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Abstract: Detection of confounding and confounders is important for observational

studies, and especially so for epidemiologic studies. Miettinen and Cook (1981)

derived two criteria for detecting confounders. Using a model, Wickramaratne

and Holford (1987) proved that the two criteria are necessary but not sufficient

conditions for confounders. We take uniform nonconfounding to mean there is

no confounding at a coarse-subpopulation-level obtained by pooling any number

of subpopulations. We discuss the necessity and sufficiency of the two criteria

for uniform nonconfounding. The concepts of homogeneity and collapsibility for

causal effects are also defined, and the relation among confounding, homogeneity

and collapsibility is discussed. We show that the common causal effect over all fine

subpopulations is just the causal effect of the whole population.

Key words and phrases: Causal effect, collapsibility, confounding, effect modifica-

tion, homogeneity.

1. Introduction

The presence of confounding in an epidemiologic study hinders the estimation
of causal effects. Miettinen and Cook (1981) derived two criteria of a confounder:
(a) it must be predictive of risk in the unexposed population; and
(b) it must have different distributions between the exposed and unexposed pop-

ulations.
Greenland and Robins (1986) discussed a logical connection among identifia-
bility, exchangeability and confounding. Using a model, Wickramaratne and
Holford (1987) showed that the above criteria are necessary but not sufficient
conditions for confounding. Based on the counterfactual model (Rubin (1974)
and Holland (1986)), Holland (1989) discussed causal effects and confounding
in epidemiologic studies. Holland and Rubin (1988) defined causal effects for
three different levels: unit-level, subpopulation-level and population-level. The
population-level causal effect is measured by comparing the proportion of dis-
eased in the exposed population with the proportion of diseased in the same
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population had it not been exposed. Subpopulations are defined by the values
of covariates, and a coarse subpopulation is defined by pooling several subpop-
ulations together. The concept of coarse-subpopulation introduced in this pa-
per is important for discussion of the necessity and sufficiency of Miettinen and
Cook’s two criteria. Similarly, we can measure subpopulation-level and coarse-
subpopulation-level causal effects. Uniform nonconfounding occurs if there is no
confounding in any coarse-subpopulation-level. Otherwise we say that there is
occasional confounding. It is shown in Section 2 that (a) and (b) are necessary
and sufficient for occasional confounding under the model of Wickramaratne and
Holford (1987). In Section 3, the homogeneity of causal effects is said to hold if
the causal effects are equal over all fine subpopulations. We discuss relationships
among confounding, homogeneity and collapsibility. In the absence of occasional
confounding, causal effects for the whole population, subpopulations and coarse
subpopulations can be estimated correctly from observed data. However, causal
effects at different coarse-subpopulation-levels may not be equal to one another
even if there is no confounding. We show that the common value of an associ-
ation measure (e.g. the common value of risk difference or the common value
of risk ratio) over all fine subpopulations is the corresponding causal effect of
the whole exposed population if there is no confounding in any fine subpopu-
lation. Causal effects are strongly collapsible if they are equal for all different
population-levels. A necessary and sufficient condition for strong collapsibility is
found. When causal effects are strongly collapsible, we can estimate the causal
effects based on those subpopulation-level results that are free from confounding.
Simpson (1951), Bishop (1971), Armitage (1975), Whittemore (1978), Wermuth
(1987), Geng (1992) and Guo and Geng (1995) have discussed collapsibility of
association measures. Recently, Greenland, Robins and Pearl (1999) provided a
historical overview of confounding and confounder in causal inference, and gave
the background on causal models that complements the results in the present
paper.

2. Causal Effects and Confounding

Following the notation of Holland (1989), we let E be an exposure with values
e and ē representing the presence and absence of the exposure, respectively. De

and Dē are responses under the exposure E = e and E = ē. The responses take
values 1 and 0 denoting diseased and nondiseased, respectively.

