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ON THE ESTIMATION AND TESTING OF

FUNCTIONAL-COEFFICIENT LINEAR MODELS

Yingcun Xia and W. K. Li

Jinan University and the University of Hong Kong

Abstract: In this paper we investigate the estimation and testing of the functional

coefficient linear models under dependence, which includes the functional coefficient

autoregressive model of Chen and Tsay (1993). We use local linear smoothing to

estimate the coefficient functions of a functional-coefficient linear model, prove their

uniform consistency, and derive their asymptotic distributions in terms of Gaussian

processes. From these distributions we can obtain some tests about coefficient

functions and the model. Some simulations and a study of real data are reported.

Key words and phrases: FAR model, local linear smoother, nonparametric regres-

sion, strongly mixing sequence, Wiener process.

1. Introduction

Nonparametric regression analysis has gained much attention in the last
decades, due primarily to the fact that it provides a versatile method of explor-
ing a general relationship between variables. It gives predictions of observations
without reference to a fixed parametric model. Properties of such analysis have
been discussed extensively. However for the case of multi-dimensional predictor
regressions, there is a major problem with most approaches in use in that they
usually require unrealistically large sample sizes. Because of this, one suggestion
is to bring back a measure of parametric models, and some semiparametric mod-
els, such as partial linear models and additive models, have been proposed in the
literature, see for example Härdle (1990).

Hastie and Tibshirani (1993) proposed the varying-coefficient model. This
model has gained much attention and has been found useful in applications.
Chen and Tsay (1993) introduced the model to time series analysis and proposed
the so called functional-coefficient autoregressive (FAR) model defined as follows.
Suppose {xt} is the time series under consideration. Then xt satisfies

xt = θ1(X∗
t−d)xt−1 + θ2(X∗

t−d)xt−2 + · · · + θp(X∗
t−d)xt−p + εt, (1.1)

where p is a positive integer, εt is a sequence of i.i.d. random variables with mean
0, variance σ2 and independent of xt−i for any i > 0; X∗

t−d = (xt−i1 , . . . ,xt−ik)T ,
ij > 0, j = 1, . . . , k, where AT denotes the transpose of matrix A; the θi(X),
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X = (x(1), . . . , x(k)), i = 1, . . . , p, are measurable functions from R
k to R and

θi(X) = αi(X)+βi(X) with βi(X)x(i) uniformly bounded and |αi(X)| ≤ ci such
that all the roots of λp − c1λ

p−1 − c2λ
p−2 − · · · − cp = 0 are inside the unit circle.

It is easy to see that many existing nonlinear AR models are special cases of
FAR models. These include the threshold autoregressive model of Tong (1983,
1990) and the exponential autoregressive model of Haggan and Ozaki (1981).
Another advantage of model (1.1) is that it is not necessary to choose a special
form of coefficient functions as Tong (1983) and Haggan and Ozaki (1981) did.
Some probability properties of the FAR model have been given by Chen and
Tsay (1993). The arranged local regression (ALR) procedure is proposed, as
they call it, to estimate the coefficient functions θi(X), i = 1, . . . , p. Under some
assumptions, they proved that the estimator of θi(X) by the ALR is mean square
consistent. They also gave a method to build FAR models.

In this paper, we investigate a more general functional-coefficient linear (FL)
model

yt = θ0(Zt) + θ1(Zt)xt1 + θ2(Zt)xt2 + · · · + θp(Zt)xtp + εt , (1.2)

where Zt is a k−vector random variable and θ0(X), . . . , θp(X) are some unknown
functions. If we take yt = xt, Zt = X∗

t−d, and xti = xt−i, i = 1, . . . , p, then model
(1.2) becomes model (1.1). We assume that {(yt, Z

T
t ,xt1, . . . ,xtp)} is a strongly

mixing sequence. From Theorem 1.2 of Chen and Tsay (1993), if the density
function of εt is positive everywhere, then the Markov chain {xt} generated by
model (1.1) is geometrically ergodic, which implies that model (1.1) is strongly
mixing with a mixing coefficient of geometric rate (cf. Bradley (1986)). Therefore
the FAR satisfies the strongly mixing assumption.

As far as estimation is concerned, kernel estimation has been proven to be a
very useful method in dealing with nonparametric statistical problems (Fan and
Gijbels (1996)). Fan (1993) further proved that the local linear smoother has
better properties than the Nadaraya-Watson kernel estimation. In this paper, we
will obtain estimators of θi(·), i = 0, . . . , p, by local linear smoothing, and prove
that they are uniformly consistent with the optimal rate. We further obtain an
estimator of σ2 and its asymptotic property. Our results are stronger than those
of Chen and Tsay (1993). Based on the theory of Bickel and Rosenblatt (1973),
we will also obtain the asymptotic distributions of the estimators, and use them
to test hypotheses of the form

H0i : θi(x) ≡ φi(x, γ) x ∈ [a, b], (1.3)

where φi(x, γ) is a known real function with parameter γ ∈ Γ, i = 0, . . . , p,
and Γ ⊂ R

q, for some positive integer q, is the parameter space. For instance,
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φi(x, γ) = γ1 + γ2Φ((x − γ3)2/γ4) in the smooth transition threshold autore-
gressive model proposed by Chan and Tong (1986), where Φ(x) is the standard
normal distribution function. A special case of the test is θi(x) ≡ 0, which is of
importance in building a FL model. By these results, we can make statistical
inference about the FL model similar to linear regression models. Furthermore,
these results can be applied to the FAR model of Chen and Tsay (1993).

The rest of this paper is organized as follows. Section 2 states the estima-
tion of the model and some assumptions for the following discussion. Section
3 proves the uniform convergence rate of the estimates while Section 4 derives
the asymptotic distributions of the estimators. All proofs are relegated to the
appendix. In Section 5, we report some results on Monte Carlo simulations and
an application to real data.

2. The Estimation of FL Models and Assumptions

For simplicity, we consider only the case Zt = zt, where zt is a univariate
random variable. Without loss of generality we write (1.2) as

yt = θ1(zt)xt1 + θ2(zt)xt2 + · · · + θp(zt)xtp + εt. (2.1)

If we take xt1 ≡ 1, then (2.1) becomes (1.2). If zt = xtj for some j we may write
θj(zt)xtj as θj(zt) · 1. We first make an assumption about θi(x).
(A1) The coefficient functions θi(x), i = 1, . . . , p, are bounded and have bounded
second derivatives.

