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BAYESIAN ANALYSIS OF WANDERING VECTOR MODELS

FOR DISPLAYING RANKING DATA

Philip L. H. Yu and Lucia K. Y. Chan

The University of Hong Kong

Abstract: In a process of examining k objects, each judge provides a ranking of

them. The aim of this paper is to investigate a probabilistic model for ranking

data—the wandering vector model. The model represents objects by points in a

d-dimensional space, and the judges are represented by latent vectors emanating

from the origin in the same space. Each judge samples a vector from a multivariate

normal distribution; given this vector, the judge’s utility assigned to an object is

taken to be the length of the orthogonal projection of the object point onto the

judge vector, plus a normally distributed random error. The ordering of the k

utilities given by the judge determines the judge’s ranking. A Bayesian approach

and the Gibbs sampling technique are used for parameter estimation. The method

of computing the marginal likelihood proposed by Chib (1995) is used to select the

dimensionality of the model. Simulations are done to demonstrate the proposed

estimation and model selection method. We then analyze the Goldberg data, in

which 10 occupations are ranked according to the degree of social prestige.

Key words and phrases: Bayesian approach, Gibbs sampling, marginal likelihood,

ranking data, wandering vector model.

1. Introduction

Suppose a judge examines a set of k objects (such as people, products and
occupations) and ranks the objects according to a certain preference criterion.
This judge provides a ranking of k objects which is simply a permutation of the
integers 1, . . . , k. More specifically, a ranking R of k objects is defined as a vector
of ranks, (R1, . . . , Rk), where Ri denotes the rank given to object i, and larger
ranks refer to more preferred objects. We are interested in data sets composed
of the rankings of a set of judges.

In general the first step in exploring high-dimensional data is to use some pro-
jection method, such as biplots in principal component analysis (Gabriel (1971))
and multidimensional scaling (Cox and Cox (1994)). In the context of visualiz-
ing ranking data, the first projection method is the multidimensional preference
analysis (MDPREF) proposed by Carroll (1972, 1980) and Cohen and Mallows
(1980). This method assumes that each object is represented by a point in an



446 PHILIP L. H. YU AND LUCIA K. Y. CHAN

d-dimensional space and each judge is represented by a vector in the same space.
The vectors and the points are chosen so that the projections of the object points
onto any one vector indicate the ranking given by the corresponding judge, as
closely as possible. The technique of singular value decomposition is used to de-
termine the judge vectors and object points by reducing the dimensionality of the
data, while hopefully retaining as much information as possible. Recently, Alvo
and Ertas (1992) used a similar technique to display rankings obtained from sev-
eral populations. For a survey of these projection methods and other graphical
methods for ranking data, see the monograph written by Marden (1995).

A random sample of judges may exhibit different standards or perception
about the objects. This leads to a probabilistic version of the projection method
in which the judge vectors are assumed to be random. The model suggested by
this is called the wandering vector model.

This model was originally proposed by Carroll (1980), and further elaborated
upon by De Soete and Carroll (1983), to visualize paired comparison data—the
case where each judge is allowed to rank two objects each time. Applications
in De Soete and Carroll (1983) showed that the wandering vector model can
adequately represent the paired comparison data. However, the model is not
commonly used for displaying ranking data. The main reason for this is that
maximum likelihood estimation of parameters is not practically feasible. Exact
calculation of the likelihood function requires a multidimensional numerical inte-
gration and can be inaccurate when the number of objects (k) is large. One major
breakthrough in this aspect is to adopt a Bayesian approach and use the Gibbs
sampling method (see Tierney (1994), Besag, Green, Higdon and Mengersen
(1995), and the references therein). The aims of this paper are two-fold. First,
we apply these techniques to fit the wandering vector model for ranking data.
Second, we employ the method of computing the marginal likelihood proposed
by Chib (1995) to select the optimal dimensionality of the model. We see later
(Section 5) that the proposed methods are flexible and generally applicable for
displaying the ranking of any number of objects.

The organisation of this paper is as follows. Section 2 defines the wandering
vector model for ranking data. Section 3 discusses the identifiability of the model
parameters. Section 4 shows how to apply the Gibbs sampling technique to draw
a sample from the joint posterior distribution of the unknown parameters of the
model. Section 5 introduces the marginal likelihood approach of Chib (1995) to
select the dimensionality of the model. Section 6 reviews some simulation studies
to demonstrate the usefulness of the estimation technique and the performance
of the marginal likelihood method in choosing the dimensionality of the model.
The methods are applied in Section 7 to analyze the Goldberg data, in which 10
occupations are ranked according to the degree of social prestige.
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2. The Wandering Vector Model

Suppose each of n judges is asked to rank k objects. In the wandering vector
model, object i (i = 1, . . . , k) is represented by a point θi = (θi1, . . . , θid)′ in
a d-dimensional space (d < k − 1) and judge j (j = 1, . . . , n) is represented
by a vector xj emanating from the origin in the same space. Different judges
have different standards or perception about the objects and the model takes
x1, . . . ,xn as random.