Epidemiologic studies look for causal effects in an exposed population. Let
P (De = 1 | E = e) and P (Dē = 1 | E = ē) be the proportions of diseased
in the exposed population and the unexposed population respectively, and let
P (Dē = 1 | E = e) be the hypothetical proportion of exposed individuals who
would have developed the disease had they not been exposed. Causal effects are
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measured by comparing P (De = 1 | E = e) with P (Dē = 1 | E = e), for example,
P (De = 1 | E = e)−P (Dē = 1 | E = e) or P (De = 1 | E = e)/P (Dē = 1 | E = e)
(Rosenbaum and Rubin (1983)). According to Rothman and Greenland (1998),
we call P (De = 1 | E = e)− P (Dē = 1 | E = e) the causal risk difference (CRD)
for the whole exposed population, and call P (De = 1 | E = e)/P (Dē = 1 | E = e)
the causal risk ratio (CRR) for the whole exposed population. Since P (Dē = 1 |
E = e) is the hypothetical proportion, the model is called a counterfactual model
(Rubin (1974), Holland (1986), Holland and Rubin (1988)). In the following we
consider the causal risk difference first. The risk difference (RD) usually used
to measure associations in the whole exposed population is RD = P (De = 1 |
E = e) − P (Dē = 1 | E = ē), which certainly is estimable from the data in a
cohort study. If P (Dē = 1 | E = e) = P (Dē = 1 | E = ē), then CRD is equal
to RD. One says there is nonconfounding in the whole population or, simply,
one has population nonconfounding (Miettinen and Cook (1981), Wickramaratne
and Holford (1987), Greenland and Robins (1986)).

Let C be an extraneous factor with values 1, . . . ,K, where each value defines
a fine subpopulation; C is a covariate in the sense that it is not affected by the
exposure or it is not in the causal sequence from exposure to disease. Variables
measured prior to the exposure are always covariates. Let P (De = 1 | E = e,C =
k) be the proportion of diseased in the exposed subpopulation C = k. Similarly,
P (Dē = 1 | E = e,C = k) is the hypothetical proportion of individuals in the
exposed subpopulation C = k who would have developed the disease had they
not been exposed. The subpopulation-level causal risk difference for the exposed
subpopulation with C = k is CRDk = P (De = 1 | E = e,C = k) − P (Dē = 1 |
E = e,C = k). The risk difference for association in the exposed subpopulation
with C = k is given by RDk = P (De = 1 | E = e,C = k) − P (Dē = 1 | E =
ē, C = k). Let A B | C denote conditional independence between A and B given
C (Dawid (1979)). If P (Dē = 1 | E = e,C = k) = P (Dē = 1 | E = ē, C = k) for
all k (denoted by Dē E | C), then CRDk = RDk for all k, and we say that there
is no confounding in the fine subpopulations or, simply, there is subpopulation
nonconfounding (Wickramaratne and Holford (1987)).

There are two important assumptions for causal inference in observational
studies. One is strongly ignorable treatment assignment: (De,Dē) E | C

(Rosenbaum and Rubin (1983), Rosenbaum (1984)). That is, the responses and
the treatment assignment are conditionally independent given C. The other is
weakly ignorable treatment assignment: De E | C and Dē E | C (Rubin
(1978), Stone (1993)). We can see that subpopulation nonconfounding (i.e.,
Dē E | C) is weaker than both strong ignorability and weak ignorability. Sub-
population nonconfounding can be satisfied by selecting a control group which
is comparable with the treatment group had the individuals in this treatment
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group not been treated. In addition, weak ignorability requires that the control
group is also comparable with the treatment group had the individuals in the
control group been treated. In epidemiologic studies, it is customary to restrict
the causal effects to individuals in the exposed population. Thus subpopula-
tion nonconfounding is a more essential assumption than ignorability for causal
inference in epidemiologic studies.

Let ω be a nonempty subset of the range of C, that is, ω ⊆ {1, . . . ,K}
and ω �= ∅. The causal risk difference for the coarse exposed subpopulation of
C ∈ ω is given by CRDω = P (De = 1 | E = e,C ∈ ω) − P (Dē = 1 | E =
e,C ∈ ω). The word “coarse” means that a “coarse” subpopulation consists of
several fine subpopulations. Similarly we denote the risk difference for association
as RDω = P (De = 1 | E = e,C ∈ ω) − P (Dē = 1 | E = ē, C ∈ ω). If
P (Dē = 1 | E = e,C ∈ ω) = P (Dē = 1 | E = ē, C ∈ ω) for all ω, then there is no
confounding in any coarse subpopulation, and thus CRDω = RDω for all ω. We
call it uniform nonconfounding. This means no confounding occurs no matter
how the fine subpopulations are pooled into coarse subpopulations. In particular,
the case ω = {1, . . . ,K} implies that uniform nonconfounding is stronger than
population nonconfounding. In many studies, we are not only interested in the
causal effect for the whole exposed population but also interested in those for
coarse subpopulations. For example, epidemiologists routinely consider coarse
populations formed by different age groups, groupings of household income levels,
groupings of occupations, and so on. Confounding may arises in some coarse
populations but not in others. Thus, recognizing uniform nonconfounding is also
important in epidemiologic studies.