Suppose that {(yt, zt,xt1, . . . ,xtp), t = 1, . . . , n} is a sequence of observa-
tions from model (2.1). By a Taylor expansion, θi(zt) = θi(x) + θ′(x)(zt − x) +
1
2θ

′′
i (zti)(zt − x)2, i = 1, . . . , p, where zti is a point between zt and x. From (2.1)

we have

yt =
p∑

i=1

[
θi(x) + θ′i(x)(zt − x)

]
xti +

1
2

p∑
i=1

θ′′i (zti)xti(zt − x)2 + εt.

Following the idea of locally linear smoothing, the estimator of θi(x) is the solu-
tion of ai to the following minimizer:

min
ai,bi, i=1,...,p

n∑
t=1

{
yt −

p∑
i=1

[
ai + bi(zt − x)

]
xti

}2
K
(zt − x

h

)
, (2.2)

or

min
ai,bi, i=1,...,p

n∑
t=1

[
Et +

p∑
i=1

(ai−θi(x))xti+
p∑

i=1

(bi−θ′i(x))xti(zt−x)
]2
K
(zt−x

h

)
,(2.3)
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where K(·) is a kernel function, h is the bandwidth and Et =
∑p

i=1 θ
′′
i (zti)xti(zt−

x)2/2 + εt. Let wt = K((zt − x)/h), w1t = K((zt − x)/h)(zt − x)/h, w2t =
K((zt − x)/h)((zt − x)/h)2, w4t = K((zt − x)/h)((zt − x)/h)4 and

St = (xt2, . . . ,xtp), Tt = (xt1, . . . ,xtp) ,

Ut = (ST
t (zt − x)T T

t )T , Vt = (T T
t (zt − x)T T

t )T .

The solution to (2.2), i.e. the estimators of θi(x) and θ′i(x), i = 1, . . . , p, is

(θ̂1(x), . . . , θ̂p(x) θ̂′1(x), . . . , θ̂
′
p(x))

T = (
n∑

t=1

wtVtV
T
t )−1

n∑
t=1

wtVtyt. (2.4)

In case that (
∑n

t=1 wtVtV
T
t )−1 does not exist, we may substitute (

∑n
t=1 wtVtV

T
t +

n−2I2p)−1 in practice, where Ik is the k × k unit matrix. However, as we will
show in Section 3, (

∑n
t=1 wtVtV

T
t )−1 exists a.s. as n −→ ∞.

In order to investigate the asymptotic properties, we introduce another ex-
pression for θ̂i(x), i = 1, . . . , p. Here we only take θ̂1(x) for example. By Lemma
3 of Lai, Robbins and Wei (1979) and (2.3), we have

θ̂1(x) = θ1(x) +
∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)Et∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)2

= θ1(x) +
∑p

i=1

∑n
t=1 wt(xt1 − JT

n H
−1
n Ut)θ′′i (zti)xti(zt − x)2

2
∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)2

+
∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)εt∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)2

, (2.5)

where

Hn =
n∑

t=1

wtUtU
T
t =

(∑n
t=1 wtStS

T
t h

∑n
t=1 w1tStT

T
t

h2∑n
t=1 w2tTtT

T
t

)
∆=

(
Pn hRn

h2Qn

)
,

Jn =
n∑

t=1

wtxt1Ut =

( ∑n
t=1 wtxt1St

h
∑n

t=1 w1txt1Tt

)
∆=

(
An

hBn

)
.

Let Γn =
∑n

t=1 wtVtV
T
t . Then

Γ−1
n (1, 1) =

[
n∑

t=1

wt(xt1 − JT
n H

−1
n Ut)2

]−1

, (2.6)

where Γ−1
n (i, i) is the (i, i)th entry of Γ−1

n , i = 1, . . . , 2p. Equations (2.5) and
(2.6) are very useful for future proofs and calculations. Throughout this paper,
we will omit the lower-left part of a symmetric matrix for brevity.

For convenience in the rest of the paper, we make the following assumptions.
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(A2) {(yt, zt,xt1, . . . ,xtp)} is a strictly stationary and strongly mixing sequence
with mixing coefficient α(k) = O(	k) for some 0 < 	 < 1.
(A3) For each t, E(εt|zt,xt1, . . . ,xtp) = 0 a.s., Eε2t = σ2 and Eε3t <∞.
(A4) The density function of z1, say f(x), has a bounded continuous derivative.
(A5) The conditional densities fz1|(y1,x1i)(z1|y1, x1i), f(z1,zl)|(y1,yl,x1i,xli)(z1, zl|y1,

yl, x1i, xli), fz1|(x1i, x1j)(z1|x1i, x1j) and f(z1,zl)|(x1i,x1j ,xli,xlj)(z1, zl|x1i, x1j , xli,

xlj) are bounded for all l ≥ 1 and i, j = 1, . . . , p.
(A6) E(x6

ti) < ∞ and the conditional expectation vij(x) = E(xtixtj | zt = x) is
bounded and has a bounded derivative, i, j = 1, . . . , p.
(A7) The kernel function K(x) is a density function with a compact support
[−δ0, δ0] and bounded derivative such that K(−δ0) = K(δ0) = 0,

∫
yK(y)dy = 0

and
∫
y2K(y)dy = 1.

Assumption (A2) is made only for the purpose of simplicity, it can be weak-
ened to α(k) = O(k−ι) for some ι > 0. However, many time series models satisfy
assumption (A2)—examples are the nonparametric ARCH models (Masry and
Tjøstheim (1995)) and model (1.1) if the density of εt is positive everywhere
(Chen and Tsay (1993)). Assumption (A3) is a common one for time series mod-
els and Eε3t < ∞ can be changed to E|εt|r0 < ∞ for some r0 > 2. Similarly,
E(x6

1i) in (A6) can be changed to E(xr
1i) for some r > 4. However, these changes

may make the following arguments more complicated. We shall not pursue this
matter further. Assumption (A5) is a common one for dependent data, see Masry
and Tjøstheim (1995). Other kernel functions can be used in (A7) but result in
slightly more tedious arguments. The other assumptions are those in related
papers, such as Bickel and Rosenblatt (1973), Chen and Tsay (1993) and Härdle
(1989).