In the wandering vector model, each judge independently samples a vector
xj from Nd(µ, I). Given this vector, the judge’s utility Uij assigned to object i is

Uij = θ′
ixj + εij , i = 1, . . . , k, j = 1, . . . , n. (1)

Here, the term θ′
ixj measures the length of the orthogonal projection of the object

point θi onto the judge vector xj (apart from a scale) while the εij ’s represent
errors accounting for the utility variation not explained by dimensions absent in
the model, for example the utility variation over time. It is assumed that the
εij ’s are i.i.d. N(0, σ2) and independent of the xj’s. Finally, the ordering of the
utilities {Uij , i = 1, . . . , k}, determines the jth judge’s ranking. Note that all
utilities are unobservable and what we can observe is just their ranking.

A 2-dimensional model is shown in Figure 1. In the figure, three objects are
positioned at θ1, θ2 and θ3, and judges j and � are represented by xj and x�,
independently sampled from N2(µ, I). We can see that the orthogonal projection
of θ1 onto xj is larger than that of θ2 onto xj, which in turn is larger than that
of θ3 onto xj . Therefore, it is more likely that judge j would on this particular
occasion prefer the ranking: object 1, object 2, object 3. However, judge � would
prefer object 2 to object 1 to object 3.
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Figure 1. An illustration of a 2-dimensional wandering vector model.
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As each judge independently samples a new vector x from Nd(µ, I), the
judges’ vectors wander over the mean µ, giving rise to the name chosen for the
model.

It is not necessary to generalize the covariance matrix of x to a general
positive definite matrix, Σ say, since (1) remains unchanged when θi, xj and µ

are replaced by L′θi, L−1xj and L−1µ respectively, where L is the unique lower
triangular matrix with positive diagonal elements obtained from the Cholesky
decomposition Σ = LL′ (see Schott (1997), p.138-140).

2.1. The likelihood function of the proposed model

For j = 1, . . . , n, let < i1, . . . , ik > be the ordering of the k objects cor-
responding to the ranking Rj = (R1j , . . . , Rkj). The wandering vector model
assigns the ranking Rj the probability

P (Rj) = P (Ui1j < Ui2j < · · · < Uikj), i = 1, . . . , k, j = 1, . . . , n, (2)

where the utility vector Uj = (U1j , . . . , Ukj)′ of judge j is given in (1). Let
Θ = [θ1, . . . ,θk]′. Under this model, the utility vectors Uj ’s are i.i.d. with mean
Θµ and a factor-like covariance matrix: ΘΘ′ + σ2I.

Now the likelihood function of (µ,Θ, σ2) is L(µ,Θ,σ2) =
∏n

j=1 P(Rj). Un-
less the number of objects is small, a direct maximization of the likelihood func-
tion is computationally demanding and numerically unstable because evaluation
by quadrature of a (k − 1)-dimensional integral may not be accurate. Hence,
most applications of the wandering vector model in the literature are related to
paired comparison data (see for example De Soete and Carroll (1983)).

3. Identifiability Problems for Model Parameters

The wandering vector model involves three distinct sets of parameters: the
mean judge vector µ = (µ1, . . . , µd)′; the object points θi = (θi1, . . . , θid)′,
i = 1, . . . , k; the variance parameter σ2. However, not all parameters can be
identified. More specifically, the ranking probabilities in (2) are invariant under
the following transformations.
(a) Location-shift of the object points

Adding an arbitrary d×1 constant vector c to all object points does not affect
the ranking probabilities. (If θi → θi + c for all i, all utilities for judge j are
increased by the same amount c′xj and their ranking remains unchanged.)

(b) Scale-shift of the object points
Multiplying all object points by a positive constant b does not affect the
ranking probabilities. (All Uij ’s and σ, the standard deviation of the error
term, are reduced by the same factor.)
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(c) Orthogonal rotation of the object points and judge vectors
It is easy to see that Uij = (Tθi)′(Txj) +εij = θ′

ixj +εij for any d × d
orthogonal matrix T.
The location-shift problem (a) is commonly dealt with by assuming

∑k
i=1

θi = 0 or, equivalently, setting

θ1 = −(θ2 + · · · + θk). (3)

A natural way to tackle the scale-shift problem (b) is to set σ2 = 1. The rotation
problem (c) is well known in the context of maximum likelihood factor analysis
and is usually solved by imposing the computationally convenient constraint:
Θ′Θ = D, a diagonal matrix (see Johnson and Wichern (1992, p.411)). Since
this constraint is not tractable for Bayesian calculations, we use the following
constraints:

(i) set all d(d − 1)/2 cells below the diagonal of the lower-left d × d submatrix
of Θ to zero,

θit = 0, i = k − d + 2, . . . , k, t = 1, . . . , i − (k − d + 1). (4)

(ii) restrict the mean vector µ to be positive.
The justification for choosing these constraints is given in the Appendix.