Example 1. Consider an example with K = 3. From the probabilities given in
Table 1, we see that the criteria of Miettinen and Cook are satisfied but there is
no confounder.

Table 1. C is not a confounder even if it satisfies Miettinen and Cook’s
criteria.

P (Ds = 1 | E, C) for s = e or ē P (C | E)
E = e E = ē E

C De = 1 Dē = 1 Dē = 1 e ē

1 0.5 0.2 0.2 0.2 0.4
2 0.7 0.4 0.4 0.2 0.4
3 0.6 0.3 0.3 0.6 0.2

(1) There is no confounding in the fine subpopulations since P (Dē = 1 | E =
e,C = k) = P (Dē = 1 | E = ē, C = k) for k = 1, 2, 3. Thus CRDk = RDk =
0.3 for all k.
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(2) There is no confounding in the coarse subpopulation of C ∈ ω1 where ω1 =
{1, 2}, since

P (Dē = 1 | E = e,C ∈ ω1)

=
∑

k∈ω1
P (Dē = 1 | E = e,C = k)P (C = k | E = e)

∑
k∈ω1

P (C = k | E = e)
=0.3,

which is equal to P (Dē = 1 | E = ē, C ∈ ω1). Also CRDω1 = RDω1 =
P (De = 1 | E = e,C ∈ ω1) − P (Dē = 1 | E = ē, C ∈ ω1) = 0.6 − 0.3 = 0.3.

(3) There is confounding in the coarse subpopulation of C ∈ ω2 = {2, 3}. Here
P (Dē = 1 | E = e,C ∈ ω2) = 0.325, but P (Dē = 1 | E = ē, C ∈ ω2) = 0.367.
Thus we cannot claim uniform nonconfounding since RDω2 = 0.625−0.367 =
0.258 and CRDω2 = 0.625 − 0.325 = 0.3.

(4) There is no confounding in the whole population since P (Dē = 1 | E =
e) = P (Dē = 1 | E = ē) = 0.30. Thus C is not a confounder even if
it does satisfy Miettinen and Cook’s criteria: it is predictive of risk in the
unexposed population and has different distributions between the exposed
and unexposed populations. It can be seen that Miettinen and Cook’s criteria
are not sufficient conditions for confounders. It can be shown that CRD =
RD = 0.60 − 0.30 = 0.30.

We show that Miettinen and Cook’s criteria are necessary and sufficient for uni-
form nonconfounding under the assumption of subpopulation nonconfounding.

Theorem 1. Assuming subpopulation nonconfounding, the necessary and suffi-
cient condition for uniform nonconfounding is
(i) P (Dē = 1 | E = ē, C = k) = P (Dē = 1 | E = ē) for k = 1, . . . ,K, or
(ii) P (C = k | E = ē) = P (C = k | E = e) for k = 1, . . . ,K.

See the Appendix for a proof.
Condition (i) means that the conditional independence of Dē and C given

E = ē is the negation of condition (a) for a confounder. Condition (ii) is the
marginal independence of C and E and is the negation of condition (b). Under the
same condition of subpopulation nonconfounding, Wickramaratne and Holford
(1987) showed only that conditions (i) and (ii) are sufficient (but not necessary)
conditions for population nonconfounding.