Let φk =
∫
ykK(y)dy, k = 0, 1, . . .. Then φ0 = φ2 = 1 and φ1 = 0 from

(A7). Let M, c, ci, i = 0, 1, . . . , be constants which may have different values at
different places. By Cn(x) = Ō(an,D), we mean supx∈D |Cn(x)| = O(an) a.s.,
where D ⊂ R. We write 1k to denote the k−vector of ones.

3. Consistency of Estimators

In nonparametric regression we are mainly interested in the parts with dense
observations, i.e. where f(x) > 0. This can be judged using the histograms of
{zt, t = 1, . . . , n} in practice. Denote the minimum eigenvalue of a matrix A

by λmin(A). To ensure that λmin((vij(x))i,j=1,...,p) > 0 as needed for the estima-
tion of θi(x), we may check λmin(

∑
zt∈x±δ TtT

T
t ) > 0, where Tt = (xt1, . . . ,xtp)

and δ is a small number proportional to h. For any ε > 0, define Rε = {x :
f(x)λmin((vij(x))i,j=1,...,p) > ε}. In this section, we prove that the estimator
θ̂i(x) converges to θi(x) a.s. uniformly on Rε and obtain the corresponding con-
vergence rate. We also obtain the consistency rate of σ̂2, the estimator of σ2.
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The following theorem tells us the uniformly consistency rate for the estimators
of coefficient functions.

Theorem 3.1. If the assumptions (A1)-(A7) hold and h = O(n−ρ) for some
0 < ρ < 1/3, then θ̂i(x) is a uniformly consistent estimator of θi(x) on Rε, and

|θ̂i(x) − θi(x)| = Ō(δn2,Rε), i = 1, . . . , p,

where δn2 = h2 + (log n/(nh))1/2.

From the results of Stute (1982), the above convergence rate is optimal. We
can also prove that the estimator θ̂′i(x) is uniformly consistent but that is not
our concern here.

Next, we want to give an estimator of σ2, which will be used in making
statistical inference about model (1.1). From (2.1) we have

ytI(zt ∈ Rε) = θ1(zt)I(zt ∈ Rε)xt1 + · · · + θp(zt)I(zt ∈ Rε)xtp + I(zt ∈ Rε)εt.

The estimator of yt, say ŷt, satisfies

ŷtI(zt ∈ Rε) = θ̂1(zt)I(zt ∈ Rε)xt1 + · · · + θ̂p(zt)I(zt ∈ Rε)xtp.

Here we may take θ̂i(x) ≡ 0, if x /∈ Rε. Therefore from Theorem 3.1,

et
∆= ytI(zt ∈ Rε) − ŷtI(zt ∈ Rε)

=
p∑

i=1

(θi(zt) − θ̂i(zt))I(zt ∈ Rε)xti + I(zt ∈ Rε)εt

=
p∑

i=1

O(δn2)xti + I(zt ∈ Rε)εt a.s.

e2t =
p∑

i=1

[
O(δ2n2)x

2
ti +O(δn2)xtiI(zt ∈ Rε)εt

]
+ I(zt ∈ Rε)ε2t a.s.

By the LIL for strongly mixing sequence (cf. Rio (1995)),

| 1
n

n∑
t=1

x2
ti| < M ,

1
n

n∑
t=1

|xtiI(zt ∈ Rε)εt| < M a.s.,

| 1
n

n∑
t=1

I(zt ∈ Rε)ε2t − σ2P (z1 ∈ Rε)| = O((log log n/n)
1
2 ) a.s.

and

| 1
n

n∑
t=1

I(zt ∈ Rε) − P (z1 ∈ Rε)| = O((log log n/n)
1
2 ) a.s. (3.1)
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Hence,

| 1
n

n∑
t=1

e2t − σ2P (z1 ∈ Rε)| = O(δn2 + (log log n/n)
1
2 ) a.s. (3.2)

Let #A denote the number of elements in set A. Then #{zt ∈ Rε, t =
1, . . . , n} =

∑n
t=1 I(zt ∈ Rε). Thus from (3.1) and (3.2), we obtain an estimator

of σ2 as

σ̂2 =
1

#{zt ∈ Rε, t = 1, . . . , n}
∑

zt∈Rε

(yt − ŷt)2.

Theorem 3.2. If (A1)-(A7) hold and h = O(n−ρ) for some 0 < ρ < 1/3, then

|σ̂2 − σ2| = O(δn2) a.s.

4. Distributions of Estimators

For ease of exposition, we consider only an interval [a, b] such that minx∈[a,b](
λmin((vij(x))i,j=1,...,p)f(x)) > 0. If (A4) and (A6) hold, there exists [a0, b0] such
that c0 = min{a−a0, b0−b} > 0 and minx∈[a0,b0] (λmin((vij(x))i,j=1,...,p)f(x)) > 0.
We further assume
(A8) For each t, εt is independent of {zs,xs1, . . . ,xsp : s ≤ t} and E|εt|r1 < ∞,
E|xti|r1 <∞, i = 1, . . . , p, for some r1 > 8.

Let

Y0n(x) = h−
1
2

∫ b0

a0

K
(s− x

h

)
dW(s − a0),

Mni(x) = σ̂−1(Γ−1
n (i, i))−

1
2 (θ̂i(x) − θi(x)), i = 1, . . . , p,

where W(x) is a standard Wiener process and Γ−1
n (i, i) is defined in (2.6). We

have the following asymptotic distribution for the estimators of coefficient func-
tions.

Theorem 4.1. If assumptions (A1)-(A8) hold and h = O(n−ρ) for some 1/5 <
ρ < 1/3, then supa≤x≤b |Mni(x)| and supa≤x≤b |Y0n(x)| have the same asymptotic
distribution.