To sum up, we only need to estimate d + dk + 1 − d − d(d − 1)/2 − 1 =
d(k− (d−1)/2) unknown identified parameters : µ(> 0) and the constrained Θ.

4. Bayesian Estimation of the Wandering Vector Model

We demonstrate how to apply a Bayesian approach and the Gibbs sampling
technique to estimate the unknown parameters of the wandering vector model.

4.1. Prior distribution

We begin with a truncated normal prior for µ, i.e., µ ∼ Nd(µ0,A
−1
0 ) sub-

jecting to µ > 0. As mentioned in Section 3, some constraints on Θ are imposed
in order to fix the location and rotation, and hence the prior for Θ is nonstan-
dard. For i = k − d + 2, . . . , k, let θ(i) be a column vector containing the last
k − i + 1 cells of θi. Then, after imposing the constraints (3) and (4) on Θ, the
identified Θ consists of θ2, . . . ,θk−d+1, θ(k−d+2), . . . ,θ(k), and can be rearranged
into a (kd − d(d + 1)/2) × 1 vector λ, with

λ =




θ2
...

θk−d+1

θ(k−d+2)
...

θ(k)




. (5)
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Once λ is known, Θ is known and vice versa. We use a normal prior on λ,

λ ∼ Nkd−d(d+1)/2(λ0,P−1
0 ), (6)

and assume that µ and λ are independent.

4.2. Gibbs sampling algorithm for the wandering vector model

Let R be the collection of rankings Rj ’s. The Gibbs sampling algorithm
draws samples from the full conditional posterior distributions as follows:
(1) draw Uj from f(Uj |R,Θ,X,µ) ∝ f(Uj|R,Θ,X), for j = 1, . . . , n,
(2) draw Θ from f(Θ|R,U,X,µ) ∝ f(Θ|U,X),
(3) draw xj from f(xj|R,U,Θ,µ) ∝ f(xj|U,Θ,µ), for j = 1, . . . , n, and
(4) draw µ from f(µ|R,U,Θ,X) ∝ f(µ|X).

In step (1), it can be easily shown that, given Θ and X, the Uj ’s are independent
with Uj |Θ,X ∼ Nd(Θxj , I) for j = 1, . . . , n and

Ui1,j < Ui2,j < · · · < Uik,j, (7)

where Rir,j = r, for r = 1, . . . , k. To draw a sample from this truncated mul-
tivariate normal distribution, we can apply the acceptance-rejection technique
by drawing samples from Nd(Θxj , I) until condition (7) is satisfied. For more
efficiency, instead of drawing the whole vector Uj at one time, we successively
simulate each entry of Uj by conditioning on the other k − 1 entries. More
specifically, we replace step (1) by
(1’) draw Uij from f(Uij|U−i,j ,R,Θ,X, µ) for i = 1, . . . , k, j = 1, . . . , n,
where U−i,j is Uj with Ui,j deleted. Suppose < i1, . . . , ik > is the ordering of
objects corresponding to their ranks (R1j , . . . , Rkj). Then Rtj = r if and only if
ir = t. Now we have

Ui,j|U−i,j ,R,Θ,X,µ ∼ N(θ′
ixj , 1) (8)

subject to Uir−1,j < Ui,j < Uir+1,j whenever Rij = r, where Ui0,j = −∞ and
Uik+1,j = +∞. It is clear from (8) that this simulation method is much simpler as
only univariate draws are needed, and truncated normal samples can be obtained
by the inverse CDF method (see Devroye (1986)).

In step (2), we need to sample Θ from the fullconditional density f(Θ|U,
Θ,µ). Since Θ is in one-to-one correspondence to λ, sampling a Θ from f(Θ|U,
Θ,µ) is equivalent to drawing a λ from f(λ|U,Θ,µ) and then transforming back
to Θ using (5) and the constraints (3) and (4). Analogous to θ(i), let xj(i) be a
column vector containing the last k − i + 1 cells of xj, for i = k − d + 2, . . . , k,
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j = 1, . . . , n. The utility equation in (1) can be rewritten as

Uj =




U1j

U2j
...

Uk−d+1,j

Uk−d+2,j
...

Ukj




=




−x′
j . . . − x′

j −x′
j(k−d+2) . . . − x′

j(k)

x′
j

. . .
x′

j

0

0

x′
j(k−d+2)

. . .
x′

j(k)







θ2
...

θk−d+1

θ(k−d+2)
...

