1, α·2, . . . , α·m),

λj = (λ1j , . . . , λkj)
> ∼ D(α1j , α2j , . . . , αkj),

θ, λ1, . . . , λm are mutually independent,

(3.6)

where θ· = 1 and λ·j = 1 for j = 1, . . . ,m. In this way, all αij in prior f(π) can

be determined.

3.2.2. An ignorable missing mechanism

An ignorable missing mechanism implies that the elements in each column

of the array (λij) are equal. Removing these {λij} from the likelihood function,

(3.2) is reduced to
∏4

j=1 θ
nj

j · (θ1 + θ2)
n12(θ3 + θ4)

n34(θ1 + θ3)
n13(θ2 + θ4)

n24 . Now,

D(α1, . . . , α4) is a natural prior for θ = (θ1, . . . , θ4)
>. The resulting posterior is

a generalized Dirichlet distribution with kernel

gD(θ|a, b,Γ) =
4
∏

j=1

θ
nj+αj−1
j ·(θ1+θ2)

n12(θ3+θ4)
n34(θ1+θ3)

n13(θ2+θ4)
n24 , (3.7)

where a = (n1 + α1, . . . , n4 + α4)
>, b = (n12 + 1, n34 + 1, n13 + 1, n24 + 1)>

and Γ = (γij) with first row (1, 0, 1, 0), and so on. Consequently, the posterior

moments for θj, j = 1, . . . , 4, can be obtained by (2.2), (2.3) and (2.12) with

proposal density

h(θ) = c−1
h ·

4
∏

j=1

θ
nj+αj−1
j · (θ1 + θ2)

n12(θ3 + θ4)
n34 . (3.8)

The proposal density h(θ) is a grouped Dirichlet distribution with normalizing

constant ch = B(n1+α1, n2+α2) · B(n1+n2+n12+α1+α2, n3+n4+n34+α3+α4)

· B(n3 + α3, n4 + α4), see (A.2).

The other parameter of interest is the odds ratio (Kadane (1985)), denoted

by ψ = θ1θ4/(θ2θ3), one of the ways to measure association in a contingency

table. Noting that ψ greater than 1 implies victimization is chronic, the mean

and variance of ψ are of interest. In fact, both E(ψ) and E(ψ2) are given by

(2.3) with, respectively, r = (1,−1,−1, 1) and r = (2,−2,−2, 2). Therefore a

grouped Dirichlet proposal density h(·) facilitates the computation.

3.3. Death penalty attitude data

Consider Kadane’s data from two sample surveys of juror’s attitudes on a

death penalty (Kadane (1983)), in which respondents are classified into four

categories: A1 — would not decide guilt versus innocence in a fair and impartial
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manner; A2 — fair and impartial on guilt versus innocence and, when sentencing,

would always vote for the death penalty regardless of circumstance; A3 — fair and

impartial on guilt and, when sentencing, would never vote for the death penalty;

A4 — fair and impartial on guilt and, when sentencing, would sometimes and

sometimes not vote for the death penalty. The frequency data y1 = 68, y3 = 97

and y24 = 674 were obtained by a survey of the Field Research Corporation;

y2 = 15 and y134 = 1484 by the Harris Survey Company.

Under the assumption of a nonignorable missing mechanism, the combi-

nation data of the two-count sets are exhibited in Table 5 which bears some

analogy to Table 4. Especially, for the MAR case, the combined likelihood is

(
∏4

j=1 θ
nj

j )(θ2 + θ4)
n24(θ1 + θ3 + θ4)

n134 . The Dirichlet prior D(α1, . . . , α4) is ad-

equate for θ = (θ1, . . . , θ4)
>, which leads to a posterior of a generalized Dirichlet

distribution with kernel gD(θ|a, b,Γ) = (
∏4

j=1 θ
nj+αj−1
j )θ0

1(θ1 + θ3)
0(θ1 + θ3 +

θ4)
n134 · (θ2 + θ4)

n24 . Accordingly, the posterior moments of θj, j = 1, . . . , 4,

can be obtained by (2.2), (2.3) and (2.12) with proposal density h(θ) = c−1
h ·

(
∏4

j=1 θ
nj+αj−1
j )θ0

1(θ1 +θ3)
0(θ1 +θ3 +θ4)

n134 , a nested Dirichlet with normalizing

constant ch = B(a1, a2)B(a1+a2, a3)B(a1+a2+a3+n134, a4), where aj = nj+αj

for j = 1, . . . , 4, see (A.4).