In clinical trials, randomized treatment assignment ensures that the treat-
ment assignment is independent of all other factors, which implies (De,Dē, C) E

(Rubin (1978)). Thus randomized treatment assignment can ensure that both
condition (ii) and the assumption of subpopulation nonconfounding hold. Strat-
ified - randomized treatment assignment in each subpopulation can ensure that
the treatment assignment is independent of other factors in each subpopulation,
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which implies Dē E | C. In cohort studies, there are three designs— frequency-
matching (Weinberg (1985)), pair-matching and stratification (Kleinbaum, Kup-
per and Morgenstern (1982)), which can ensure that C has same distributions
between the exposed and unexposed populations. For stratified cohort studies,
condition (i) should be rewritten as P (Dē = 1 | E = ē, C = k) = P (Dē = 1 |
E = ē, C = k′) for k �= k′.

Since the uniform nonconfounding implies subpopulation nonconfounding,
we can rewrite Theorem 1 as follows.

Theorem 1′. The necessary and sufficient condition for uniform nonconfounding
is (i) Dē C | E = ē or C E and (ii) Dē E | C.

We say that there is occasional confounding if there is a coarse subpopulation
with confounding. For Table 1, there is occasional confounding in the coarse
subpopulation of ω2 = {2, 3} since P (Dē = 1 | E = e,C ∈ ω2) = 0.325 �=
P (Dē = 1 | E = ē, C ∈ ω2) = 0.367.

Corollary 1. There is occasional confounding if and only if (i) Dē/ C | E = ē

and C / E, or (ii) Dē/ E | C.

Condition (i) in Corollary 1 is the criteria of Miettinen and Cook (1981).
It is sufficient for occasional confounding and can be verified by observed data.
Consider again Table 1. We find Dē/ C | E = ē and C / E. Thus there must be
occasional confounding, and it is found in the subpopulation ω2.

3. Homogeneity and Collapsibility for Causal Effects

Uniform nonconfounding means that causal effects for the whole exposed
population, subpopulations and coarse-subpopulations can be estimated from
observed data. However uniform nonconfounding does not imply causal effects
at different population-levels are equal. In this section we discuss collapsibility
of causal effects and give a necessary and sufficient condition for collapsibility.
We discuss the relationships among confounding, homogeneity and collapsibility.

If causal risk differences for all fine exposed subpopulations are the same,
we say that causal risk differences are homogeneous across C, and we denote the
common causal risk difference by aCRD. Thus homogeneity means that there
is no effect modification for CRDs. Moreover, if the causal risk difference in the
whole exposed population is equal to those for each fine exposed subpopulations,
that is, we say that the causal risk differences are collapsible over C. Further, if
the causal risk difference in the whole exposed population is equal to those for
each coarse exposed populations (CRD = CRDω for all ω), we say that the causal
risk differences are strongly collapsible over C. Thus strong collapsibility implies
collapsibility, which in turn implies homogeneity. The collapsibility condition
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is introduced to avoid dramatic change of causal effects. When the causal risk
differences are strongly collapsible, we may obtain the CRD from some coarse
subpopulations even if CRD �= RD. More explicitly, if there is no confounding in
the subpopulation C = k, we have CRD = RDk for all k because of collapsibility.

To illustrate homogeneity and collapsibility of causal effects, consider again
Table 1.
(1) The causal risk differences are homogeneous across C since CRDk = 0.3 for

k = 1, 2 and 3, so aCRD = 0.3.
(2) The causal risk differences are collapsible over C since CRD = aCRD = 0.3.
(3) CRD = CRDω = 0.3 for all nonempty ω ⊆ {1, 2, 3}. Thus the causal risk

differences are strongly collapsible over C.
It seems that strong collapsibility is stronger than collapsibility which in turn

is stronger than homogeneity. Theorem 2 shows these conditions are equivalent
for causal risk differences.

Theorem 2. Causal risk differences are strongly collapsible over C if and only
if causal risk differences are homogeneous across C.

See the Appendix for a proof.
It is not by chance that the causal risk differences in Table 1 are both homo-

geneous and collapsible. If there is no confounding in any subpopulation, then
the homogeneity of causal risk differences becomes the homogeneity of RDk for
all k. For Table 1, we see that both RDk and CRDk are homogeneous across C

since there is no confounding in any subpopulation. Denote the common value
by aRD. The test of homogeneity of risk differences is suggested by Gart and
Nam (1990) and Lipsitz, Dear, Laird and Molenberghs (1998). In a stratified
cohort study, causal risk difference for the whole exposed population and coarse
subpopulations cannot be obtained since there is no information on the distri-
bution of C. But they can be obtained from aRD if RDs are homogeneous and
there is no confounding in any subpopulation.