θ(k)




+ εj

=X(j)λ + εj.

Since we are conditioning on R and X, the wandering vector model is simply a
standard Bayesian linear model set-up (Box and Tiao (1973)). Therefore the full
conditional distribution of λ is

λ|R,U,X,µ ∼ Nkd−d(d+1)/2(λ1,P−1
1 ), (9)

where P1 = P0 +
∑n

j=1 X′
(j)X(j) and λ1 = P−1

1 (P0λ0 +
∑n

j=1 X′
(j)Uj). After a

λ is drawn, Θ can be determined by using (5) and the constraints (3) and (4).
Now we go to steps (3) and (4) using the samer argument. Since the xj are

i.i.d. Nd(µ, I), the full conditional distribution of xj is

xj |R,U,Θ,µ ∼ Nd(ωj ,W−1), j = 1, . . . , n, (10)

where ωj = W−1(µ + Θ′Uj) and W = Θ′Θ + I. Finally, the full conditional
distribution of µ is µ|R,U,Θ,X ∼ Nd((nI+A0)−1(µ0 +

∑n
j=1 xj), (nI+A0)−1)

subject to µ > 0. To avoid drawing from this truncated multivariate normal
distribution, we consider the special case A0 = a0I. In this case, it can be shown
that the full conditional distribution of µ is such that the µt’s are independently
distributed with

µt ∼ N(
µ0t +

∑n
j=1 xjt

n + a0
,

1
n + a0

) subject to µt > 0, t = 1, . . . , d, (11)

and can be sampled easily by using the inverse CDF method.
With a starting value for (U,Θ,X,µ), we iterate steps (1’), (2), (3) and (4)

in turn by using the full conditional distributions (8), (9), (10) and (11). Under
mild conditions, when this process is repeated many times, the draws obtained
will converge to a single draw from the joint posterior distribution of U,Θ,X
and µ (Tierney (1994)). In practice, we iterate the process M + N times. The
first M burn-in iterations are discarded. The last N iterates are taken to be an
approximate sample from the joint posterior distribution.
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It is rather simple to choose a starting value for (Θ,µ). A natural choice is
to use (0,1). It is also convenient to draw a starting value of X from Nd(1, I).
However, there is no standard rule to choose a starting value for U. Knowing
that the ranking of {U1j , . . . , Ukj} must be set to be consistent with the observed
ranking {R1j , . . . , Rkj}, a simple choice for the startingvalue of the Uij ’s is to use
Uij = Rij/

√
(k2 − 1)/12, a type of standardized rank score.

5. Choice of Dimensionality of the Model

Before fitting the wandering vector model, the dimensionality d of the model
must be pre-specified. Obviously, different choices of dimensionality may lead
to different models. In the Bayesian literature, the problem of model selection
has proved extremely challenging and has received a lot of attention recently.
For a review of this topic, see Kass and Raftery (1995), Raftery (1995) and the
references therein.

In this paper, we perform the dimensionality selection by computing the
marginal likelihoods of models with different dimensionalities and then choosing
the largest one. Note that the marginal likelihood of a model is obtained by
integrating the likelihood function with respect to the prior density. However, as
mentioned in Section 1, the likelihood function for the wandering vector model is
so complicated that marginal likelihood cannot easily be determined. Recently,
Chib (1995) proposed a method of computing marginal likelihood by using Gibbs
output. We discuss how to apply the Chib’s method to select the dimensionality
of the wandering vector model.

5.1. The marginal likelihood of the wandering vector model

Let Md denote a d-dimensional wandering vector model. Also let f(R|Md,Θ,
µ) be the likelihood function of the ranking data R under model Md given
the model-specific parameter vectors Θ and µ, π(Θ,µ|Md) the prior density.
Then the marginal likelihood under model Md is m(R|Md) =

∫
f(R|Θ,µ,Md)

π(Θ,µ|Md) d(Θ, µ). The basic idea of Chib’s method is, in our case, to consider
the so-called the basic marginal likelihood identity form of the marginal likelihood:

m(R|Md) =
f(R|Θ∗,µ∗,U∗,Md)π(Θ∗,µ∗,U∗|Md)

π(Θ∗,µ∗,U∗|R,Md)
, (12)

where the numerator is a product of the augmented likelihood function and the
prior density, and the denominator is the posterior density of (Θ,µ,U), with
all evaluated at the posterior mean (Θ∗,µ∗,U∗). The advantage of using Chib’s
marginal likelihood estimation method is that it requires no new inputs except
some additional Gibbs iterations.
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First of all, it can be seen from (12) that the augmented likelihood is always
1 because the ranking R is completely known when U∗ is given. In addition,
since the priors of µ and Θ are independent, the prior density can be written as

