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TESTING FOR DOUBLE THRESHOLD AUTOREGRESSIVE

CONDITIONAL HETEROSCEDASTIC MODEL

C. S. Wong and W. K. Li

The University of Hong Kong

Abstract: The testing problem for the hypothesis of linearity against the double

threshold autoregressive conditional heteroscedastic model is addressed. The prob-

lem is nonstandard as the threshold parameter is a nuisance parameter which is

absent under the null hypothesis. We will show that the asymptotic null distribu-

tion of the Lagrange-multiplier test statistic is a functional of a zero-mean Gaussian

process. In some cases, we give the upper percentage points of the test statistic.

The performance of the test statistic is illustrated by extensive simulation experi-

ments and an example.

Key words and phrases: Conditional heteroscedasticity, Gaussian process, Lag-

range-multiplier test, threshold time series model.

1. Introduction

The threshold principle was first introduced by Tong (1978) to generalize the
linear autoregressions (AR models) to the self-exciting threshold autoregressive
(SETAR) models. Tong and Lim (1980) show that these models are capable of
capturing various nonlinear phenomena, such as asymmetric cycles, jump reso-
nance and amplitude-frequency dependence. Tong (1990) gave a comprehensive
review of these models. One of the most popular models for time series with
changing conditional variance is Engle’s (1982) autoregressive conditional het-
eroscedastic (ARCH) model. Ignoring the ARCH effect in time series can lead to
inefficient estimates and suboptimal statistical inferences, see Bollerslev, Chou
and Kroner (1992).

Recently, the two ideas have been used in combination to form new classes of
nonlinear time series models. Li and Lam (1995) and Wong and Li (1997) consid-
ered the threshold ARCH (SETAR-ARCH) models consisting of a piecewise con-
ditional mean and an ARCH type conditional variance. Li and Li (1996) and Liu,
Li and Li (1997) considered the double threshold autoregressive heteroscedastic
(DTARCH) time series models consisting of a piecewise conditional mean as well
as a piecewise ARCH description of the changing conditional variance. Rabem-
ananjara and Zakoian (1993) consider a piecewise changing conditional standard
deviation model but their specification is different from those considered by other
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researchers. Despite the difference in the specifications, these models have been
shown to be useful in the modelling of financial time series.

It can be expected that the model identification, estimation, diagnostics
checking and testing are much more complicated for these classes of nonlinear
time series models. Li and Lam (1995), Li and Li (1996) and Liu, Li and Li (1997)
tried to test the hypothesis of linearity. In these papers, model specification test-
ing was performed as if the threshold parameter was a known constant. Clearly,
this may not be a realistic assumption. However the nonlinearity test without
assuming known threshold parameter is a nonstandard one, as the threshold pa-
rameter is a nuisance parameter which is absent under the null hypothesis of
linearity (Davis (1977, 1987)).

Testing a SETAR-ARCH model against the null of an AR-ARCH model,
without assuming known threshold parameter, was considered by Wong and Li
(1997). They used a Lagrange-multiplier test approach to solve the problem.
In this paper, we will extend the Lagrange-multiplier approach to the testing
of linearity for the DTARCH models. We will show that the asymptotic null
distribution of the Lagrange-multiplier test statistic is a functional of a Gaussian
process. The main advantage of the Lagrange-multiplier statistic is that only the
AR-ARCH model, which is the model under the null hypothesis of linearity, has
to be estimated. Hence this approach greatly reduces the computation burden
as compared to the likelihood ratio test approach, which requires the estimation
of the full models with each possible value of the threshold parameter.

The organization of this paper is as follows. Section 2 introduces the set-up
of the test, states the main result, and discusses the method used to tabulate the
asymptotic null distribution. Section 3 gives the approximate upper percentage
points of the test statistic under two different cases. Section 4 reports the results
of some extensive simulation studies and an example of applying the Lagrange-
multiplier test. The outline of a proof of the main result is given in Section 5. For
the complete proof, see Wong (1998). Section 6 gives the proofs and justifications
of the propositions in Section 4.

2. Lagrange-Multiplier Test

Denote the indicator function by I(·) and I(Xt ≤ r) by Ir(Xt). Let Ft be
the information set up to time t. The double-threshold autoregressive conditional
heteroscedastic model under consideration may be defined by

Xt−θ0−θ1Xt−1−· · ·−θp1Xt−p1−I(Xt−d≤r)(φ0+φ1Xt−1+· · ·+φp2Xt−p2)=εt,
(2.1)

εt ∼ N(0, ht), (2.2)

ht = E(ε2t |Ft−1) = α0 +
q1∑

i=1

αiε
2
t−i + I(Xt−d ≤ r)


β0 +

q2∑
j=1

βjε
2
t−j


 , (2.3)
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where r is the threshold parameter and d is the delay parameter. The non-
negative integers p1, p2, q1, q2 and d are assumed known, and such that 0 ≤ p2 ≤
p1, 0 ≤ q2 ≤ q1 and 1 ≤ d. It is also assumed that the threshold parameter r
belongs to a known bounded subset R̃ of R. In general, R̃ is a finite interval.
The roots of the characteristic equation xp1 −θ1xp1−1−· · ·−θp1 = 0 are assumed
to lie inside the unit circle. Also, we have ∞ > α0 > 0; ∞ > α0 +β0 > 0; αi ≥ 0,
i = 1, . . . , q1; αi+βi ≥ 0, i = 1, . . . , q2; α1+· · ·+αq1+β1+· · ·+βq2 < 1. We further
assume that E(ε2t ) < ∞ and E(ε4t ) < ∞. The process {Xt} is assumed to be
α-mixing with exponentially decreasing rate, i.e., there is a sequence of positive
numbers {a(m)}, convergent to zero, such that, for any two bounded mappings
A : Rk+1 → R and M : Rl+1 → R, |E{A(Xt, . . . ,Xt−k)M(Xt+m, . . . ,Xt+m+l)}−
E{A(·)}E{M(·)}| ≤ a(m), see Davidson and MacKinnon (1993).