Notice that the bandwidth can not take its optimal value h0 ∝ n−1/5. This
is because of the bias of the estimates θ̂i(x). To see it more clearly, we further
assume that θi(x), i = 1, . . . , p, have bounded third order derivatives. Then by
(2.3) and the results in Section 3, we can show that

θ̂1(x) = θ1(x) +
p∑

i=1

∑n
t=1 wt(xt1 − JT

n H
−1
n Ut)xti(zt − x)2

2
∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)2

θ′′i (x)
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+
∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)εt∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)2

+
p∑

i=1

∑n
t=1 wt(xt1 − JT

n H
−1
n Ut)xti(zt − x)3

6
∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)2

θ′′′i (z∗ti)

= θ1(x) +B1(x)h2 +
1
nh
C1(x)

n∑
t=1

wtVtεt +O(δn1δn2) a.s., (4.1)

where B1(x) is a continuous function, C1(x) is a continuous vector, δ1n = h +
(log n/(nh))1/2 and z∗ti is a point between zt and x. Similarly, we have θ̂i(x) =
θi(x) +Bi(x)h2 + Ci(x)

∑n
t=1 wtVtεt/(nh) +O(δn1δn2) a.s., i = 2, . . . , p. Thus

Eθ̂i(x) = θi(x) +Bi(x)h2 +O(δn1δn2).

The main bias term is Bi(x)h2, which restricts the value of h in Theorem 4.1.
To allow the optimal bandwidth h0 be used, we need to remove the bias term

Bi(x)h2 in the estimator of θi(x). Similar to (2.2), we consider

min
fi,ei,di,ci, i=1,...,p

n∑
t=1

{
yt−

p∑
i=1

[
fi+ei(zt−x)+di(zt−x)2+ci(zt−x)3

]
xti

}2
K
(zt − x

h′
)
,

(4.2)
where h′ is another bandwidth. The solution of di to the above problem is the
estimator of θ′′i (x), say θ̂′′i (x). We obtain the estimator of the bias as

B̂1(x) =
p∑

i=1

∑n
t=1 wt(xt1 − JT

n H
−1
n Ut)xti(zt − x)2

2
∑n

t=1 wt(xt1 − JT
n H

−1
n Ut)2

θ̂′′i (x).

Similarly, we can get the other bias estimator of θi(x), say B̂i(x), i = 2, . . . , p. If
we replace θ̂i(x) with θ̂i(x)− B̂i(x)h2, then Theorem 4.1 and Corollaries 4.1 and
4.2 below hold with h ∝ n1/5. See Xia (1998).

Similar to the asymptotic normality of the coefficient estimators in linear
models, Theorem 4.1 is a basic asymptotic result for statistical inference about
the coefficient functions in FL models. From Theorem 2 and Theorem 3.1 of
Bickel and Rosenblatt (1973), we have

Corollary 4.1. Under the assumptions of Theorem 4.1, we have

P
(
(−2 log h)

1
2 (d−1 sup

a≤x≤b
|Mni(x)| − µn) < z

)
−→ e−2e−z

, i = 1, . . . , p,

where d =
√
κ2(b− a) and

µn = (−2 log h)
1
2 +

1

(−2 log h)
1
2

(log
κ

1
2
1

2πκ
1
2
2

),
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with κ2 =
∫
K2(x)dx and κ1 =

∫
(K ′(x))2dx.

We can now derive some statistical inference about FL models in a global
sense, i.e. statistical inferences based on a global measure of how good θ̂i(x) is an
estimator of θi(x) on [a, b]. Similar to Härdle (1989) and Eubank and Speckman
(1993), we can construct confidence bands for the coefficient function θi(x). We
have

lim
n→+∞P

(
θ̂i(x) − dσ̂(Γ−1

n (i, i))
1
2 [

z

(−2 log h)
1
2

+ µn] ≤ θi(x) ≤

θ̂i(x) + dσ̂(Γ−1
n (i, i))

1
2 [

z

(−2 log h)
1
2

+ µn], for all a ≤ x ≤ b
)

= e−2e−z
. (4.3)

Similar to linear models, we can also test hypotheses of the type given by
(1.3). We first use some standard nonlinear time series estimation methods to
estimate the parameter γ under H0i, i = 0, . . . , p. Denote the estimator by γ̂. It
is known that under some regular conditions, γ̂ is root-n consistent. See Gallant
(1987). Let Mni(x, γ̂) = σ̂−1(Γ−1

n (i, i))−
1
2 (θ̂i(x)− φi(x, γ̂)). By Corollary 4.1, we

have

Corollary 4.2. Suppose H0i : θi(x) ≡ φi(x, γ0) holds for some γ0 ∈ Γ and all
x ∈ [a, b]; φi(x, γ) has a bounded derivative in γ ∈ Γ and γ̂ − γ0 = Op(n−1/2).
Under the assumptions of Theorem 4.1, we have

P
(
(−2 log h)

1
2 (d−1 sup

a≤x≤b
|Mni(x, γ̂)| − µn) < z

)
−→ e−2e−z

, i = 1, . . . , p.

Using Corollary 4.2, we can obtain the critical value given the significance
level and make our decision. We give some examples in the next section.

5. Simulations and Application to Real Data

In this section, we illustrate our modeling methodology by using both simu-
lated and real data. For the simulated data, we see how well the testing method
works. Similar work has been done by Härdle (1989) and Eubank and Speck-
man (1993) in much simpler cases. For the real data set, we concentrate on the
building of a FL model.

5.1. Selection of bandwidth

An important issue for kernel estimation is the choice of bandwidths. There
are many methods to do this. Here we combine cross-validation with the plug-in
method.
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First, we use the cross-validation method to select the bandwidth h′ for the
estimation of θ′′i (x) in the bias term Bi(x). See the discussion after Theorem
4.1. Let ϑ̂i(x) be the solution of fi in (4.2). Then ϑ̂i(x) is the local third order
polynomial estimator of θi(x). Let ϑ̂i(t)(x) be the estimator of θi(x) from (4.2)
using data {(ys, zs,xs1, . . . ,xsp) : s 	= t}. Define

CV (h) =
∑

a≤zt≤b

[
yt − ϑ̂1(t)(zt)xt1 − · · · − ϑ̂p(t)(zt)xtp

]2
G(zt),

where G(·) is a weight function. The cross-validation bandwidth for {ϑ̂i(x), i =
1, . . . , p} is then

ĥ′0 = arg min
h′ CV (h). (5.1)

If we further assume that all the moments of εt, xt1, . . . ,xtp and yt exist, then
we can show, following the same steps of Xia and Li (1997), that

ĥ′0 − h′o
h′o

= op(1),

where h′o is the ideal bandwidth for the third order polynomial smoothers {ϑ̂i(x), i
= 1, . . . , p} in the sense of mean integrated squared error (MISE), where

MISE = E

∫ b

a

[ p∑
i=1

(ϑ̂i(z) − θi(z))xti

]2
G(z)f(z)dz. (5.2)

Notice that ĥ′0 is not the asymptotic ideal bandwidth for {θ̂′′i (x), i = 1, . . . , p}.
But the ideal bandwidth ĥ′ for {θ̂′′i (x), i = 1, . . . , p} can be obtained as

ĥ′ = adj2,3ĥ
′
0,

where adj2,3 is an adjustment constant which depends only on the kernel function.
For example, if we use the Gaussian kernel, adj2,3 = 0.8665. See Fan and Gijbels
(1996, p.67) about this.