Finally, we consider the causal risk ratio. The risk ratio (RR) usually used
for association in the whole exposed population is RR = P (De = 1 | E =
e)/P (Dē = 1 | E = ē). Similar to CRD, population nonconfounding occurs if
P (Dē = 1 | E = e) = P (Dē = 1 | E = ē) or, equivalently, CRR = RR. Similarly,
we define CRRk, aCRR, CRRω, RRk and aRR. While the homogeneity and
collapsibility of causal measure depends on which measure is considered, the ex-
istence of confounding does not. This can be seen from Table 1, where the CRDs
are both homogeneous and collapsible, but the CRRs are neither homogeneous
nor collapsible. The following result for the CRR can be shown in a similar way
for the CRD.
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Theorem 3. The CRRs are strongly collapsible over C if and only if the CRRs
are homogeneous across C.

From Theorem 3 we can see the equivalence of homogeneity, collapsibility
and strong collapsibility for the causal risk ratios. Also, the homogeneity of
CRRs becomes the homogeneity of the RRs, and this can be tested when there
is no confounding in any subpopulation (Gart (1985)).

There are a lot of methods for estimating a common association measure
over subpopulations defined by a covariate C. Suppose the condition of subpop-
ulation nonconfounding holds, for example, a stratified-randomized experiment,
or in a cohort study where confounding in subpopulation can be removed by
stratifying the population into subpopulations defined by a covariate C. Then
homogeneity of CRDs and CRRs is equivalent to the homogeneity of RDs and
RRs, respectively. According to Theorems 2 and 3, if CRDs (or CRRs) are ho-
mogeneous, then aCRD (or aCRR) is equal to all CRDs (or CRRs) for different
population-levels, and equal to CRD (or CRR) for the whole exposed population.
Even if there exists confounding in the whole population so that CRD �= RD (or
CRR �= RR), we still have CRD = aRD (or CRR = aRR). If aRD �= RD(or
aRR �= RR), then there must exist confounding in the whole population, and
then aRD(or aRR) can be considered as a non-confounded estimate of CRD (or
CRR).

There are two broad criteria for confounding (Greenland and Robins (1986)).
One is “comparability-based”, that is, the type of criteria at (a) and (b). The
other is “collapsibility-based”, that is, the collapsibility of association measures
over a covariate C. We are going to show the relation between the two.

Corollary 2. Assuming subpopulation nonconfounding, the collapsibility of RDs
(or RRs) is equivalent to (i) population nonconfounding and (ii) RDs (or RRs)
are homogeneous over C.

Proof. We only need to prove the result for RDs since the proof for RRs is
the same. The subpopulation nonconfounding means that CRDk = RDk for all
k. Thus the homogeneity of RDs is equivalent to the homogeneity of CRDs.
By Theorem 2 and subpopulation nonconfounding, the homogeneity of RDs is
also equivalent to the collapsibility of CRDs, which together with population
nonconfounding is equivalent to the collapsibility of RDs.

For Table 1, we have shown both population nonconfounding and the homo-
geneity of RDs, which is equivalent to RDs being collapsible over C. RRs are
not homogeneous and thus not collapsible. Corollary 2 shows the relation be-
tween collapsibility and population nonconfounding. For randomized trials, Gail,
Wieand and Piantadosi (1984) and Gail (1986) discussed consistent estimates of
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treatment effect in nonlinear models without interaction between the treatment
assignment and the covariate C. Randomization implies subpopulation noncon-
founding, and no interaction and consistency correspond to homogeneity and
collapsibility in our discussion. Thus it can be seen that, under the assump-
tion of randomization and no interaction, statistical inferences on causal risk
differences and causal risk ratios are not affected by omitting a covariate. The
following result shows the relation between the strong collapsibility and uniform
nonconfounding.

Corollary 3. Assuming subpopulation nonconfounding, the strong collapsibility
of RDs (or RRs) is equivalent to (i) uniform nonconfounding and (ii) RDs (or
RRs) are homogeneous over C.