Given observations X1, . . . ,XN , consider testing the null hypothesis H0 :
φ0 = φ1 = · · · = φp2 = 0 and β0 = β1 = · · · = βq2 = 0. Under H0, the nuisance
parameter r is absent. The conditional log likelihood is

l =
∑

t

lt =
∑

t

(
−1

2
log ht − 1

2
ε2t
ht

)

where the summation is from n0 = max{p1, q1, d}+ 1 to N . Let n = N −n0 + 1,
θ = (θ0, . . . , θp1)

′, φ = (φ0, . . . , φp2)
′, α = (α0, . . . , αq1)

′ and β = (β0, . . . , βq2)
′,

where ′ denotes the transpose of a vector or matrix. It is easy to obtain the score
functions and the expectation of the second derivatives of l with respect to θ, φ,
α and β, and hence they are omitted. By Theorem 4 of Engle (1982), we have
E{∂2l/(∂θ ∂α′)} = E{∂2l/(∂θ ∂β′)} = E{∂2l/(∂φ∂α′)} = E{∂2l/(∂φ∂β′)} = 0.
This means that the information matrix of the score function is block diagonal.
Hence following Davies (1977, 1987), the Lagrange-Multiplier test statistic under
consideration is

S = sup
r∈R̃

{
T ′

1r(C1r − L′
1rC

−1
1 L1r)−1T1r + T ′

2r(C2r − L′
2rC

−1
2 L2r)−1T2r

}
, (2.4)

where

T1r = n−1/2 ∂l

∂φ

∣∣∣∣
θ̂,α̂,φ=0,β=0

, C1 = − 1
n
E

{
∂2l

∂θ ∂θ′

}
θ̂,α̂,φ=0,β=0

,

C1r = − 1
n
E

{
∂2l

∂φ ∂φ′

}
θ̂,α̂,φ=0,β=0

, L1r = − 1
n
E

{
∂2l

∂θ ∂φ′

}
θ̂,α̂,φ=0,β=0

,

T2r = n−1/2 ∂l

∂β

∣∣∣∣
θ̂,α̂,φ=0,β=0

, C2 = − 1
n
E

{
∂2l

∂α ∂α′

}
θ̂,α̂,φ=0,β=0

,

C2r = − 1
n
E

{
∂2l

∂β ∂β′

}
θ̂,α̂,φ=0,β=0

, L2r = − 1
n
E

{
∂2l

∂α ∂β′

}
θ̂,α̂,φ=0,β=0

.
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Here θ̂ and α̂ are the maximum likelihood estimates under the null hypothesis,
obtained for example, by the Newton-Raphson method. In practice, C1, C1r,
L1r, C2, C2r and L2r have to be estimated by their sample counterparts, i.e.,
replacing the expectations by sample averages.

Remark 2.1. If we just consider the SETAR-ARCH model given by (2.1), (2.2)
and ht = E(ε2t |Ft−1) = α0 +

∑q1
i=1 αiε

2
t−i, the test statistic (2.4) reduces to that

considered by Wong and Li (1997).

Remark 2.2. It is also possible to test the AR-TARCH model given by (2.2),
(2.3) and Xt − θ0 − θ1Xt−1 − · · · − θp1Xt−p1 = εt. The test statistic S in (2.4)
reduces to supr∈R̃ T

′
2r(C2r − L′

2rC
−1
2 L2r)−1T2r.

Theorem 2.1. The limiting distributions of {T1r} and {T2r} are, respectively,
that of a (p2 +1)-dimensional Gaussian process {ξ1r} and a (q2 +1)-dimensional
Gaussian process {ξ2r}, where {ξir}, i = 1, 2, are indexed by the threshold pa-
rameter r ∈ R, and {ξ1r}, {ξ2r} are independent processes. For each r ∈ R,
ξ1r ∼ Np2+1(0, C1r − L′

1rC
−1
1 L1r), ξ2r ∼ Nq2+1(0, C2r − L′

2rC
−1
2 L2r) and, for

r �= s, cov (ξir, ξis) = Ci,min(r,s) − L′
irC

−1
i Lis, i = 1, 2. The asymptotic null

distribution of the Lagrange-Multiplier test statistic S in (2.4) is the same as the
distribution of

sup
r∈R̃

{
ξ′1r(C1r − L′

1rC
−1
1 L1r)−1ξ1r + ξ′2r(C2r − L′

2rC
−1
2 L2r)−1ξ2r

}
.

Corollary. By Theorem 2.1 for each fixed r, ξ′1r(C1r − L′
1rC

−1
1 L1r)−1ξ1r +

ξ′2r(C2r − L′
2rC

−1
2 L2r)−1ξ2r is asymptotically distributed as χ2

p2+q2+2.

Lemma 2.1. If p1 = p2 = p in (2.1) and q1 = q2 = q in (2.3),

sup
r∈R̃

2∑
i=1

ξ′ir(Cir−L′
irC

−1
i Lir)−1ξir =sup

r∈R̃




p+1∑
j=1

B2
1j(r)

λ1j(r)−λ2
1j(r)

+
q+1∑
j=1

B2
2j(r)

λ2j(r)−λ2
2j(r)


 ,

where Bij(r)’s are independent Gaussian processes with mean zero and
cov {Bij(r), Bij(s)} = λij{min(r, s)} − λij(r)λij(s).