For the local linear smoother {θ̂i(x), i = 1, . . . , p} of (2.2), by some algebraic
calculation the ideal bandwidth in the sense of MISE (with ϑ̂i(x) replaced by θ̂i(x)
in (5.2) ) is

ho =
( κ2σ

2

n
∫
E(
∑p

i=1 θ
′′
i (z)xti)2G(z)f(z)dz

)1/5
.

The idea of the plug-in method is to replace the unknown quantities in ho with
their estimators. Since we have already estimated these quantities, the plug-in
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method is appealing to us. The estimated optimal bandwidth for {θ̂i(x), i =
1, . . . , p} is then

ĥ =
( κ2σ̂

2∑
a≤zt≤b(

∑p
i=1 θ̂

′′
i (zt)xti)2G(zt)

)1/5
. (5.3)

5.2. Simulation

For all the data analyzed below, we use the Epanechnikov kernel: K(x) =
3(1 − x2/5)I(x2 ≤ 5)/(4

√
5). Thus

∫+
√

5
−√

5
K2(x)dx = 3

√
5/25,

∫+
√

5
−√

5
(K ′(x))2dx

= 3
√

5/50. The bandwidth is chosen by (5.1) and (5.3) with G(x) ≡ 1.
Consider the following model

yt = θ1(yt−4) + θ2(yt−4)yt−2 + 0.05εt, εt
i.i.d.∼ N(0, 1). (5.4)

We want to test hypotheses

H10 : θ1(x) = 0.8e−γ1(x−0.5)2 ,

H20 : θ2(x) = 0.6 sin(γ2π(x− 0.5)2),

where x ∈ [0, 1] and γ1 = 2 and γ2 = 4. These coefficient functions are shown
in Figure 1.
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Figure 1. (a) and (b) corresponds to coefficient functions θ1(x) and θ2(x)
respectively. ‘ —-’: real coefficients; ‘- - -’: estimated coefficient; ‘-.-.’: 90%
confidence bands.
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Take the sample size n to be 300, 500 and 800 respectively. We repeat
each realization 500 times using a different seed. The parameters γ1 and γ2 are
estimated as in Gallant (1987). The empirical sizes and powers of the tests are
shown in Table 1. For the power study, the true model was simulated by adding
the term 0.01 sin(32πx) to both θ1(x) and θ2(x) above. We observe that in Table
1 the empirical powers are high and the empirical sizes are close to the nominal
significance level with all sample sizes. We can also construct confidence bands
for the coefficients using (4.3). Figure 1 shows the 90% confidence bands from a
typical data set with size n = 300.

Table 1. Empirical sizes and powers of the tests about model (5.4) for differ-
ent sample size n

n = 300 n = 500 n = 800

0.2 nominal θ1(x) size 0.226 0.218 0.214
significance power 0.652 0.838 0.946

level θ2(x) size 0.258 0.242 0.224
power 0.932 0.988 1.000

0.1 nominal θ1(x) size 0.120 0.116 0.116
significance power 0.606 0.714 0.920

level θ2(x) size 0.144 0.122 0.120
power 0.880 0.982 1.000

0.05 nominal θ1(x) size 0.054 0.048 0.044
significance power 0.514 0.648 0.872

level θ2(x) size 0.066 0.058 0.056
power 0.856 0.928 1.000

5.3. Application to the Australian blowfly data

We turn to the study of Australian blowfly data. There are n = 361 obser-
vations with outliers at t = 11 and t = 48 (cf. Tsay (1988)). Following Chan
and Tong (1986), we take a log transformation of the data, yt = log10( blowfly
population ), and consider the following model

yt = b0(yt−8) + b1(yt−8)yt−1 + · · · + b7(yt−8)yt−7 + εt . (5.5)

The estimates of bi(x), i = 0, . . . , 7, are displayed in Figure 2(a), and σ̂2 = 0.0178.
We test the null hypothesis

H0i : bi(x) ≡ 0, x ∈ [2.0, 4.0].
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i = 0, . . . , 7. Calculate

Mni = (−2 log h)1/2
[
σ̂(ψ(b− a))−1/2 sup

2≤x≤4
|(Γ−1

n (i, i))−
1
2 b̂i(x)| − µn

]
,

where b− a = 2.0. The test procedures are given in Table 2.

Table 2. The values of Mni, their corresponding p-values and the variance
estimate of εt

step 1 step 2 step 3
Mni p-value Mni p-value Mni p-value

b0(x) 14.78 0.001 37.38 0.000 42.63 0.000
b1(x) 54.15 0.000 54.36 0.000 55.80 0.000
b2(x) 6.99 0.002 6.64 0.003 16.84 0.001
b3(x) 7.53 0.009 7.09 0.002
b4(x) 5.41 0.002 5.21 0.011
b5(x) 3.19 0.079 4.71 0.018
b6(x) 1.60 0.332
b7(x) 1.71 0.304

σ̂2 0.0178 0.0181 0.0192

The p-values in Table 2 are defined as 1−P (Mni < ∗), i = 1, . . . , 7, (for example,
1 − P (Mn1 < 14.78) = 0.001). By removing b6(x) and b7(x) according to their
probability of significance, Step 2 arrives at a better model for the data. However,
following Tong (1990, p.337), we can also consider a model with a lower order
(step 3). Similar to linear regression, we write the FAR regression as

ŷt = b̂0(yt−8) + b̂1(yt−8)yt−1 + b̂2(yt−8)yt−2 , σ̂2 = 0.0192 . (5.6)

(0.000) (0.000) (0.003)

The values in parentheses are the corresponding p−values of the tests of bi(x) ≡
0, i = 1, 2, 3. The coefficient functions, the real data and the predicted values are
shown in Figure 2(b). There we can see why the threshold value is chosen to be
about 3.00 by Chan and Tong (1986) and Tong (1990), the coefficient functions
change directions about this point.