π(Θ∗,µ∗,U∗) = π(U∗|Θ∗,µ∗)π(Θ∗)π(µ∗). (13)

Since all three terms in (13) have a closed form, the computation of the prior
density is not difficult (see Section 5.2). It remains to compute the posterior
density π(Θ∗,µ∗,U∗|R,Md). It will be seen in Section 5.3 that this can be
estimated by using the output of the Gibbs sampling and some further Gibbs
iterations. As a result, the estimate of (12) can be simplified and expressed in a
convenient logarithm-scale (with the model label Md suppressed):

ln m̂(R) = ln π(Θ∗,µ∗,U∗) − ln π̂(Θ∗,µ∗,U∗|R)

= ln π(U∗|Θ∗,µ∗) + ln π(Θ∗) + lnπ(µ∗) − ln π̂(Θ∗,µ∗,U∗|R). (14)

5.2. Computation of the prior density

To calculate the prior density π(Θ∗,µ∗,U∗), we want to know the exact
distribution of (U∗|Θ∗,µ∗), and the prior densities of Θ∗ and µ∗. First of all,
using (6) and (11), π(Θ∗) and π(µ∗) can be easily determined. Also, it is not
difficult to see that

Uj |Θ∗,µ∗∼Nk







µ∗′θ∗
1

µ∗′θ∗
2

...
µ∗′θ∗

k


 ,




θ∗′
1 θ∗

1 + 1 θ∗′
1 θ∗

2 · · · θ∗′
1 θ∗

k

θ∗′
2 θ∗

1 θ∗′
2 θ∗

2 + 1 · · · θ∗′
2 θ∗

k
...

...
. . .

...
θ∗′

k θ∗
1 θ∗′

k θ∗
2 · · · θ∗′

k θ∗
k + 1





 j =1, . . . , n.

Using (13), the prior density π(Θ∗,µ∗,U∗) can be computed. We now move on
to compute the posterior density.

5.3. Computation of the posterior density

The computation of the posterior density π(Θ∗,µ∗,U∗|R) involves the calcu-
lation of the conditional densities (a) π(µ∗|R), (b) π(Θ∗|R,µ∗), and (c) π(U∗|R,
Θ∗,µ∗). To estimate these three densities, sampling additional draws from all
or some steps of the Gibbs sampling algorithm is required.
(a) Estimation of π(µ∗|R)

Notice that π(µ∗|R) can be expressed as

π(µ∗|R) =
∫

π(µ∗|R,Θ,U,X)f(Θ,U,X|R) d(Θ,U,X), (15)
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where π(µ∗|R,Θ,U,X) is the full conditional density (11) specified in the
Gibbs sampling algorithm, and f(Θ,U,X|R) is the posterior density of
(Θ,U,X). If we sample G additional draws, {Θ(g),U(g),X(g), µ(g)}G

g=1,
and run (1)-(4), the draws {Θ(g),U(g),X(g)}G

g=1, can be viewed as an inde-
pendent sample from f(Θ,U,X|R). Hence, π(µ∗|R) can be estimated as
π̂(µ∗|R) = G−1∑G

g=1 π(µ∗|R, Θ(g),U(g),X(g)).

(b) Estimation of π(Θ∗|R,µ∗)
As in (15), since π(Θ∗|R,µ∗) =

∫
π(Θ∗|R,U,X,µ∗)f(U,X|R,µ∗)d(U,X),

π(Θ∗|R,µ∗) can be estimated by first sampling G additional draws, (Θ(g),
U(g), X(g))Gg=1, from f(Θ,U,X|R,µ∗) and then taking the sample average
of the G densities π(Θ∗|R, U(g),X(g),µ∗), g = 1, . . . , G, where π(Θ∗|R,
U(g), X(g), µ∗) is governed by (9). At the first glance, it seems that it is
difficult to sample from f(Θ,U,X|R,µ∗). However, this can be easily done
by slightly modifying the Gibbs sampling algorithm stated in Section 4.2.
The trick is to iterate steps (1’), (2) and (3) without passing through step
(4) to generate µ in the Gibbs iterations while fixing µ at µ∗.

(c) Estimation of π(U∗|R,Θ∗,µ∗)
As in cases (a) and (b), π(U∗|R,Θ∗,µ∗) is estimated by π̂(U∗|R,Θ∗,µ∗)) =∏n

