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STATISTICAL ANALYSIS OF REMOVAL EXPERIMENTS

WITH THE USE OF AUXILLARY VARIABLES

Richard M. Huggins and Paul S. F. Yip

La Trobe University and University of Hong Kong

Abstract: Conditional likelihood methods are applied to data from removal exper-

iments to both model capture probabilities in terms of auxillary variables, cor-

responding to observable individual characteristics and environmental conditions,

and to estimate the size of the population. Asymptotic properties of the resulting

estimators are derived and the methods are applied to a data set which include

time dependent covariates. A simulation study is also given.
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1. Introduction

The use of auxillary variables in the analysis of removal experiments has been
previously considered in Pollock, Hines and Nichols (1984) who consider mod-
els which include environmental conditions and catch effort. Their methods also
allow the use of individual characteristics which are analysed by constructing cat-
egories based on these variables and then estimating the size of each category. For
example this allows varying capture probabilities for males and females or large
and small individuals. The categories can however become restrictive if there are
several characteristics related to capture probabilities. A further difficulty with
their method is the somewhat arbitrary rescaling of the variance estimates (see
Pollock et al. (1984), p.355). The conditional likelihood approach to capture-
recapture experiments of Huggins (1989, 1991) enables the modelling of capture
probabilities in terms of observable characteristics of the captured individuals
directly and of the environment which removes the need for the construction of
categories and provides asymptotically valid estimates of variance. Here this ap-
proach is extended to removal experiments by conditioning on the removal of an
individual and using information on which occasion the individual was removed
to estimate the parameters in the model for the removal probabilities.

In Section 2 the conditional likelihood is constructed and its use in estimating
the population size is discussed in Section 3. The asymptotic properties of the
resulting estimator is discussed in the Appendix. To illustrate these methods
we consider a banding recoveries data set collected at Mai Po Bird Sanctuary in
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Hong Kong in 1992 and a recapture data set from East Stuart Gulch Colorado
in U.S.A. in Section 4. A simulation study to examine the performance of the
estimator is given in Section 5.

2. The Conditional Likelihood

Suppose the removal experiment consists of t distinct removal occasions
where individuals are captured and then removed from a closed population. The
individuals are supposed to behave independently of one another and the indi-
vidual covariates are supposed to be independently and identically distributed so
that, in particular, the individual covariates are independent observations from
a common distribution. Let β = (βT

1 , βT
2 )T be a vector of parameters. Take xi

to be the vector of characteristics corresponding to the ith individual and let zj

be a vector of environmental characteristics. The probability that individual i is
captured and removed from the population on occasion j given he has not been
removed before j is denoted by pij and let qij = 1 − pij. We assume a log linear
model, i.e.

log
(

pij

1 − pij

)
= βT

1 xi + βT
2 zj , for i = 1, . . . , ν, j = 1, . . . , t,

where ν denotes the population size, and assume that individuals act indepen-
dently of one another.

Let {1, . . . , n} denote the captured individuals and {n+1, . . . , ν} the uncap-
tured individuals. Let cij = 1 if individual i is captured on occasion j and be 0
otherwise and ci = 1 if individual i is captured in the course of the experiment
and be 0 otherwise.

The full likelihood is given by

L =
n∏

i=1

t∏
j=1

(qi1 . . . qi,j−1pij)cij

ν∏
i=n+1

(qi1 . . . qit)(1−ci)

which may be rewritten as

L =
[ n∏

i=1

∏t
j=1(qi1 . . . qi,j−1pij)cij

(1 − qi1 . . . qit)

] ν∏
i=1

(qi1 . . . qit)1−ci(1 − qi1 . . . qit)ci .

Since no information about the covariates of the uncaught individual is available,
inferences concerning β are based on the conditional likelihood

L∗ =
n∏

i=1

∏t
j=1(qi1 . . . qi,j−1pij)cij

(1 − qi1 . . . qit)
=

ν∏
i=1

∏t
j=1(qi1 . . . qi,j−1pij)cij

(1 − qi1 . . . qit)ci
, (1)
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where the later form of the conditional likelihood is used in the Appendix below
to derive the asymptotic properties of the estimators.

The maximum conditional likelihood estimators of β are then obtained from
maximising the conditional likelihood in (1). The asymptotic properties of these
estimators are easily derived and are outlined in the Appendix. These properties
allow the use of a likelihood ratio tests to test between models as in Section 2.4
of Pollock et al. (1984).