As Chen and Tsay pointed out, FAR models have widespread applications.
Related work on model identification and building has been considered by many
authors. For example, Chen (1995) gives a procedure to select the threshold vari-
able. Together with the results in this paper, one can make statistical inferences
about FL models much as can be done in linear models.
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Figure 2(a). Estimates of coefficient functions of model (5.5).

1

0

0

0
0.5

-0.5

-1

4

4

4

4

4

2

2

2

2

2

2.5

2.52.5

3

3

33

3.5

3.53.5

b
0
(x

)
b
2
(x

)

b
1
(x

)

1.5

50 100 150 200 250 300 350

Figure 2(b). Estimates of coefficient functions of model (5.6) and the obser-
vations vs estimated values, · observations, – estimated values.

Acknowledgement

The authors are most grateful to the referees for suggesting improvements over



FUNCTIONAL-COEFFICIENT LINEAR MODELS 749

an earlier version of this paper. W.K. Li’s research was supported by the Hong Kong
Research Grant Council.

Appendix. Proofs

In this section, we present some basic results about kernel smoothing under
dependence.

Theorem A1. Suppose that {(χt, ξt)} is a strictly stationary and strongly
mixing sequence such that

(i) The mixing coefficient α(k) = O(	k) for some 0 < 	 < 1;
(ii) E(ξt|χt = x) is bounded;
(iii) The conditional densities f(χ1|ξ1)(u1|v1) and f(χ1,χl|ξ1,ξl)(u1, ul|v1, vl) are

bounded for all l > 1;
(iv) E|ξt|ν <∞ for some ν > 2;
(v) the density function f(x) of χt is bounded.

If φ(x) is any bounded measurable function and U(x) is any integrable function
with bounded derivative and compact support, then
(1)

∑n
t=1

[
U((χt−x)/an)φ(χt)ξt−E(U((χt−x)/an)φ(χt)ξt)

]
=Ō((nan log n)1/2,R),

(2) n−1∑n
t=1 I(χt < x)ξt −

∫ x
−∞E(ξt|χt = s)f(s)ds = Ō((n−1 log n)1/2, R),

(3) supx,|δ|<an

∣∣∣∑n
t=1 I(x − δ < χt < x + δ)ξt −

∫ x+δ
x−δ E(ξt|χt = s)f(s)ds

∣∣∣ =

O((nan log n)1/2) a.s,

where an = O(n−ε1) for some 0 < ε1 < 1 − 2/ν.

Theorem A1(1) can be proved as in Masry and Tjøstheim (1995), while A1(2)
and A1(3) were proved by Xia and Zhou (1997). From Theorem A1, we get the
following lemma by taking U(x) = K(x)xk and an = h.

Lemma A2. Suppose (A2)-(A7) hold. If h = O(n−ρ) for some 0 < ρ < 1/3,
then

1
nh

n∑
t=1

wktxtixtj = φkvij(x)f(x) + Ō(δn1,R),

1
nh

n∑
t=1

wktxtiεt = Ō(δn∞,R), i, j = 1, . . . , p, k = 0, 1, 2, 4,

where wkt = K((zt − x)/h)((zt − x)/h)k, δn1 = h + (log n/(nh))1/2, δn∞ =
(log n/(nh))1/2 and φk =

∫
ukK(u)du.

Let A(x) = (v12(x), v13(x), . . . , v1p(x))T , P (x) = (vij(x))i,j=2,...,p and Q(x)
= (vij(x))i,j=1,...,p. From Lemma A2, we can easily show that (notations have
been defined between (2.2) and (2.6))

1
nh
An = A(x)f(x) + Ō(δn1,R)1p−1,

1
nh
Bn = Ō(1,R)1p,



750 YINGCUN XIA AND W. K. LI

1
nh
Rn = Ō(1,R)1p−1,

1
nh
Qn = Q(x)f(x) + Ō(δn1,R)1p1T

p ,

1
nh
Pn = P (x)f(x) + Ō(δn1,R)1p−11T

p−1. (A.1)

Furthermore, since f(x)λmin(P (x)) ≥ f(x)λmin(Q(x)) > ε as x ∈ Rε, we
have

(
1
nh
Pn)−1 = (P (x))−1f−1(x) + Ō(δn1,Rε)1p−11T

p−1 ,

(
1
nh
Qn)−1 = (Q(x))−1f−1(x) + Ō(δn1,Rε)1p1T

p . (A.2)

It is known that for any symmetric matrices A and D such that appropriate
inverses exist, (

A B

D

)−1

=

(
A−1 + FE−1F T −FE−1

E−1

)
,

where E = D −BTA−1B, F = A−1B. Therefore,

H−1
n =

(
P−1

n + P−1
n RnH−1

n RT
nP

−1
n −hP−1

n RnH−1
n

h−2H−1
n

)
,

where Hn = Qn −RT
nP

−1
n Rn, and

JT
n H

−1
n = (AT

nP
−1
n +AT

nP
−1
n RnH−1

n RnP
−1
n −BT

n H−1
n RT

nP
−1
n ,

−h−1AT
nP

−1
n RnH−1

n + h−1BnH−1
n ), (A.3)

JT
n H

−1
n Ut = AnP

−1
n St +AT

nP
−1
n RnH−1

n RT
nP

−1
n St −BT

n H−1
n RT

nP
−1
n St

−h−1(zt − x)(AT
nP

−1
n RnH−1

n −BT
n H−1

n )Tn. (A.4)

It follows from (A.1)-(A.4) that

JT
n H

−1
n = (AT (x)(P (x))−1 + Ō(δn1,Rε)1T

p−1, Ō(δn1,Rε)1T
p ), (A.5)

JT
n H

−1
n Jn = AT (x)(P (x))−1A(x)f(x) + Ō(δn1,Rε). (A.6)

Thus

1
nh

n∑
t=1

wt(xt1 − JT
n H

−1
n Ut)2 =

1
nh

n∑
t=1

wtx2
t1 − JT

n H
−1
n Jn

= v11(x)f(x) −AT (x)(P (x))−1A(x)f(x) + Ō(δn1,Rε)

= f(x)det(Q(x))/det(P (x)) + Ō(δn1,Rε). (A.7)

This result means that θ̂1(x) makes sense at (2.5). In notations defined between
(2.2) and (2.6), we have the following result.
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Lemma A3. Assume (A2)-(A7) hold and h = O(n−ρ) for some 0 < ρ < 1/3.
Then det(

∑n
t=1 wtVt V

T
t ) tends to infinity a.s. uniformly in x ∈ Rε as n→ ∞.