Proof. We have C1r = L1r and C2r = L2r. Since for i = 1, 2, Cir and Ci − Cir

are positive definite, there exist invertible matrices Qi and diagonal matrices
Di such that QiCiQ

′
i are identity matrices and QiCirQ

′
i = Di with all diagonal

entries of Di being strictly between 1 and 0. Let the diagonal elements of D1

be λ11(r), . . . , λ1,p+1(r) and the diagonal elements of D2 be λ21(r), . . . , λ2,q+1(r);
Q1ξ1r = {B11(r), . . . , B1,p+1(r)}′ and Q2ξ2r = {B21(r), . . . , B2,q+1(r)}′. The
result follows from similar arguments to those found in Wong and Li (1997).

Note that we can choose the λij(r)’s to be continuous functions of r. It
remains to find the matrices Qi’s or the λij(r)’s, but we defer this discussion
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to the next section. We can make use of the following lemma to tabulate the
asymptotic null distribution of S.

Lemma 2.2. If the conditions in Lemma 2.1 hold, then for large y,

pr

{
sup
r∈R̃

2∑
i=1

ξ′ir(Cir − L′
irC

−1
i Lir)−1ξir ≤ y

}

∼ exp


−2χ2

p+q+2

(
y

p+ q + 2
− 1

)p+1∑
j=1

∫
R̃

d t1j

d r
d r +

q+1∑
j=1

∫
R̃

d t2j

d r
d r




 ,

(2.5)
where χ2

h(·) denotes the probability density function of the Chi-square distribution
with h degrees of freedom and tij = 1

2 log [λij(r)/ {1 − λij(r)}].
Proof. We use the Poisson clumping heuristic developed by Aldous (1989). The
proof is a modified version of the proof of Theorem 1 in Chan (1991) and hence
is omitted.

Remark 2.3. For some special cases where there is only one independent Gaus-
sian process, i.e., only one Bij(r), a better approximation of the tail probability
is given by (2.5) in Wong and Li (1997). The testing of SETAR-ARCH model
with p = 0 and the testing of AR-TARCH model with q = 0 are two of these
special cases.

3. Tabulation of the Asymptotic Null Distribution of S

In this section, we discuss the tabulation of the asymptotic null distribution
of S. We separate the tabulation into two cases: the model with intercept term in
the conditional mean, and the model without the intercept term in the conditional
mean. Note that both cases are important in applications.

So far, we have not discussed the choice of R̃. In this paper, we choose the
interval between the 10th and 90th percentiles of Xt as R̃. Practically, we use
the empirical percentiles. Other choices of R̃ are possible, such as those used in
Chan and Tong (1990).

To make use of formula (2.5), we must first determine the λij(r)’s. To do
this we make use of some propositions from Wong and Li (1997). In Section 6,
we give some proofs and justifications of the propositions.

We assume the white noise model Xt = εt, εt ∼ N(0, σ2), in the tabula-
tion of the asymptotic null distribution after obtaining the λij(r)’s, since some
expectations are very difficult to evaluate under the general case. In general,
the asymptotic null distribution depends on p, q and the values of parameters
through the λij(r)’s. However, some extensive simulation experiments demon-
strate that the dependence of the asymptotic null distribution on the parameters
is very weak. We will present one such simulation result in this paper.
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Table 1. Upper 10% points for the asymptotic null distribution of S for Case A.

q

– 0 1 2 3 4 5 6
– 7.75 9.76 12.34 14.57 16.60 18.52 20.34
0 7.75 10.31 12.34 14.57 16.60 18.52 20.34 22.11
1 11.05 13.26 15.04 17.00 18.86 20.65 22.38 24.06

p 2 13.26 15.30 17.00 18.86 20.65 22.38 24.06 25.71
3 15.30 17.22 18.86 20.65 22.38 24.06 25.71 27.32
4 17.22 19.05 20.65 22.38 24.06 25.71 27.32 28.91
5 19.05 20.82 22.38 24.06 25.71 27.32 28.91 30.47
6 20.82 22.53 24.06 25.71 27.32 28.91 30.47 32.01

Table 2. Upper 5% points for the asymptotic null distribution of S for Case A.

q

– 0 1 2 3 4 5 6
– 9.33 11.63 14.31 16.63 18.75 20.74 22.63
0 9.21 12.15 14.31 16.63 18.75 20.74 22.63 24.46
1 12.85 15.18 17.07 19.11 21.06 22.91 24.72 26.47

p 2 15.18 17.31 19.11 21.06 22.91 24.72 26.47 28.17
3 17.31 19.32 21.06 22.91 24.72 26.47 28.17 29.85
4 19.32 21.23 22.91 24.72 26.47 28.17 29.85 31.49
5 21.23 23.07 24.72 26.47 28.17 29.85 31.49 33.10
6 23.07 24.86 26.47 28.17 29.85 31.49 33.10 34.70

Table 3. Upper 1% points for the asymptotic null distribution of S for Case A.

q

– 0 1 2 3 4 5 6
– 12.87 15.58 18.44 20.94 23.21 25.34 27.38
0 12.80 16.06 18.44 20.94 23.21 25.34 27.38 29.33
1 16.72 19.26 21.35 23.55 25.63 27.63 29.56 31.42

p 2 19.25 21.57 23.55 25.63 27.63 29.56 31.42 33.25
3 21.57 23.73 25.63 27.63 29.56 31.42 33.25 35.03
4 23.73 25.79 27.63 29.56 31.42 33.25 35.03 36.78
5 25.79 27.77 29.56 31.42 33.25 35.03 36.78 38.50
6 27.77 29.68 31.42 33.25 35.03 36.78 38.50 40.19

Case A. The general model is given by (2.1), (2.2) and (2.3), with p = p1 = p2

and q = q1 = q2. The null hypothesis is H0 : φi = 0, i = 0, . . . , p, and βi = 0, i =
0, . . . , q.