Table 5. Combination data for death penalty attitudes.

Categories R1 R2 R3 R4 R24 R134 Prob.

A1 π11 0 0 0 0 π31 θ1
A2 0 π12 0 0 π22 0 θ2
A3 0 0 π13 0 0 π33 θ3
A4 0 0 0 π14 π24 π34 θ4

Counts 68 (n1) 15 (n2) 97 (n3) 0 (n4) 674 (n24) 1484 (n134) 2338 (n)\1

SOURCE: Kadane (1983). NOTE: R1–R4, R24, and R134 denote the responding sets.

3.4. Misclassified multinomial data

In this section, we demonstrate the potential of our approach for the Bayesian

analysis of cell probabilities in categorical data with misclassifications. Geng and

Asano (1989) considered a contingency table with binary error-free variables A

and B, and denoted the corresponding error-prone variables as a and b, respec-

tively. The observed counts of the main sample categorized imprecisely and a

subsample categorized both imprecisely and precisely, and the corresponding cell

probabilities, are shown in Table 6. The objective is to find the posterior means

of cell probabilities of a contingency table categorized by error-free variables, i.e.,

Pr(A = 1, B = 1) = θ1 + θ5 + θ9 + θ13, Pr(A = 2, B = 1) = θ2 + θ6 + θ10 + θ14,

Pr(A = 1, B = 2) = θ3+θ7+θ11+θ15, and Pr(A = 2, B = 2) = θ4+θ8+θ12+θ16.
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Table 6. Counts and probabilities for main sample And subsample.

Main Sample Subsample

a = 1 a = 2 a = 1 a = 2
A=1 A=2 A=1 A=2 A=1 A=2 A=1 A=2

b=1 B=1 m1 m2 b=1 B=1 n1 (θ1) n2 (θ2) n5 (θ5) n6 (θ6)
B=2 B=2 n3 (θ3) n4 (θ4) n7 (θ7) n8 (θ8)

b=2 B=1 m3 m4 b=2 B=1 n9 (θ9) n10(θ10) n13(θ13) n14(θ14)

B=2 B=2 n11(θ11) n12(θ12) n15(θ15) n16(θ16)

Under the assumption of MAR, we take a Dirichlet prior D(α1, . . . , α16), then

the posterior of θ = (θ1, . . . , θ16)
> is proportional to

∏16
i=1 θ

ai−1
i (

∑4
j=1 θj)

m1×

(
∑8

j=5 θj)
m2(

∑12
j=9 θj)

m3(
∑16

j=13 θj)
m4 with ai = ni + αi for i = 1, . . . , 16, a

grouped Dirichlet distribution. Using (2.9), we have

E(θi) =
ai

a· +m·

(

1 +
m1

∑4
j=1 aj

)

, i = 1, . . . , 4,

E(θi) =
ai

a· +m·

(

1 +
m2

∑8
j=5 aj

)

, i = 5, . . . , 8,

E(θi) =
ai

a· +m·

(

1 +
m3

∑12
j=9 aj

)

, i = 9, . . . , 12,

E(θi) =
ai

a· +m·

(

1 +
m4

∑16
j=13 aj

)

, i = 13, . . . , 16,

where a· = n· + α· =
∑16

i=1(ni + αi) and m· =
∑4

i=1mi.

Geng and Asano also considered the following case. Let A and B be two

error-free binary variables. Suppose there is an error-prone variable b for B.