3. Estimating the Population Size

To estimate the population size the approach of Huggins (1989) is followed.
Essentially it is a Horvitz-Thompson estimator (1952). Let pi be the probability
that individual i is captured in the course of the removal experiment. Then
pi = 1− qi1qi2 . . . qit . If pi is known, an unbiased estimate of the population size
is given by

ν̂(β) =
n∑

i=1

p−1
i

which has variance σ2 =
∑ν

i=1(1 − pi)/pi and an unbiased estimator of σ2 is
s2 =

∑n
i=1(1 − pi)/p2

i . In practice we estimate ν by ν̂(β̂) =
∑n

i=1p̂
−1
i where p̂i

are evaluated at the estimated β. The variance of ν̂(β̂) includes a contribution
from the variance of β̂ and in the Appendix the estimate of the asymptotic
variance of ν̂(β̂) is shown to be s2+D(β̂)T I(β̂)−1D(β̂), where I(β̂) is the observed
information matrix and D(β̂) = dν̂(β)/dβ evaluated at the estimated value β.
Note that it is possible for an experiment to fail and valid estimation of ν not be
possible. Seber and Whale (1970) and Otis et al. (1978), p.113 give conditions
under which the generalised removal model fails but for our models this is still
an open question.

4. Examples

Example 1. We consider bandings of a species Prinia inornate collected at the
Mai Po Bird Sanctuary in Hong Kong in 1992. During the year 105 birds were
banded and there were no recaptures after the first four months suggesting the
population size is very close to 105. In fact using the full data set the methods
of Huggins (1989, 1991) estimated the popualtion size as 105 with an estimated
standard error of 10−4. We regard the first banding as a removal and consider the
first four months data. Available covariates were the weight of each bird and an
age variable indicating whether the bird was aged less than one year at capture.
Usually the age of a bird is determined by its color and length of feathers. In
order to introduce occasion effects we allowed different removal probabilities in
the last two months compared with the first two. The likelihood ratio test showed
no significant relationship between the covariates and the removal probabilities
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(full model, -log-likelihood=104.9, 4 parameters: constant removal probabilities,
-log-likelihood=105.9, 1 parameter) and the resulting estimate of the population
size was 107.9 with an estimated standard error of 2.24.

Table 1. Removals of peromyscus maniculatus.
m y 12 1 m y 13 1 f y 5 2 m sa 16 4
f y 15 1 f a 22 1 f a 20 2 f y 11 4
m y 15 1 m y 14 1 m y 12 2 m y 14 5
m y 15 1 m y 11 1 f y 6 3 f y 11 5
m y 13 1 f y 10 1 f a 22 3 m a 24 5
m a 21 1 f a 23 2 f y 10 3 m y 9 6
m y 11 1 f y 7 2 f y 14 3 m sa 16 6
m sa 15 1 m y 8 2 f a 19 3 f a 19 6
m y 14 1 m a 19 2 f a 19 3
m y 14 1 m y 13 2 f a 20 4

The columns represent, respectively, the sex (m or f ), the ages (y = young,
sa = semi-adult, a = adult), the weights in grams, and the occasion the in-
dividual was removed over 6 trapping occasions.

Example 2. The data of Table 1 is extracted from Appendix 1 of Huggins
(1991) who reports a data set on the captures of peromyscus maniculatus collected
by V. Reid at East Stuart Gulch Colorado and distributed with the program
CAPTURE of Otis et al. (1978). Here the first captures are treated as removals
and the capture probabilities are modelled as functions of the sex, age and weight
of the individuals. Using this full model the population size was estimated at
43.69 with a standard error of 3.04 which is quite close to the estimates given
by Otis et al. (1978) using their model Mb(ν̂ = 41, se(ν̂) = 3.01). However
the estimate and its standard error are somewhat less than that of 47.1 with a
standard error of 7.2 obtained in Huggins (1991) using the full capture histories.
A likelihood ratio test revealed that in the removal model, unlike the capture-
recapture model based on the full capture histories, none of the covariates were
significantly related to the first capture probability. Using this reduced model the
estimate of the population size and the associated standard error model remained
essentially the same.

The discrepancy between the estimate using the full capture histories and
the removal model which only uses the first capture occasion is of some interest
as one would expect the estimate which uses the most information to have the
lesser variance. The estimates of the population size and its associated standard
error of Huggins (1991) were inflated by contributions from two young females
with low weights which give them a leverage effect. Thus, it appears the use of
removal methods applied to first captures may aid in the detection of influential
individuals.
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5. Simulations

In order to examine the performance of the estimators we conducted a small
simulation study. We considered a population of 300 individuals whose removal
probabilities depended upon the sex (SEX) and weight (WT ) of the individual
and allowed an environmental covariate (ENV ) for each occasion. The simu-
lated individuals were assigned their sex with probability 1

2 and the weights were
normally distributed with mean 3 and variance 1. The environmental covariates
were normal with mean 2 and variance 1. All covariates were recomputed for
each simulation. We used the logistic model for the removal probabilities,

ln
(

pij

1 − pij

)
= −7 − 1 × SEX + 1.5 × WT + 1 × ENV.