Case B. The general model is given by (2.1) with θ0 = φ0 = 0, p = p1 = p2 and
(2.2), (2.3) with q = q1 = q2. The null hypothesis is H0 : φi = 0, i = 1, . . . , p,
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and βi = 0, i = 0, . . . , q.

Table 4. Upper 10% points for the asymptotic null distribution of S for Case B.

q

– 0 1 2 3 4 5 6
1 5.81 9.21 11.49 13.96 16.12 18.11 19.99 21.79
2 9.21 12.00 13.96 16.12 18.11 19.99 21.79 23.53

p 3 12.00 14.31 16.12 18.11 19.99 21.79 23.53 25.22
4 14.31 16.40 18.11 19.99 21.79 23.53 25.22 26.87
5 16.40 18.34 19.99 21.79 23.53 25.22 26.87 28.49
6 18.34 20.19 21.79 23.53 25.22 26.87 28.49 30.08

Proposition 3.1. For case A and p > 1, there exists a nonsingular matrix Q1

such that Q1C1Q
′
1 is an identity matrix and Q1C1rQ

′
1 is a block diagonal matrix

with two blocks. The first block is given by the matrix(
s1(r) s3(r)
s3(r) s2(r)

)
(3.1)

and the second block is diag{s1(r), . . . , s1(r)} where s1(r) = a11r/a11, s2(r) =
a22r/a22, s3(r) = a12r/(a11a22)1/2 and

a11=
2
n

∑
E

{
1
h2

t

( q∑
i=1

α2
i ε

2
t−i

)}
+

1
n

∑
E

(
1
ht

)
, (3.2)

a22=
2
n

∑
E

{
1
h2

t

( q∑
i=1

α2
i ε

2
t−iX

2
t−d−i

)}
+

1
n

∑
E

(
X2

t−d

ht

)
, (3.3)

a11r =
2
n

∑
E

[
1
h2

t

{ q∑
i=1

α2
i ε

2
t−iIr(Xt−d−i)

}]
+

1
n

∑
E

{
1
ht
Ir(Xt−d)

}
, (3.4)

a12r =
2
n

∑
E

[
1
h2

t

{ q∑
i=1

α2
i ε

2
t−iXt−d−iIr(Xt−d−i)

}]
+

1
n

∑
E

{
Xt−d

ht
Ir(Xt−d)

}
,(3.5)

a22r =
2
n

∑
E

[
1
h2

t

{ q∑
i=1

α2
i ε

2
t−iX

2
t−d−iIr(Xt−d−i)

}]
+

1
n

∑
E

{
X2

t−d

ht
Ir(Xt−d)

}
.(3.6)

For p = 0, we have s1(r) only. For p = 1, we have matrix (3.1) with some
modifications: replace Xt−d−i and Xt−d by Xt−1−i and Xt−1 in (3.3), (3.5) and
(3.6), except for those arguments in the indicator function.

Proposition 3.2. For case B and p > 1, there exists a nonsingular matrix Q1

such that Q1C1Q
′
1 is an identity matrix and Q1C1rQ

′
1 = diag{s2(r), s1(r), . . . ,
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s1(r)}, where s1(r) and s2(r) are defined in Proposition 3.1. For p = 1 we have
s2(r) only, with a similar modification as in the case of p = 1 in Proposition 3.1.

Table 5. Upper 5% points for the asymptotic null distribution of S for Case B.

q

– 0 1 2 3 4 5 6
1 7.33 11.13 13.52 16.06 18.29 20.36 22.31 24.17
2 11.13 13.99 16.06 18.29 20.36 22.31 24.17 25.97

p 3 13.99 16.39 18.29 20.36 22.31 24.17 25.97 27.72
4 16.39 18.56 20.36 22.31 24.17 25.97 27.72 29.43
5 18.56 20.57 22.31 24.17 25.97 27.72 29.43 31.10
6 20.57 22.49 24.17 25.97 27.72 29.43 31.10 32.74

Table 6. Upper 1% points for the asymptotic null distribution of S for Case B.

q

– 0 1 2 3 4 5 6
1 10.81 15.11 17.73 20.42 22.79 25.00 27.08 29.07
2 15.11 18.15 20.42 22.79 25.00 27.08 29.07 30.98

p 3 18.15 20.72 22.79 25.00 27.08 29.07 30.98 32.85
4 20.72 23.03 25.00 27.08 29.07 30.98 32.85 34.66
5 23.03 25.20 27.08 29.07 30.98 32.85 34.66 36.43
6 25.20 27.24 29.07 30.98 32.85 34.66 36.43 38.17

Proposition 3.3. For cases A and B with q > 1, there exists a nonsingular ma-
trix Q2 such that Q2C2Q

′
2 is an identity matrix and Q2C2rQ

′
2 = diag{s̃1(r), s̃2(r),

s̃3(r), . . . , s̃3(r)}, where s̃1(r), s̃2(r) are the eigenvalues of C̃−1/2
2 C̃2rC̃

−1/2
2 with

C̃2 =




∑
E(1/h2

t )
∑
E(ε2t−d/h

2
t )∑

E(ε2t−d/h
2
t )

∑
E(ε4t−d/h

2
t )


 , (3.7)

C̃2r =




∑
E{Ir(Xt−d)/h2

t }
∑
E{ε2t−dIr(Xt−d)/h2

t }∑
E{ε2t−dIr(Xt−d)/h2

t }
∑
E{ε4t−dIr(Xt−d)/h2

t }


 , (3.8)

and s̃3(r) =
∑
E{Ir(Xt−d)/h2

t }
/∑

E(1/h2
t ). For q = 0 we have simply

E{Ir(Xt−d)} and, for q = 1, we have diag{s̃1(r), s̃2(r)} with εt−d replaced by
εt−1 in (3.7) and (3.8).