Assume that observations in a main sample are categorized by A and b. To obtain

information on misclassifications of the error-prone variable b, we observe, from

the same population, a random supplemental sample which is categorized by B

and b. The observations can be represented as in Table 7. The goal is to find the

posterior means of cell probabilities Pr(A = 1, B = 1) = θ1 + θ5, Pr(A = 2, B =

1) = θ3 + θ7, Pr(A = 1, B = 2) = θ2 + θ6, and Pr(A = 2, B = 2) = θ4 + θ8.

Under the assumptions of MAR, we take D(α1, . . . , α8) as the prior. Then

the posterior for θ = (θ1, . . . , θ8)
> is proportional to

∏8
j=1 θ

αj−1
j (θ1 + θ2)

m12(θ3 +

θ4)
m34(θ5 + θ6)

m56(θ7 + θ8)
m78 · (θ1 + θ3)

n13(θ2 + θ4)
n24(θ5 + θ7)

n57(θ6 + θ8)
n68 , a

generalized Dirichlet distribution. The means E(
∏8

j=1 θ
rj

j ) can be calculated by

importance sampling (see, (2.2), (2.3), and (2.12)) with proposal density h(θ) =

c−1
h ·

∏8
j=1 θ

rj+αj−1
j (θ1 + θ2)

m12(θ3 + θ4)
m34(θ5 + θ6)

m56(θ7 + θ8)
m78 , a grouped

Dirichlet with normalizing constant ch = B(a1, a2)B(a3, a4)B(a5, a6)B(a7, a8)×
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B(a1 + a2 +m12, a3 + a4 +m34, a5 + a6 +m56, a7 + a8 +m78), where aj = rj +αj

for j = 1, . . . , 8, see (A.3).

Table 7. Observations for main and supplemental samples.

Main Sample Supplemental Sample

A = 1 A = 2 A = 1 A = 2

b = 1 B = 1 m12 m34 b = 1 B = 1 (θ1) n13 (θ3)
B = 2 B = 2 (θ2) n24 (θ4)

b = 2 B = 1 m56 m78 b = 2 B = 1 (θ5) n57 (θ7)

B = 2 B = 2 (θ6) n68 (θ8)

4. An Illustrative Example

In this section the crime survey data, Table 3, is used to demonstrate the
proposed methods. The goal is to obtain Bayes estimates of θi, i = 1, . . . , 4.
We first consider the situation of a nonignorable missing mechanism. Equations
(3.4) and (3.5) give the Bayes estimator of θ1. Similarly, we have θ̂2 = E(θ2) =
E(ξ2)+E(ξ6)+E(ξ11)+E(ξ14), θ̂3 = E(θ3) = E(ξ3)+E(ξ7)+E(ξ10)+E(ξ15) and
θ̂4 = E(θ4) = E(ξ4)+E(ξ8)+E(ξ12)+E(ξ16), where E(ξi) = (ni +α1i)/(n+α··),
i = 1, 2, 3, 4, E(ξ5) = α21d12, E(ξ6) = α22d12, E(ξ7) = α23d34, E(ξ8) = α24d34,
E(ξ9) = α31d13, E(ξ10) = α33d13, E(ξ11) = α32d24, E(ξ12) = α34d24, E(ξ13) =
α41d1234, E(ξ14) = α42d1234, E(ξ15) = α43d1234, E(ξ16) = α44d1234, and

d12 =
α21 + α22 + n12

(α21 + α22)(n+ α··)
, d34 =

α23 + α24 + n34

(α23 + α24)(n+ α··)
,

d13 =
α31 + α33 + n13

(α31 + α33)(n+ α··)
, d24 =

α32 + α34 + n24

(α32 + α34)(n+ α··)
, d1234 =

α4·+n1234

α4·(n+α··)
.

The corresponding variance and standard deviation (SD) of θi can be obtained
by calculating the variance of ξi and the covariance of ξi and ξj with (2.9).