Proof. We give the proof for RDs. Similar to the proof of Corollary 2 we obtain,
under the assumption of subpopulation nonconfounding, that the homogeneity of
RDs is equivalent to strong collapsibility of CRDs by Theorem 3, but not to the
strong collapsibility of RDs. The uniform nonconfounding means that CRDω =
RDω for all ω. Thus, under the assumption of subpopulation nonconfounding,
the homogeneity of RDs together with the uniform nonconfounding is equivalent
to the strong collapsibility of RDs.

Condition (ii) in Corollaries 2 and 3 also means that there is no effect mod-
ification. According to Corollaries 2 and 3, we should identify confounding us-
ing the collapsibility-based criteria after confirming homogeneity. For Table 1,
we have shown that RDs are collapsible, that is, RD = RDk for all k = 1,
2 and 3. According to Corollary 2, we can assess population nonconfounding
and thus CRD = RD. But RDs are not strongly collapsible over C since
RDω2 = 0.258 �= RD = 0.3. By Corollary 3, there must exist occasional noncon-
founding, and thus there is an ω such that CRDω �= RDω. In fact, even without
the collapsibility or strong collapsibility of RDs (or RRs), we still can estimate
CRD (or CRR) using estimate of aRD (or aRR). The comparability-based cri-
teria can be used to identify confounding even if measures are not homogeneous.
Under the assumption of subpopulation nonconfounding and homogeneity (i.e.,
no effect modification), comparability-based and collapsibility-based criteria are
equivalent.

Related work on collapsibility of the risk ratio and risk difference is in papers
by Wermuth (1987), Geng (1992), Guo and Geng (1995), among others. Miet-
tinen and Cook (1981) and Greenland (1996) showed by counterexample that
nonconfounding is neither necessary nor sufficient for collapsibility of odds ratios
or rate ratios. Example 3 of Miettinen and Cook (1981) can be used to illustrate
that odds ratios do not admit results analogous to Corollary 2 or 3.
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4. Examples Related to the Two Approaches to Confounding

Example 2. This example illustrates the equivalency of the two criteria, com-
parability-based and collapsibility-based, for confounding under the homogeneity
of association measures and subpopulation nonconfounding. Suppose that

P (De = 1 | E = e,C = 1) = 2/3, P (De = 1 | E = e,C = 2) = 1/3,

P (Dē = 1 | E = e,C = 1) = P (Dē = 1 | E = ē, C = 1) = 1/2,

P (Dē = 1 | E = e,C = 2) = P (Dē = 1 | E = ē, C = 2) = 1/6,

P (C = 1 | E = e) = 1/4, P (C = 1 | E = ē) = 3/4.

It can be seen that the RDs are homogeneous over C: RD1 = P (De = 1 |
E = e,C = 1) − P (Dē = 1 | E = ē, C = 1) = 1/6 = RD2. Since there is no
confounding in the subpopulations C = 1 and C = 2, we have that CRDk =
RDk = 1/6 for k = 1, 2. From homogeneity, we have CRD = CRD1 = CRD2.
So we find CRD = CRDk = RDk = 1/6 for any k. The RDs are not simply
collapsible over C since RD = 0 �= RDk = 1/6. According to the collapsibility-
based criteria, there must be confounding in the whole population since RDs are
homogeneous but not collapsible. It can also be seen by the comparability-based
criteria that there is confounding in the whole population, since CRD �= RD.
In this case, even if there is confounding in the whole population, we can still
obtain CRD from the aRD.

In this example, since RRs are not homogeneous, the collapsibility of RRs
cannot be used as a criterion for identifying population confounding. That is,
there exists effect modification for CRRs.

Example 3. This example illustrates that the comparability-based criteria can
be used to identify confounding even if RDs and RRs are non-homogeneous.
Consider the same supposition as in Example 2 except that P (Dē = 1 | E =
e,C = 1) = P (Dē = 1 | E = ē, C = 1) = 1/6. It can be seen that there is no
confounding in subpopulations. Since RD1 = 1/2, RD2 = 1/6 and RR1 = 4,
RR2 = 2, we cannot use collapsibility to identify confounding. According to
Theorem 1’, we can assess uniform nonconfounding because Dē C | E = ē.
Thus we get CRD = RD = 1/4.
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Appendix

Proof of Theorem 1. For sufficiency, we have

P (Dē =1 | E = ē, C ∈ ω)=
∑

k∈ω

P (Dē = 1 | E = ē, C =k)P (C =k | E= ē, C∈ω),

(1)
P (Dē =1 | E =e,C∈ω)=

∑

k∈ω

P (Dē =1 | E=e,C =k)P (C =k | E=e,C ∈ ω).