As discussed earlier, we make use of a white noise model in the tabulation of
the asymptotic null distribution for the more general models. Then Xt and εt are
normal distributed unconditionally and the si(r)’s and s̃i(r)’s can be evaluated by
direct integration. Tables 1 to 3 give the upper 10%, 5% and 1% points for Case
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A, while Tables 4 to 6 give the upper percentage points for Case B. In the tables,
an unlabelled column gives the percentage points for SETAR-ARCH models,
while an unlabelled row has percentage points for the AR-TARCH models.

Table 7. Simulation results for comparison of the sample values of s2(r),
s̃1(r) and s̃2(r), for some specific value of r.

Value of r as the percentiles of Xt

10% 30% 70% 90%
s2(r) s̃1(r) s̃2(r) s2(r) s̃1(r) s̃2(r) s2(r) s̃1(r) s̃2(r) s2(r) s̃1(r) s̃2(r)
(1) True value under θ1 = 0.0 and α1 = 0.0
.3249 .4663 .0310 .4822 .4994 .2167 .5178 .7833 .5006 .6751 .9690 .5337

(2) θ1 = 0.0 and α1 = 0.0
.3217 .4493 .0291 .4804 .4884 .2128 .5168 .7823 .4942 .6747 .9692 .5302

(3) θ1 = 0.0 and α1 = 0.1
.2945 .4324 .0164 .4771 .4948 .1808 .5219 .8165 .4988 .7035 .9831 .5591

(4) θ1 = 0.5 and α1 = 0.1
.3062 .3484 .0399 .4788 .4696 .2310 .5204 .7677 .5240 .6916 .9597 .6444

(5) θ1 = 0.9 and α1 = 0.1
.3203 .1714 .0861 .4853 .3545 .2878 .5204 .7121 .6418 .6799 .9140 .8260

(6) θ1 = 0.0 and α1 = 0.4
.2662 .3696 .0053 .4694 .4963 .1215 .5294 .8769 .5032 .7314 .9947 .6280

In order to justify the tabulation using a white noise model, we simulated
the model Xt = θ1Xt−1 + εt, εt ∼ N(0, ht), ht = E(ε2t |Ft−1) = 1.0 + α1ε

2
t−1.

For each replication, we computed the sample values of s2(r), s̃1(r) and s̃2(r)
using Propositions 3.2 and 3.3 for some specific values of r. Averages over 100
replications are shown in Table 7. Each replication has sample size 10000. Ex-
cept for the cases θ1 = 0.9 or α1 = 0.4, the sample values are close to the true
values with the white noise model. Hence the dependence of the values of s2(r),
s̃1(r) and s̃2(r) on the values of parameters are actually very weak. Note that we
should have α1 < 0.5773 for the existence of the fourth moment. As the values
of parameters (θ1 or α1) are close to the boundaries of the moment conditions,
approximation of the asymptotic null distribution to S became poorer, as ex-
pected. Hence it seems justified to use the white noise model in the tabulation
of the asymptotic null distribution of S. The approximation is further assessed
by simulation experiments in the next section.

4. Simulations and An Example

We carried out extensive simulation experiments to assess the empirical prop-
erties of the test. The results of 15 experiments are shown in Table 8. We list
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the empirical sizes or powers at the nominal upper 10%, 5% and 1% points. For
each experiment, the number of replications is 10000 and the sample size is 500.
Note that a sample size of 500 is quite common for financial data.

Table 8. Results of the simulation experiments for assessing the approxima-
tion of the test.

Empirical sizes/powers

Experiment Case p q d 10% 5% 1%

(1) Model 1 with θ1 = θ2 = α1 = α2 = 0.0 A 0 0 1 9.72 4.62 1.03

(2) Model 1 with θ1 = θ2 = α1 = α2 = 0.0 A 1 0 1 8.38 4.16 0.97

(3) Model 1 with α1 = 0.4, θ1 = θ2 = α2 = 0.0 A 1 1 1 14.19 8.60 3.99

(4) Model 1 with α1 = α2 = 0.1, θ1 = θ2 = 0.0 A 0 2 1 12.71 7.39 3.02

(5) Model 1 with θ1 = 0.5, α1 = 0.4, θ2 = α2 = 0.0 A 1 1 1 11.14 6.34 2.48

(6) Model 1 with θ1 = 0.9, α1 = 0.4, θ2 = α2 = 0.0 A 1 1 1 9.88 5.45 1.58

(7) Model 1 with θ1 = θ2 = α1 = α2 = 0.0 B 1 0 1 10.07 4.82 1.06

(8) Model 1 with θ1 = 0.5, α1 = 0.4, θ2 = α2 = 0.0 B 1 1 1 13.50 7.68 2.76

(9) Model 1 with θ1 = 0.9, α1 = 0.4, θ2 = α2 = 0.0 B 1 1 1 11.16 5.83 1.65

(10) Model 2 with θ1 = 0.0 A 1 3 1 14.29 10.37 6.40

(11) Model 2 with θ1 = 0.5 A 1 3 1 11.12 7.25 3.78

(12) Model 3 A 1 1 1 98.88 97.50 91.19

(13) Model 4 A 1 1 1 48.19 35.41 15.70

(14) Model 5 A 1 1 1 41.62 29.23 11.83

(15) Model 6 A 1 1 1 99.59 98.98 97.12

The first nine experiments assessed the approximation of the test. Model 1
can be represented by the following general form: Xt = θ1Xt−1+θ2Xt−2+εt, εt ∼
N(0, ht), ht = 1.0 + α1ε

2
t−1 + α2ε

2
t−2. It can be seen that the approximation in

general is quite good. However, a few observations can be made from these
experiments. First, we see that the approximation decays if the values of the
parameters of the true processes are close to the region with non-existing fourth
moment, in Experiment (3) for example. Secondly, the approximation is ac-
ceptable even when the models are close to non-stationary, Experiments (6) and
(9) for example. Lastly, the approximation of the 10% and 5% points of the
asymptotic null distribution of S seems much better than that of the 1% points,
probably due to the fact that the extreme tail is more difficult to approximate.
We also did some simulation experiments with smaller sample sizes, 250 was one
case. The approximation of the test is acceptable, but some caution is in order
when using the test with small samples.