j=1

∏k
i=1 π̂(U∗

i,j |R, U∗
1,j , . . ., U∗

i−1,j ,Θ
∗,µ∗), where π̂ (U∗

i,j |R, U∗
1,j, . . .,

U∗
i−1,j, Θ∗, µ∗) = G−1∑G

g=1 π(U∗
i,j |R, U∗

1,j , . . . , U
∗
i−1,j , U

(g)
i+1,j, . . . , U

(g)
k,j ,Θ∗,

X(g), µ∗), with the U
(g)
i+1,j , . . . , U

(g)
k,j ,X(g) drawn from a modified Gibbs

sampling from the densities π(Ui,j |R, U∗
1,j, . . ., U∗

i−1,j, Ui+1,j , . . ., Uk,j, Θ∗,
X, µ∗), π(Ui+1,j |R, U∗

1,j , . . . , U∗
i−1,j, Ui,j , Ui+2,j , . . ., Uk,j,Θ∗,X,µ∗), . . .,

π(Uk,j|R, U∗
1,j , . . . , U∗

i−1,j , Ui,j , . . ., Uk−1,j, Θ∗, X, µ∗), and π(X|R, U∗
1,j,

. . ., U∗
i−1,j , Ui,j , . . ., Uk,j, Θ∗, µ∗).

Finally, the estimated posterior density π̂(Θ∗,µ∗,U∗|R) can be computed
from as π̂(U∗|R,Θ∗,µ∗)π̂(Θ∗|R,µ∗)π̂(µ∗|R).

6. Simulation Studies

We generate n = 1000 rankings of k = 5 objects from the following model:
for j = 1, . . . , 1000, the jth ranking is the ranking of {U1j , . . . , U5j} with Uj =
Θxj +εj , where xj and εj are simulated from N2(µ, I) and N5(0, I) respectively,
and

µ =

(
1.5
0.8

)
, Θ =




−2.0 0.5
1.0 −1.0
0.5 1.0
0.5 −2.5
0.0 2.0


 .
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A 2-dimensional wandering vector model, M2, is fitted to this simulated data set.
Using a rather diffuse but proper prior: λ ∼ Nkd−d(d+1)/2(λ0 = 0,P−1 = 1000I),
and µ ∼ Nd(µ0 = 0,A−1

0 = 1000I)I(µ > 0), we iterated steps (1’) to (4)
30,000 times. The first 20,000 burn-in iterations were discarded. The remaining
10,000 iterations were taken to be a sample from the joint posterior distribution
of the unknown parameters, the latent variables Uij ’s, and the xj’s. Note that
if the standard error of the posterior moment estimates are required, one may
use the robust variance estimation method suggested by Andrews (1991). Table
1 shows the posterior means, standard deviations and 90% posterior interval of
the parameters of M2 based on the reduced sample. The posterior intervals are
constructed from the 0.05 and 0.95 percentiles of the Gibbs samples.

We can see from Table 1 that all posterior means are fairly close to their
true values and all posterior 90% intervals cover the true values. This indicates
that the posterior means are good estimators for the parameters in the wandering
vector model. Figure 2 shows the traces of the Gibbs sequences and the Gaussian
kernel density estimates of the posterior densities for µ1, µ2, θ21, θ31, θ42, and θ52.
The traces of the Gibbs sequences do not show any special pattern, implying that
the Gibbs iteration converged. Furthermore, all posterior densities are roughly
symmetric.

Table 1. Results of fitting M2 to the simulated data set.

posterior moments
parameter true value mean std. dev. 90% interval

µ1 1.5 1.432 0.079 ( 1.309, 1.567)
µ2 0.8 0.764 0.045 ( 0.691, 0.839)
θ11 −2.0 −2.005 0.136 (−2.231,−1.768)
θ12 0.5 0.398 0.102 ( 0.229, 0.564)
θ21 1.0 1.027 0.070 ( 0.907, 1.145)
θ22 −1.0 −0.940 0.081 (−1.076,−0.808)
θ31 0.5 0.484 0.045 ( 0.410, 0.560)
θ32 1.0 1.058 0.086 ( 0.920, 1.204)
θ41 0.5 0.494 0.066 ( 0.387, 0.603)
θ42 −2.5 −2.527 0.126 (−2.741,−2.324)
θ52 2.0 2.010 0.097 ( 1.851, 2.175)

Consider fitting a 2-dimensional (M2) and a 3-dimensional (M3) wandering
vector models to the simulated data set. Applying Chib’s method with G = 5000,
the logarithm of marginal likelihoods of models M2 and M3 are found to be
−6513.7 and −6578.5 respectively. The 2-dimensional wandering vector model
gives the larger estimate of marginal likelihood.
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Figure 2. (a) Traces of the Gibbs sequences and (b) Posterior densities for
µ1, µ2, θ21, θ31, θ42, and θ52 for the simulated data set. The dotted line indi-
cates the position of the true value.
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7. Application to the Goldberg Data

Consider the Goldberg (1976) data in which n = 143 graduates were asked
to rank k = 10 occupations according to the degree of social prestige. These 10
occupations are: (i) Faculty member in an academic institution (Fac), (ii) Me-
chanical engineer (ME), (iii) Operation researcher (OR), (iv) Technician (Tech), (v)
Section supervisor in a factory (Sup), (vi) Owner of a company employing more
than 100 workers (Own), (vii) Factory foreman (For), (viii) Industrial engineer
(IE), (ix) Manager of a production department employing more than 100 workers
(Mgr) and (x) Applied scientist (Sci). The data are given in Cohen and Mallows
(1980) and have been analyzed by many researchers. Fligner and Verducci (1988)
and Marden (1992) summarized the findings of these analyses.