(2)
If condition (ii) in Theorem 1 holds, P (Dē = 1 | E = ē, C ∈ ω) =

∑
k∈ω P (Dē =

1 | E = e,C = k)P (C = k | E = e,C ∈ ω) = P (Dē = 1 | E = e,C ∈ ω).
If the condition (i) holds, from (1) we get P (Dē = 1 | E = ē, C ∈ ω) =

P (Dē = 1 | E = ē)
∑

k∈ω P (C = k | E = ē, C ∈ ω) = P (Dē = 1 | E = ē).
Similarly, from (2) we have P (Dē = 1 | E = e,C ∈ ω) = P (Dē = 1 | E = ē).

Thus P (Dē = 1 | E = ē, C ∈ ω) = P (Dē = 1 | E = e,C ∈ ω).
For necessity, we first consider the case of ω = {i, j} for any two levels i �= j.

From (1) and (2) we get 0 = P (Dē = 1 | E = ē, C ∈ ω) − P (Dē = 1 | E = e,C ∈
ω) = [P (Dē = 1 | E = ē, C = i) − P (Dē = 1 | E = ē, C = j)][P (C = i | E =
ē, C ∈ {i, j}) − P (C = i | E = e,C ∈ {i, j})]. Thus one of (3) or (4) holds where

P (Dē = 1 | E = ē, C = i) = P (Dē = 1 | E = ē, C = j), (3)

P (C = i | E = ē, C ∈ {i, j}) = P (C = i | E = e,C ∈ {i, j}). (4)

Since P (C = i | E = ē) = P (C = i | E = ē, C ∈ {i, j})P (C ∈ {i, j} | E = ē), and
P (C = j | E = ē, C ∈ {i, j}) = 1−P (C = i | E = ē, C ∈ {i, j}), (4) is equivalent
to

P (C = i | E = ē)
P (C = i | E = e)

=
P (C ∈ {i, j} | E = ē)
P (C ∈ {i, j} | E = e)

=
P (C = j | E = ē)
P (C = j | E = e)

. (5)

Now we show that (3) holds simultaneously for all pairs ω or that (5) holds
simultaneously for all pairs ω. Suppose there exists a pair {i, j} with P (Dē = 1 |
E = ē, C = i) �= P (Dē = 1 | E = ē, C = j). Then (5) must hold simultaneously
for all pairs. In fact, for any level k, either P (Dē = 1 | E = ē, C = k) �= P (Dē =
1 | E = ē, C = i) or P (Dē = 1 | E = ē, C = k) �= P (Dē = 1 | E = ē, C = j) from
the supposition. Thus from (5), for any k,

P (C = k | E = ē)
P (C = k | E = e)

=
P (C = i | E = ē)
P (C = i | E = e)

=
P (C = j | E = ē)
P (C = j | E = e)

.

So
P (C = k | E = ē)
P (C = k | E = e)

=
∑

m P (C = m | E = ē)
∑

m P (C = k | E = e)
= 1

for all k, that is (ii).
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Proof of Theorem 2. Necessity is obvious since strong collapsibility implies
homogeneity. For sufficiency, since P (De = 1 | E = e,C ∈ ω) =

∑
k∈ω P (De =

1 | E = e,C = k)P (C = k | E = e,C ∈ ω) and P (Dē = 1 | E = e,C ∈
ω) =

∑
k∈ω P (Dē = 1 | E = e,C = k)P (C = k | E = e,C ∈ ω), we obtain

P (De = 1 | E = e,C ∈ ω) − P (Dē = 1 | E = e,C ∈ ω) =
∑

k∈ω[P (De = 1 | E =
e,C = k) − P (Dē = 1 | E = e,C = k)]P (C = k | E = e,C ∈ ω).

From the homogeneity of causal effects for all subpopulations we have, for
any k, P (De = 1 | E = e,C ∈ ω) − P (Dē = 1 | E = e,C ∈ ω) = P (De = 1 | E =
e,C = k) − P (Dē = 1 | E = e,C = k).
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