A referee suggested a refined approach to estimating the upper percentage
points with s(r)’s and s̃(r)’s determined via simulation (similar to those in Table
7) from the fitted model under the null hypothesis. This approach may in general
give more precise upper percentage points when the ARCH’s parameters are
close to the region of non-existing fourth moment. However, the improvement is
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negligible if the ARCH parameters are well within the region of existence of the
fourth moment.

Another interesting question concerns robustness of the test to misspecifi-
cation of the conditional variance function. Other models in the literature for
modelling the conditional variance function include the GARCH model (Boller-
slev (1986)), the stochastic volatility model (Taylor (1986)) and the CHARMA
model (Tsay (1987)). We looked at robustness of the test in two simulation
experiments. Model 2, simulated in Experiments (10) and (11) of Table 8, is
the AR-GARCH model represented by the following: Xt = θ1Xt−1 + εt, εt ∼
N(0, ht), ht = 1.0 + 0.1ε2t−1 + 0.8ht−1. We set q = 3 in the simulation exper-
iments in order to capture the dependence of conditional variance due to the
GARCH model. It can be seen that the empirical sizes are larger than the nom-
inal sizes. However, these empirical sizes are quite reasonable as the conditional
variance function is actually misspecified.

We also checked the power of the test in detecting threshold structure in the
models. The true models, simulated in Experiments (12) to (15) of Table 8, are
Model 3: Xt = 0.2Xt−1−0.4 I(Xt−1 ≤ 0)Xt−1 +εt, ht = 1.0+0.1ε2t−1 +I(Xt−1 ≤
0)(0.5 + 0.3ε2t−1); Model 4: Xt = 0.2Xt−1 − 0.4 I(Xt−1 ≤ 0)Xt−1 + εt, ht =
1.0+0.1ε2t−1; Model 5: Xt = 0.5Xt−1+εt, ht = 1.0+0.1ε2t−1+0.3 I(Xt−1 ≤ 0)ε2t−1;
Model 6: Xt = 0.9Xt−1 −0.5I(Xt−1 ≤ 0)Xt−1 + εt, ht = 1.0+0.1ε2t−1 + I(Xt−1 ≤
0)(0.5 + 0.3ε2t−1). The results demonstrate the power of the test in detecting the
threshold structure in the model.

Table 9. Results of applying the test to the Hong Kong Hang Seng Index 1980-91.

Test statistics S against
Period p q d DTARCH model SETAR-ARCH model AR-TARCH model
1980-81 1 6 1 24.59 ‡ 7.40 ‡ 21.61 †
1982-83 1 3 1 24.52 ‡ 6.25 † 24.28 ‡
1984-85 1 5 1 27.52 ‡ 11.78 ‡ 21.37 ‡
1986-87 1 4 1 64.33 ‡ 16.93 ‡ 56.57 ‡
1988-89 3 2 1 27.54 ‡ 17.65 ‡ 10.98
1990-91 1 3 1 23.37 ‡ 4.28 21.82 ‡

∗ ‡ significant at 5% level, † significant at 10% level.

As a concrete example, we applied the Lagrange-multiplier test to the daily
return series of the closing Hong Kong Hang Seng Index from 1980 to 1991, see
Liu, Li and Li (1997). The return series is defined as the difference of the log
index. The dataset is divided into six non-overlapping two year periods: 1980-
81, 1982-83, 1984-85, 1986-87, 1988-89 and 1990-91. The results are reported in
Table 9. We also report the results of the sub-tests against SETAR-ARCH and
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AR-TARCH models. There are about 500 observations for each two year period.
The delay parameter d is set to one for all periods, p and q for each periods are
the same as those used in Liu, Li and Li (1997), although their specification of
the models is slightly different from ours. Here we only consider Case B. For
the periods 1986-87 and 1988-89, the data are trimmed to within plus/minus
three sample standard deviations of the respective period. The null hypothesis
of linearity against the DTARCH models is rejected in all periods. Note that it
is the first time that nonlinearity in the period 1990-91 is detected (Li and Lam
(1995), Wong and Li (1997) and Liu, Li and Li (1997)). Furthermore, from the
results of the sub-tests, nonlinearity is observed in both the conditional means
and variances in the first four periods. In the 1988-89 period, nonlinearity is
detected only in the conditional mean. On the contrary, nonlinearity is observed
only in the conditional variance for the period 1990-91.

5. Proof of Theorem 2.1

In this section, we give an outline of the proof of Theorem 2.1. For a complete
proof, see Wong (1998).

We consider the limiting distribution of {T1r}. Let w1r = (T ′
1∞, T ′

1r)
′, where

T1∞ = n−1/2∂l/∂θ. Also, let ψ′ = (ψ10, . . . , ψ1p1 , ψ20, . . . , ψ2p2) where ψij ∈ R.
Consider

ψ′w1r = n−1/2


 p1∑

j=0

ψ1j
∂l

∂θj
+

p2∑
j=0

ψ2j
∂l

∂φj


 = n−1/2

n∑
t=1

u1t.