Feigin and Cohen (1978) analyzed the Goldberg data and found three outliers
due to the fact that the corresponding graduates wrongly presented rankings in
reverse order. After reversing these 3 rankings, the average ranks received by
the 10 occupations are 8.57, 4.90, 6.29, 1.90, 4.34, 8.13, 1.47, 6.27, 5.29, 7.85,
with the convention that higher rank means more prestige. Then the preference
of graduates is in the order: Fac > Own > Sci > OR > IE > Mgr > ME > Sup >

Tech > For.
We consider a graphical method of displaying ranking data by fitting the

wandering vector models with dimensions d = 2, 3 and 4. Using the same prior
specified in the simulation studies, and the last 10,000 of 40,000 Gibbs iterations,
we obtain three sets of Gibbs samples from which the marginal likelihoods of the
three fitted models are estimated in a logarithm scale, as shown in Table 2. It
can be seen that the 3-dimensional model gives the largest marginal likelihood.

Table 2. The logarithm of marginal likelihoods for the Goldberg data.

model fitted log(marginal)

M2 −1945.88

M3 −1791.43

M4 −1904.48

Based on the Gibbs samples generated from the fitted 3-dimensional model,
posterior means are used as estimators for the model parameters. Figure 3 dis-
plays the 3-dimensional solution for the Goldberg data after a varimax rotation.
The interpretation is as follows.
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Figure 3. (a) Plot of the first and second dimensions of the fitted 3-dimensional model.
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(b) Plot of the second and third dimensions of the fitted 3-dimensional model.

1. The first dimension represents an overall prestige and indicates the mean
direction of the judges’ preference. The larger the value in this direction,
the more prestigious the occupation. Not surprisingly, when the occupation
points are projected onto this dimension, the ordering of the lengths of the
projections are the same as that of the average ranks.

2. The second dimension can be regarded as the Technical/Managerial di-
chotomy. It separates the occupations into two groups: Technical group {Fac,
Sci, OR, IE, ME, Tech} and Managerial group {Own, Mgr, Sup, For}.

3. The third dimension represents a measure of social skill required for an occu-
pation. Clearly, people working in the group {Mgr, Sup} require more social
skill than those working as Sci.
Apart from the posterior means, the expected utilities µ′θi can also provide
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useful information. If µ′θi is larger than µ′θj, it is more likely that occupation i

is preferred to occupation j. According to the boxplots of the expected utilities
of the occupations shown in Figure 4, the occupations can be roughly divided
into three groups: high prestige group {Fac, Own, Sci}, middle prestige group
{OR, IE, Mgr, ME, Sup}, and low prestige group {Tech, For}. When we focus
on the posterior means of the expected utilities of the occupations, it is not hard
to see that the ordering of these posterior means also agrees with that of the
average ranks.

Finally, it should be noted that most of the above findings are similar to
those found in the literature except in the optimal number of dimensions for
displaying Goldberg data. Only two-dimensional graphical displays have been
reported (see for example, Cohen and Mallows (1980)). We have suggested a
new dimension—social skill.

0
2

Tech ForME Sup IE SciFac MgrOwnOR

-2
-4

-6

Figure 4. Boxplots of the expected utilities for the fitted 3-dimensional wan-
dering vector model.

8. Comments

As commented by a referee, since only the partial information (i.e., ranks) is
used, this method provides a good example of what Doksum and Lo (1986) have
termed Bayesian robustness.

In our simulation studies and the application presented in Sections 6 and 7,
the CPU times run on an IBM 9076 SP2 machine were all less than one hour.
One way to shorten the running time is to develop some block Gibbs samplings
instead of separate Gibbs samplings. Further research in this aspect is needed.

Appendix. Justification for using the constraints on Θ and µ for fixing
the rotation problem

Following Section 3.1 of Thisted (1988), we first construct a d×d orthogonal
matrix Q as a product of Householder matrices Hd . . .H1 such that
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QΘ′ =




θ̃11 · · · θ̃k−d+1,1 0 · · · 0

θ̃12 · · · θ̃k−d+1,2 θ̃k−d+2,2
. . .

...
...

...
...

. . . 0
θ̃1,d · · · θ̃k−d+1,d θ̃k−d+2,d · · · θ̃k,d


 ≡ Θ̃′, (A.1)

where each Hi aims to zero the first d − i positions of θk−i+1, the (k − i +
1)th column of Θ′. As mentioned in Thisted (1988), a special property of the
Householder matrices is that each Hi does not change any of the last i−1 columns
to which it is applied.