We consider two prior distributions. The first is a uniform prior with αij = 1
for all i, j = 1, . . . , 4. From (3.6), this is equivalent to saying θ = (θ1, . . . , θ4)

> ∼
D(4, 4, 4, 4), λj ∼ D(1, 1, 1, 1), for j = 1, . . . , 4, and θ, λ1, . . . , λ4 are mutually
independent. The second prior represents the opinion of experts taken as θ ∼
D(10, 5, 5, 10), λ1 ∼ D(1, 3, 2, 4), λ2 ∼ D(1, 0.5, 2, 1.5), λ3 ∼ D(1.5, 2, 0.5, 1),
λ4 ∼ D(4, 2, 3, 1), and they are independent. Table 8 summarizes results that
indicate that the posterior means are slightly sensitive to the choice of the prior.

Table 8. Posterior mean and SD under nonignorable missing mechanism.

Priors E(θ1) E(θ2) E(θ3) E(θ4)

Uniform 0.5916 0.1396 0.1668 0.1020

(0.0125) (0.0137) (0.0180) (0.0102)

Experts 0.6570 0.1152 0.1362 0.0916

(0.0134) (0.0142) (0.0156) (0.0187)
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Now we consider the situation of an ignorable missing mechanism. We want

to calculate the posterior mean and SD of θi and the odds ratio ψ = θ1θ4/(θ2θ3).

The prior for θ = (θ1, . . . , θ4)
> is specified by D(α), where α = (α1, . . . , α4)

>.

Six prior distributions are discussed by Kadane (1985). They are (i) a uniform

prior with α = (1, 1, 1, 1)> ; (ii) a Haldane prior with α = (0, 0, 0, 0)> ; (iii) a

Jeffreys prior with α = (0.5, 0.5, 0.5, 0.5)> ; (iv) Kadane’s information prior with

α = (7.5, 1, 1, 0.5)> ; (v) the prior corresponding the uniform prior in Table 8 with

α = (4, 4, 4, 4)> ; (vi) the experts prior with α = (10, 5, 5, 10)> . Table 9 displays

outcomes which show that the posterior means are robust to the choice of the

prior.

Table 9. Posterior mean and SD under ignorable missing mechanism.

Priors E(θ1) E(θ2) E(θ3) E(θ4) ψ

Uniform (1, 1, 1, 1) 0.6914 0.0953 0.1354 0.0779 4.4153

(0.0125) (0.0182) (0.0104) (0.0130) (1.2403)
Jeffreys (0, 0, 0, 0) 0.6927 0.0943 0.1350 0.0780 4.3811

(0.0131) (0.0183) (0.0102) (0.0139) (1.2655)

Haldane (0.5, 0.5, 0.5, 0.5) 0.6920 0.0953 0.1352 0.0775 4.4006

(0.0127) (0.0183) (0.0103) (0.0134) (1.2515)
Information (7.5, 1, 1, 0.5) 0.6930 0.0957 0.1347 0.0766 4.3540

(0.0131) (0.0186) (0.0099) (0.0141) (1.2779)

Uniform∗ (4, 4, 4, 4) 0.6880 0.0956 0.1370 0.0794 4.4186

(0.0149) (0.0180) (0.0129) (0.0157) (1.2297)

Experts (10, 5, 5, 10) 0.6899 0.0891 0.1355 0.0855 4.9954
(0.0126) (0.0118) (0.0099) (0.0148) (0.7231)

5. Choice of Effective Proposal Density

We return to (2.12) and consider the approximation of the normalizing con-

stant. In importance sampling, the usual difficulty is finding a suitable proposal

density h(·) which mimics the target function gD(·|a, b,Γ). A multivariate split

normal/Student proposal density suggested by Geweke (1989) seems infeasible

for the present situation since θ belongs to the hyperplane Tn. In Section 2.5,

we suggest three feasible choices for h(·). Two questions emerge: (i) what is a

natural class of proposal densities? (ii) which member of the class is the most

effective? In what follows, we partially answer these questions.