After some manipulation, E(u1t|Ft−1) = 0 and E(u2
1t) < ∞ as the time series

is stationary, ergodic and the fourth moment exists. By the Martingale Central
Limit Theorem (see, for example, Theorem 23.1 in Billingsley (1968)), ψ′w1r is
normally distributed with mean 0 and variance ψ′E(w1rw

′
1r)ψ. By the Cramer-

Wold device (see, for example, Billingsley (1968, p.48) or Brockwell and Davis
(1987)),

w1r ∼> N

(
0,

(
C1 L1r

L′
1r C1r

))
,

where ∼> denotes convergence in distribution. Hence for each r, conditional on
T1∞ = 0, we obtain T1r ∼> N(0, (C1r − L′

1rC
−1
1 L1r)). Similarly, for r �= s, the

conditional distribution of (T2r, T2s) under the null hypothesis is(
T1r

T1s

)
∼ N

(
0,

(
C1r C1,min(r,s)

C ′
1,min(r,s)

C1s

)
−
(
L′

1r

L′
1s

)
C−1

1

(
L1r L1s

))
.

Hence (T1r, T1s) has a joint normal distribution with covariance = C1,min(r,s) −
L′

1rC
−1
1 L1s.
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Now we consider the limiting distribution of {T2r}. Let w2r = (T ′
2∞, T ′

2r)
′,

where T2∞ = n−1/2∂l/∂α. Also, let ϕ′ = (ϕ10, . . . , ϕ1q1 , ϕ20, . . . , ϕ2q2) where
ϕij ∈ R. Consider

ϕ′w2r = n−1/2


 q1∑

j=0

ϕ1j
∂l

∂αj
+

q2∑
j=0

ϕ2j
∂l

∂βj


 = n−1/2

n∑
t=1

u2t.

It is easy to show that E(u2t|Ft−1) = 0 and E(u2
2t) < ∞. By the Martingale

Central Limit Theorem and the Cramer-Wold device, we have

w2r ∼> N

(
0,

(
C2 L2r

L′
2r C2r

))
.

Hence for each r, conditional on T2∞ = 0, we obtain T2r ∼> N(0, (C2r −
L′

2rC
−1
2 L2r)). Similarly, it can be shown that (T2r, T2s), r �= s, has a joint normal

distribution with covariance = C2,min(r,s) − L′
2rC

−1
2 L2s.

It remains to consider the tightness of the distribution and the topology
of the function space. Consider the spaces of functions that map (−∞,∞)
([−b, b], b > 0) into Rk, right continuous with left-hand limits. Denote these
spaces byDk(−∞,∞) andDk[−b, b], respectively. EquipDk(−∞,∞) (Dk[−b, b])
with the topology of uniform convergence over compact sets. Let Ck(−∞,∞) be
the subspace of Dk(−∞,∞) consisting of continuous functions. See, for example,
Pollard (1984) for more details on these spaces. Now {T1r,−∞ < r < ∞} lives
on Dp2+1(−∞,∞) and {T2r,−∞ < r <∞} lives on Dq2+1(−∞,∞).

Suppose that H0 and our assumptions hold. We are going to show that
(i) {T1r} converges weakly to {ξ1r} in Dp2+1(−∞,∞) and each realization of
{ξ1r} belongs to Cp2+1(−∞,∞) a.s., and (ii) {T2r} converges weakly to {ξ2r} in
Dq2+1(−∞, ∞) and each realization of {ξ2r} belongs to Cq2+1(−∞,∞) a.s. Note
that it suffices to verify the tightness of {T1r,−b ≤ r ≤ b} and {T2r,−b ≤ r ≤ b}
componentwise.

For the tightness of {T1r}, we only consider the case where ht = α0 +α1ε
2
t−1.

Note that under H0 the βj’s are all zero. The proof is easily extended to
more general cases. Without loss of generality, consider the last component
of {T1r,−b ≤ r ≤ b}. It is tight if and only if

g1n(r) = n−1/2
∑{

εt
ht
Xt−p2Ir(Xt−d) + α1

εt−1

ht
Xt−p2−1

(
1 − ε2t

ht

)
Ir(Xt−d−1)

}

is tight. Let −b ≤ s ≤ r ≤ b be two arbitrary numbers, Mi, i = 1, 2, 3, be
constants independent of n, and g1n(r) − g1n(s) = n−1/2

∑
κ1t(r, s), where

κ1t(r, s) =
εt
ht
Xt−p2Is,r(Xt−d) + α1

εt−1

ht
Xt−p2−1

(
1 − ε2t

ht

)
Is,r(Xt−d−1)
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and Is,r(Xt) = I(s < Xt ≤ r). It can be shown that for i = 1, . . . , p2,

E

{∣∣∣∣ εtht
Xt−iI(s < Xt−d ≤ r)

∣∣∣∣2
}

≤M1(r − s)

and

E



∣∣∣∣∣εt−1

ht
Xt−i−1

(
1 − ε2t

ht

)
I(s < Xt−d−1 ≤ r)

∣∣∣∣∣
2

 ≤M2(r − s).

After some manipulation, we have

E

{
sup

|r−s|<τ
|κ1t(r, s)|2

}
≤M3τ.

By (2.1) in Andrews and Pollard (1984), we have the required geometric bound
for Theorem 2.2 of Andrews and Pollard (1984) to hold. Hence, we have for each
ε > 0, η > 0, there exists a δ, δ > 0, such that

pr

{
sup

−b≤s<r≤b,|r−s|<δ
|g1n(r) − g1n(s)| ≥ ε

}
≤ η

for large n. This gives the tightness of {T1r}.
For the tightness of {T2r}, without loss of generality, we consider the last

component of {T2r,−b ≤ r ≤ b}. It is tight if and only if

g2n(r) = n−1/2
∑{

1
ht
ε2t−q2

(
ε2t
ht

− 1

)
Ir(Xt−d)

}

is tight.
Let −b ≤ s ≤ r ≤ b be two arbitrary numbers, M4 and M5 be constants

independent of n, and g2n(r) − g2n(s) = n−1/2
∑

κ2t(r, s), where

κ2t(r, s) =
1
ht
ε2t−q2

(
ε2t
ht

− 1

)
Is,r(Xt−d).