Proof. Decompose

n∑
t=1

wtVtV
T
t =

(∑n
t=1 wtTtT

T
t h

∑n
t=1 w1tTtT

T
t

h2∑n
t=1 w2tTtT

T
t

)
=

(√
nhIp 0√

nh3Ip

)

×
(

(nh)−1∑n
t=1 wtTtT

T
t (nh)−1∑n

t=1 w1tTtT
T
t

(nh)−1∑n
t=1 w2tTtT

T
t

)(√
nhIp 0√

nh3Ip

)
.

By Lemma A2, we have

1
nh

n∑
t=1

wtTtT
T
t = Q(x)f(x) + Ō(δn1,Rε)1p1T

p ,

1
nh

n∑
t=1

w1tTtT
T
t = Ō(δn1,Rε)1p1T

p ,

1
nh

n∑
t=1

w2tTtT
T
t = Q(x)f(x) + Ō(δn1,Rε)1p1T

p .

Notice that nh3 → +∞ and Lemma A3 follows.

Lemma A3 ensures that the estimator of (2.4) makes sense.

Theorem A2. Let {(χt, ξt)} be defined as in Theorem A1. Suppose E(ξ2t |χt = s)
is bounded and E|ξt|8+ι <∞ for some ι > 0; {νt} is a sequence of i.i.d. r.v’s with
Eνt = 0, Eν2

t = σ2 and E|νt|8+ι < ∞. For each t, suppose νt is independent of
{(χs, ξs), s ≤ t}. Then on a possibly enlarged probability space, there exists a
sequence of standard Wiener process Wn(x), x > 0, such that

n∑
t=1

I(χt < x)ξtνt −
√
nσWn(

∫ x

−∞
E(ξ2t |χt = s)f(s)ds) = Ō(n1/4(log n)

3
4 , [a, b]).

Note that the process
∑n

t=1 I(χt < x)ξtνt, x ∈ R, is a hybrid of an empirical
and a partial-sum process, and is of some interest in itself. Theorem A2 can be
proved using the Skorohod embedding of multivariate random variables (Kiefer
(1972)). The proof is lengthy, details can be obtained from the authors.

Proof of Theorem 3.1. Here we only do the proof for θ̂1(x) as an example.
By the Cauchy-Schwarz inequality, (A.7), and Lemma A2,

| 1
nh

n∑
t=1

wt(xt1 − JT
n H

−1
n Ut)θ′′(zti)(zt − x)2xti|
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≤
{ 1
nh

n∑
t=1

wt(xt1 − JT
n H

−1
n Ut)2

1
nh

n∑
t=1

wtθ
′′2
i (zti)(zt − x)4x2

ti

} 1
2

≤M
{ 1
nh

n∑
t=1

wt(xt1 − JT
n H

−1
n Ut)2h4 1

nh

n∑
t=1

w4tx2
ti

} 1
2

=M
{
[v11(x)f(x) −A(x)(P (x))−1AT (x)f(x) + Ō(δn1,Rε)]

×h4[φ4v11(x)f(x) + Ō(δn1,Rε)]
} 1

2

= Ō(h2,Rε), i = 1, . . . , p. (A.8)

Thus from (A.7) and (A.8), the second term on the right hand side of (2.5) is
Ō(h2,Rε). By Lemma A2, we have

1
nh

n∑
t=1

wtTtεt = Ō(δn∞,R)1p,
1
nh

n∑
t=1

w1tTtεt = Ō(δn∞,R)1p.

Therefore from (A.5),

n∑
t=1

wt(xt1 − JT
n H

−1
n Ut)εt = (1, −JT

n H
−1
n )

n∑
t=1

wtVtεt

= (1, −JT
nH

−1
n )(

n∑
t=1

wtT
T
t εt, h

n∑
t=1

w1tT
T
t εt)

T

= (1, −AT (x)(P (x))−1)
n∑

t=1

wtTtεt + Ō(nhδn1δn∞,Rε). (A.9)

Combining (A.9) with (A.7) and using Lemma A2, the last term on the right
hand side of (2.5) is equal to Ō(δn∞,Rε).

Proof of Theorem 4.1. We only prove the theorem for Mn1(x), the other
cases are similar. From (2.5) and (A.7)-(A.9), to derive the distribution of θ̂1(x)
we only need to handle the term

∑n
t=1 wt(xt1 − AT (x)(P (x))−1St)εt. Let ut =

xt1 −AT (x)(P (x))−1St and Λ = [a0, b0]. Write

n∑
t=1

wtutεt =
n∑

t=1

I(zt ∈ Λ)wtutεt +
n∑

t=1

I(zt /∈ Λ)wtutεt
∆= L1 + L2. (A.10)

Noticing that |zt − x| > c0 when x ∈ [a, b] and zt /∈ Λ, we have, (as c0
h > δ0),

sup
x∈[a,b]

∣∣∣I(zt /∈ Λ)wtutεt
∣∣∣ ≤ K(

c0
h

) (|xtεt| +M‖Stεt‖) = 0 a.s. (A.11)

Therefore the term L2 is negligible when n is sufficiently large. Let Λi =
[dn(i−1), dni), i = 1, . . . , n − 1, Λn = [dn(n−1), b0], where dni = a0 + i(b0 −
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a0)/n, i = 0, . . . , n. Define z̃t = dni if zt ∈ Λi, i = 1, . . . , n, and z̃t = 0 other-
wise. By definition, |I(zt ∈ Λ)zt − z̃t| = O(1/n). Using the Strong Law of Large
Numbers for {utεt}, we have

L1 =
n∑

t=1

I(zt ∈ Λ)
[
K
(zt − x

h

)
−K

( z̃t − x

h

)]
utεt+

n∑
t=1

I(zt ∈ Λ)K
( z̃t − x

h

)
utεt

= O(
1
nh

)
n∑

t=1

|utεt| +
n∑

t=1

I(zt ∈ Λ)K
( z̃t − x

h

)
utεt

= Ō(
1
h
, [a, b]) +

n∑
t=1

I(zt ∈ Λ)K
( z̃t − x

h

)
utεt.