Clearly, the functionwise IBF (2.4) provides a natural class of proposal den-

sities: the complete-data posterior densities {f(θ|Yobs, z0) : z0 ∈ S(z|Yobs)}, where

S(z|Yobs) denotes the conditional support of z. However, the efficiency for approxi-

mating the normalizing constant c =
∫

f(θ|Yobs, z0)/f(z0|Yobs, θ) dθ by importance

sampling depends on how well the proposal density f(θ|Yobs, z0) mimics the tar-

get function f(θ|Yobs, z0)/f(z0|Yobs, θ) = c · f(θ|Yobs). Let θ̂obs denote the mode of
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the observed posterior f(θ|Yobs). The EM algorithm shows that f(θ|Yobs, z0) and

f(θ|Yobs) share the same mode θ̂obs, where

z0 = E(z|Yobs, θ̂obs). (5.1)

Thus, there is substantial amount of overlapping area under the proposal density

and the target function. Then f(θ|Yobs, z0), with z0 given by (5.1), is heuristically

an effective proposal density.

Now we use the crime survey data under the assumption of an ignorable

missing mechanism to illustrate our idea. Return to Section 3.2.2 and denote the

observed data by Yobs ={n1, n2, n3, n4, n12, n34, n13, n24}. Note that the observed

posterior density f(θ|Yobs) is proportional to gD(θ|a, b,Γ) given in (3.7). We

introduce a latent vector z = (z13, z24)
> such that the complete-data posterior is

f(θ|Yobs, z) ∝ θn1+z13+α1−1
1 θn2+z24+α2−1

2 θn3+n13−z13+α3−1
3 θn4+n24−z24+α4−1

4

·(θ1 + θ2)
n12(θ3 + θ4)

n34 , (5.2)

and the conditional predictive density is given by

f(z|Yobs, θ) = Binomial

(

z13
∣

∣

∣n13,
θ1

θ1 + θ3

)

· Binomial

(

z24
∣

∣

∣n24,
θ2

θ2 + θ4

)

. (5.3)

Based on (5.2) and (5.3), the EM algorithm can be used to find the posterior mode

θ̂obs and z0 = E(z|Yobs, θ̂obs). Then an effective proposal density is f(θ|Yobs, z0).

Comparing f(θ|Yobs, z0) with (3.8), we know that both of them belong to the

same class of proposal densities and they are very closed. Therefore the proposal

density (3.8) is feasible but not the best and f(θ|Yobs, z0) is the best at the expense

of running an EM algorithm.

6. Discussion

In this paper, we study the Bayesian computations of the posterior moments

of the unknown cell probabilities for the contingency table with incomplete cell-

counts. For some special cases where the posterior is a grouped or a nested

Dirichlet distribution, the posterior means of the unknown cell probabilities can

be obtained in closed form by using inverse Bayes formulae and stochastic rep-

resentation.

When closed-form expressions do not exist, we suggest using importance

sampling to approximately compute the posterior quantities. Three feasible pro-

posal densities are suggested and propose a procedure for choosing an effective

proposal density. We have noted that Var(θ|Yobs, z0) ≤ Var (θ|Yobs) contradicts

with the common request in importance sampling that the tails of proposal den-

sity do not decay more quickly than the tails of the target function (Geweke
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(1989)). Our procedure is not perfect, but it provides a universal way to find an
effective proposal density for the situation where Var(θ|Yobs, z0) is not much less
than Var (θ|Yobs). Since no methods currently exist for assessing the efficiency of a
proposal density and the accuracy of an importance sampling estimate (Gelman,
Carlin, Stern and Rubin (1995), p.307), it is a problem worthy of further study.
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Appendix

A.1. Derivation of (2.6)