Now, we need to show that if we set the constrained Θ to the matrix Θ̃ in
(A.1) and assume µ1, . . . , µd > 0, the rotation problem is fixed. Mathematically,
it is equivalent to show that if there exist an orthogonal matrix T and a vector
µ̂ > 0 such that (i) Θ̂′ ≡ TΘ̃′ has the same form of Θ̃′ and (ii) Θ̂µ̂ = Θ̃µ,
where µ > 0, then T = I.

Here is a proof. By comparing each entry of both sides of Θ̂′ ≡ TΘ̃′, it
can be shown that T is a diagonal matrix. Since T is orthogonal, tii = ±1 for
i = 1, . . . , d. Using (ii), we have (θ̂1i, . . . , θ̂ki) = tii(θ̃1i, . . . , θ̃ki) for all i, and
µ̂i = µi > 0 if tii = 1 or µ̂i = −µi < 0 if tii = −1. Since µ̂ > 0, tii = 1 for all i.
In other words, T = I. This completes the proof.

Acknowledgements

The authors would like to thank the referees for their helpful comments
and suggestions, and Douglas E. Critchlow for providing the Goldberg data.
Philip L. H. Yu’s research was substantially supported by a block grant from
The University of Hong Kong and a grant from the Research Grants Council
of the Hong Kong Special Administrative Region, China (Project No. HKU
7169/98H).

References

Alvo, M. and Ertas, K. (1992). Graphical methods for ranking data. Canad. J. Statist. 20,

469-482.

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix

estimation. Econometrica 59, 817-858.

Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. John Wiley,

New York.

Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochas-

tic systems. Statist. Sci. 10, 1-19.

Carroll, J. D. (1972). Individual differences and multidimensional scaling. In Multidimensional

Scaling: Theory and Applications in the Behavioral Sciences, Vol. 1 (Edited by R. N.

Shepard, A. K. Romney and S. B. Nerlove), 105-155. Seminar Press, New York.



BAYESIAN ANALYSIS OF RANKING DATA 461

Carroll, J. D. (1980). Models and methods for multidimensional analysis of preferential choice

or other dominance data. In Similarity and Choice (Edited by E. D. Lantermann and H.

Feger). Huber, Bern, Switzerland.

Chib, S. (1995). Marginal likelihood from the Gibbs output. J. Amer. Statist. Assoc. 90,

1313-1321.

Cohen, A. and Mallows, C. L. (1980). Analysis of Ranking Data. Bell Laboratories Technical

Memorandum.

Cox, T. F. and Cox, M. A. A. (1994). Multidimensional Scaling. Chapman and Hall, London.

De Soete, G. and Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering

vector model. Psychometrika 48, 553-566.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York.

Doksum, K. A. and Lo, A. Y. (1986). Comments on ’On the consistency of Bayes estimates’ by

Diaconis and Freedman. Ann. Statist. 14, 42-45.

Feigin, P. and Cohen, A. (1978). On a model of concordance between judges. J. Roy. Statist.

Soc. Ser. B 40, 203-213.

Fligner, M. A. and Verducci, J. S. (1988). Multistage ranking models. J. Amer. Statist. Assoc.

83, 892-901.

Gabriel, K. R. (1971). The biplot graphic display of matrices with applications to principal

component analysis. Biometrika 58, 453-468.

Goldberg, A. I. (1976). The relevance of cosmopolitan/local orientations to professional values

and behavior. Sociology of Work and Occupation 3, 331-356.

Johnson, R. A. and Wichern, D. W. (1992). Applied Multivariate Statistical Analysis. 3rd

edition. Prentice Hall, Upper Saddle River, New Jersey.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90, 773-795.

Marden, J. I. (1992). Use of nested orthogonal contrasts in analyzing rank data. J. Amer.

Statist. Assoc. 87, 307-318.

Marden, J. I. (1995). Analyzing and Modeling Rank Data. Chapman and Hall, London.

Raftery, A. E. (1995). Hypothesis testing and model selection with posterior simulation. In

Practical Markov Chain Monte Carlo (Edited by W. R. Gilks, D. J. Spiegelhalter and S.

Richardson). Chapman and Hall, London.

Schott, J. R. (1997). Matrix Analysis for Statistics. John Wiley, New York.

Thisted, R. A. (1988). Elements of Statistical Computing. Chapman and Hall, London.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion and

rejoinder). Ann. Statist. 22, 1701-1762.

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,

Hong Kong.

E-mail: plhyu@hku.hk

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,

Hong Kong.

E-mail: luciac@hongkong.com

(Received March 1998; accepted September 2000)