Therefore

1√
nh
L1 =

1√
nh

n∑
t=1

K
( z̃t − x

h

)
I(zt ∈ Λ)utεt + Ō(

1√
nh3

, [a, b]), (A.12)

while
n∑

t=1

K
( z̃t − x

h

)
I(zt ∈ Λ)utεt =

n∑
i=1

K
(dni − x

h

) n∑
t=1

I(zt ∈ Λi)utεt. (A.13)

Let ςi =
∑i

j=1

∑n
t=1 I(zt ∈ Λj)utεt =

∑n
t=1 I(a0 ≤ zt < dni)utεt, ς0 ≡ 0. By

Abel’s summation we have
n∑

t=1

K
( z̃t − x

h

)
I(zt ∈ Λ)utεt

=K
(b0 − x

h

)
ςn −

n−1∑
i=1

[
K
(dn(i+1) − x

h

)
−K

(dni − x

h

)]
ςi. (A.14)

Let G(z) =
∫ z
a0
E(u2

t |zt = s)f(s)ds, δ̃n = n
1
4 (log n)

3
4 . By Theorem A2 and the

bounded variation of K(x), if (A8) holds, then

|ςn − σn1/2W(G(b0))| = O(δ̃n) a.s.

and

|
n−1∑
i=1

[
K
(dn(i+1) − x

h

)
−K

(dni − x

h

)]
[ςi − σn

1
2W(G(dni))]|

≤ max
1≤i<n

|ςi − σn
1
2W(G(dni))|

n−1∑
i=1

∣∣∣K(dn(i+1) − x

h

)
−K

(dni − x

h

)∣∣∣
≤ Ō(δ̃n, [a, b]).
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Consequently,

n∑
t=1

K
( z̃t − x

h

)
I(zt ∈ Λ)utεt

= σ
√
nK

(b0 − x

h

)
W (G(b0)) − σ

√
n

n−1∑
i=1

[
K
(dn(i+1) − x

h

)

−K
(dni − x

h

)]
W(G(dni)) + Ō(δ̃n, [a, b]). (A.15)

For a Wiener process, it is known that (cf. Csörgő and Révész (1981), p.44)

sup
z∈Λ

|W(G(z + δ)) −W(G(z))| = O((δ log(1/δ))1/2 ) a.s.

where δ is any small number. Using this property and the bounded variation of
K(x), we have

n−1∑
i=1

[
K
(dn(i+1) − x

h

)
−K

(dni − x

h

)]
W(G(dni))

=
∫ b0

a0

W(G(s))dK
(s− x

h

)
+ Ō(

( log n
n

) 1
2
, [a, b]). (A.16)

From (A.12)-(A.16), we conclude that

1√
nh
L1 = σh−

1
2

∫ b0

a0

K
(s− x

h

)
dW(G(s)) + Ō(

δ̃n√
nh

+
1√
nh3

, [a, b]).(A.17)

Hence from (2.5), (A.7), (A.8), (A.9), (A.17) and (A.10) we have

1√
nhσ

[
Γ−1

n (1, 1)
]−1

(θ̂1(x) − θ1(x))

= h−
1
2

∫ b0

a0

K
(s− x

h

)
dW(G(s))+Ō(n

1
2h

5
2 +n

1
2h

1
2 δn1δn∞+

δ̃n√
nh

+
1√
nh3

, [a, b])

∆= Yn(x) + Ō(δ̄, [a, b]). (A.18)

If h = O(n−ρ) for some 1/5 < ρ < 1/3, then δ̄ → 0 as n → ∞. Let g(x, s) =
[E(u2

t |zt = s)f(s)]
1
2 = v11(s)f(s) − AT (x)(P (x))−1A(s)f(s). From assumptions

(A4) and (A6), we know that g(x, s) > 0, (x, s) ∈ [a0, b0] × [a0, b0], and has
bounded derivative. For Wiener processes, it is easy to show by calculating their
moments that

W(G(y)) D=
∫ y

a0

g(x, s)dW(s − a0).
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Thus

Yn(x) D= h−
1
2

∫ b0

a0

K
(s− x

h

)
g(x, s)dW(s − a0). (A.19)

Let Y1n(x) = Yn(x)/g(x, x) and

Y0n(x) = h−
1
2

∫ b0

a0

K
(s− x

h

)
dW(s− a0).

A simple result about Y0n(x) is (cf. Xia (1998))

Y0n(x) = Ō((log n)1/2, [a, b]). (A.20)

Furthermore, following the method of Härdle (1989), we have

|Y1n(x) − Y0n(x)| = Op(h
1
2 ), (A.21)

uniformly for x ∈ [a, b].
On the other hand, we have by definition,

(g(x, x))2 = v11(x)f(x) −AT (x)(P (x))−1A(x)f(x).

From (2.6) and (A.7) and noticing that g(x, x) is bounded away from zero on
x ∈ Λ, we have

|
√
nh(Γ−1

n (1, 1))
1
2 − (g(x, x))−1| = Ō(δn1,Λ). (A.22)

Hence from (A.18), (A.20) and (A.22), we have

|σ−1(Γ−1
n (1, 1))−

1
2 [θ̂1(x) − θ1(x)] − Yn(x)/g(x, x)|

= σ−1
∣∣∣Yn(x)

[√
nh(Γ−1

n (1, 1))
1
2 − (g(x, x))−1

]∣∣∣+ Ō(δ̄, [a, b])

= Ō(δ̄ + δn1(log n)1/2, [a, b]). (A.23)

From (A.22), (A.23), Theorems 3.1 and 3.2, we have

|Mni(x) − Yn(x)/g(x, x)| ≤ |(σ̂−1 − σ−1)(Γ−1
n (1, 1))−

1
2 [θ̂1(x) − θ1(x)]|

+|σ−1(Γ−1
n (1, 1))−

1
2

[
θ̂1(x) − θ1(x)

]
− Yn(x)/g(x, x)|

= Ō(
√
nhδ2n2 + δ̄ + δn1(log n)1/2, [a, b]). (A.24)

Hence, Theorem 4.1 follows from (A.21) and (A.24).
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