It can be shown that for i = 1, . . . , q2,

E



∣∣∣∣∣ 1
ht
ε2t−i

(
ε2t
ht

− 1

)
I(s < Xt−d ≤ r)

∣∣∣∣∣
2

 ≤M4(r − s),

and hence after some manipulation,

E

{
sup

|r−s|<τ
|κ2t(r, s)|2

}
≤M5τ.
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So by Theorem 2.2 of Andrews and Pollard (1994) with the required geometric
bound, we have for each ε > 0, η > 0, there exists a δ, δ > 0, such that

pr

{
sup

−b≤s≤r≤b,|r−s|≤δ
|g2n(r) − g2n(s)| ≥ ε

}
≤ η

for large n. The tightness of {T2r} follows.
From the above discussion, {T1r} is asymptotically a (p2 + 1)-dimensional

Gaussian process and {T2r} is asymptotically a (q2 + 1)-dimensional Gaussian
process, both indexed by the threshold parameter r ∈ R. Denote the limiting
Gaussian processes by {ξ1r} and {ξ2r} and we have completed our proof.

6. Proofs and Justifications of the Propositions

It can be observed that Proposition 3.3 is trivial if q = 0 or 1. The special
cases p = 0 and p = 1 in Proposition 3.1 and p = 1 in Proposition 3.2 can be
proved by utilizing the following result from Engle (1982). Let u and v be any
two random variables; the expectation E{g(u, v)|v} is an anti-symmetric function
of v if g is anti-symmetric in v, the conditional density of u|v is symmetric in v,
and the expectation exists.

Let Wt be a constant with respect to Ft−1. Using the result above, we can
show that E(εt−iWt−i/h

2
t ) = 0, for 1 ≤ i ≤ m, if these expectations exist. Clearly

εt−iWt−i/h
2
t is anti-symmetric in εt−i, which is part of the information set Ft−i.

Because ht is symmetric, the conditional density must be symmetric in εt−i and,
using Engle’s Lemma, g(εt−i) = E

{
(εt−iWt−i/h

2
t )
∣∣Ft−i

}
is anti-symmetric, as

the density of εt−i conditional on the information set Ft−i−1 is a symmetric
(normal) density. Hence E{g(εt−i)|Ft−i−1} = 0.

Now we can apply the above argument to obtain the special cases in Propo-
sitions 3.1 and 3.2. As an illustration, we obtain s2(r) for p = 1 in Proposition
3.2. We have

C1r=
1
2n

∑
E


 1
h2

t

{
2

q∑
i=1

αiεt−iXt−1−iIr(Xt−d−i)

}2

+1
n

∑
E

{
1
ht
X2

t−1Ir(Xt−d)
}

=
2
n

∑
E

[
1
h2

t

{ q∑
i=1

α2
i ε

2
t−iX

2
t−1−iIr(Xt−d−i)

}]
+

1
n

∑
E

{
1
ht
X2

t−1Ir(Xt−d)
}
,

as all the crossproduct terms in the first summation are zero, by the above
argument. Similarly, we get

C1 =
2
n

∑
E

[
1
h2

t

{ q∑
i=1

α2
i ε

2
t−iX

2
t−1−i

}]
+

1
n

∑
E

{
1
ht
X2

t−1

}
.

Hence the result.
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Table 10. Results of simulation experiments to justify the use of the Propo-
sitions to compute λij(r)’s.

Value of r as the
percentiles of Xt λ11(r) λ12(r) λ13(r) λ14(r) λ21(r) λ22(r) λ23(r) λ24(r)
Method 1: average eigenvalues of C−1/2

1 C1rC
−1/2
1 and C−1/2

2 C2rC
−1/2
2

10% .4204 .1239 .1070 .0046 .3665 .2013 .1544 .0454
30% .7387 .3210 .3016 .0346 .4627 .3719 .3293 .2393
50% .8860 .5073 .4894 .1045 .5241 .4995 .4770 .4491
70% .9599 .6949 .6749 .2480 .7535 .6546 .6035 .4907
90% .9937 .8910 .8731 .5607 .9508 .8370 .7763 .5812

Method 2: average eigenvalues from Propositions 3.1 and 3.3

10% .4200 .1009 .1009 .0047 .3621 .0995 .0995 .0535
30% .7384 .3008 .3008 .0348 .4525 .2999 .2999 .2491
50% .8857 .4996 .4996 .1047 .5072 .4997 .4997 .4633
70% .9597 .6986 .6986 .2482 .7461 .7000 .7000 .4953
90% .9936 .8984 .8984 .5613 .9440 .8999 .8999 .5834

For the general cases of the propositions, we justify them through extensive
simulation experiments. In Table 10, we report some of the results. The model
simulated is Xt = 0.5Xt−1 + εt, where εt ∼ N(0, ht), ht = E(ε2t |Ft−1) = 1.0 +
0.1ε2t−1 +0.1ε2t−2 +0.1ε2t−3. For each replication, we compute the sample values of
λij(r)’s with p = 3 and q = 3 in Case A. Each replication has sample size 5000 and
we perform 100 replications. The first method directly computes the eigenvalues
of C−1/2

1 C1rC
−1/2
1 and C

−1/2
2 C2rC

−1/2
2 . The second method uses Propositions

3.1 and 3.3 to compute the λij(r). It can be observed that the λij(r) computed
by the two methods are close to each other and hence it seems justified to use
the Propositions to compute them.
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