Let θ ∼ GDn,2(a, b) with density given by (2.5). The transformation φi =
θi/
∑s

j=1 θj, i = 1, . . . , s−1, φs =
∑s

j=1 θj , φi = θi/
∑n

j=s+1 θj, i = s+1, . . . , n−1,
has an inverse transformation given by (2.6). Noting that the Jacobian |J | =
φs−1

s (1 − φs)
n−s−1, the joint density f(φ1, . . . , φn−1) is

c−1
1 ·

s−1
∏

i=1

φai−1
i

(

1−
s−1
∑

j=1

φj

)as−1
·φ

a∗

1
+b1−2

s (1−φs)
a∗

2
+b2−2·

n−1
∏

i=s+1

φai−1
i

(

1−
n−1
∑

j=s+1

φj

)an−1
,

(A.1)
where a∗1 =

∑s
j=1 aj and a∗2 =

∑n
j=s+1 aj . Therefore (φ1, . . . , φs−1)

>, φs and
(φs+1, . . . , φn−1)

> are independent Dirichlet distributions, and (2.6) follows. From
(A.1), we obtain

c1 = B(a1, . . . , as) ·B
(

s
∑

j=1

aj + b1 − 1,
n
∑

j=s+1

aj + b2 − 1
)

·B(as+1, . . . , an). (A.2)

A.2. Derivation of (2.9)

Let θ ∼ GDn,t(a, b) with density given by (2.8). Making the transformation






















φi = θi/(θ1 + · · · + θs1
), i = 1, . . . , s1 − 1, φs1

= θ1 + · · · + θs1
,

φi = θi/(θs1+1 + · · · + θs2
), i = s1 + 1, . . . , s2 − 1, φs2

= θs1+1 + · · · + θs2
,

...

φi = θi/(θst−1+1 + · · · + θst), i = st−1 + 1, . . . , st − 1, φst = θst−1+1 + · · · + θst,
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the inverse transformation is given by (2.9) and the Jacobian is |J |=
∏t−1

j=1φ
sj−sj−1−1
sj ·

(1−
∑t−1

k=1 φsk
)st−st−1−1. Partition φ = (φ1, . . . , φn)> into (φ∗1, φs1

, φ∗2, φs2
, . . . , φ∗t ,

φst)
>, where φ∗j = (φsj−1+1, . . . , φsj−1), j = 1, . . . , t. We know f(φ1, . . . , φn−1) =

f(θ−n) ∗ |J |, which leads to

φ∗>j ∼ D(asj−1+1, . . . , asj−1; asj
), j = 1, . . . , t,

(φs1
, φs2

, . . . , φst)
> ∼ D

(

s1
∑

k=1

ak+b1−1,
s2
∑

k=s1+1

ak+b2−1, . . . ,
st
∑

k=st−1+1

ak+bt−1
)

,

and they are independent. Thus (2.9) follows. Similar to (A.2), we obtain the

normalizing constant

c2 =
t
∏

j=1

B(asj−1+1, . . . , asj
) · B

(

s1
∑

k=1

ak + b1 − 1, . . . ,
st
∑

k=st−1+1

ak + bt − 1
)

.

A.3. Derivation of (2.11)

Let θ ∼ NDn,n−1(a, b) with density given by (2.10). Making the transforma-

tion φi =
∑i

j=1 θj/
∑i+1

j=1 θj, i = 1, . . . , n − 2, and φn−1 =
∑n−1

j=1 θj , the inverse

transformation is given by (2.11) and the Jacobian is |J | =
∏n−1

j=1 φ
j−1
j . Hence,

the joint density f(φ1, . . . , φn−1) = c−1
3 ·
∏n−1

j=1 φ
dj−1
j (1−φj)

aj+1−1, which indicates

that φj ∼ Beta(dj , aj+1) for j = 1, . . . , n− 1, and φ1, . . . , φn−1 are independent,

where dj =
∑j

k=1(ak + bk − 1). Thus (2.11) follows. Similarly,

c3 =
n−1
∏

j=1

B
(

j
∑

k=1

(ak + bk − 1), aj+1

)

.
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