We considered 4, 6 and 8 removal occasions. On several occasions the max-
imum likelihood algorithm did not converge but stopped due to roundoff error,
which we detected by the information matrix not being positive definite and
these simulations were excluded. Only 1% of the number of simulation for each
trial is excluded. The percentage was even less when t is 6 or 8. Further, the
simulations did not include the modelling procedure which a statistician would
employ and we noted that the use of an over parameterized model can result
in grossly inflated estimates of the population size. This largely contributes to
the large tails observed in the simulations. The results of the 1000 simulations
are reported in Table 2 and Figure 1. It is clear from Table 2 and Figure 1
that whilst the bulk of the estimates are close to the true population size, the
distribution of the estimator is not normal even for the moderately large popula-
tion sizes considered in the simulations. Note that despite the non-normality of
the estimators the coverage probabilities of the resulting confidence intervals are
reasonable. However, in practice a bootstrap procedure to construct confidence
intervals may be preferable.

Table 2. Simulation results for ν = 300.
Number of occasions: 4 6 8
Number of captures: 206.3 (27.4) 232.1 (20.2) 246.6 (16.2)
ν̂+: 836.8 (6663.4) 340.5 (207.1) 319.2 (84.0)
[ν̂ < 1000+]: 336.8 (126.6) 324.3 (79.4) 316.6 (59.4)
Median (ν̂): 304.8 279.5 286.2
se(ν̂)�: 3188 112.1 49.5
(< 1000)�: 137.7 72.0 45.6
Coverage* (%): 88 90 92

Note: + We give the mean over the simulations, with the standard deviation
in parentheses. � The mean of the estimated standard errors. * Coverage is
the percentage of the 95% confidence intervals constructed using the asymp-
totic distribution of the estimators which contains the true value of ν̂.
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Figure 1. Histograms of estimated population sizes for ν̂ < 1000.
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Appendix. Asymptotic Properties of the Estimates

As the methods are similar to those of Huggins (1989) we only briefly outline
the derivation of our results. Let

S(β) =
d log L∗

dβ
=

ν∑
i=1

[ t∑
j=1

cij

(qi1 . . . qi,j−1pij)
d(qi1 . . . qi,j−1pij)

dβ

+
ci

(1 − qi1 . . . qit)
d(qi1 . . . qit)

dβ

]
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be the derivative of the log-likelihood with respect to β. Then, under assump-
tions that the individuals behave independently of one another and that the
individual covariates are independently and identically distributed, S(β) is the
sum of independently and identically distributed random variables.

Now E(cij) = qi1 . . . qi,j−1pij, E(ci) = 1− qi1 . . . qit and pij = 1− qij, and we
may write

t∑
j=1

[
d(qi1 . . . qi,j−1)

dβ
− d(qi1 . . . qij)

dβ

]
= −d(qi1 . . . qit)

dβ
.

Thus,

E(S(β)) =
ν∑

i=1

t∑
j=1

[
d(qi1 . . . qi,j−1pij)

dβ
+

d(qi1 . . . qit)
dβ

]
= 0,

Similar arguments show that

E

(
dS(β)

dβ

)
= −

ν∑
i=1

[ t∑
j=1

(qi1 . . . qi,j−1pij)−1
[
d(qi1 . . . qi,j−1pij)

dβ

]⊗2

−(1 − qi1 . . . qit)−1
[
d(qi1 . . . qit)

dβ

]⊗2]
,

where for a vector a, a⊗2 = aaT and it is straightforward to show that E(S(β)⊗2)
= −E(dS(β)/dβ) = I(β). To obtain asymptotic properties of our estimators we
proceed as in Huggins (1989) and suppose we have an increasing sequence of
populations. Then as in Huggins (1989) after noting that for β+ between β̂

and β, (β̂ − β) = −[dS(β)/dβ]−1
β+S(β), we may conclude that the maximum

conditional likelihood estimators, β are consistent and asymptotically normal
with variance and covariance matrix I(β)−1. Next, note that

Cov (S(β), ν̂(β)) = E

[ ν∑
i=1

t∑
j=1

(
cicij

(qi1 . . . qi,j−1pij)pi

d(qi1 . . . qi,j−1pij)
dβ

+
c2
i

(1 − qi1 . . . qit)pi

d(qi1 . . . qit)
dβ

)]

=
ν∑

i=1

1
pi

[ t∑
j=1

(
d(qi1 . . . qi,j−1pij)

dβ
+

d(qi1 . . . qit)
dβ

)]
= 0,

arguing as above, where E(cicij) = E(cij) and E(c2
i ) = E(ci). Hence S(β) and

ν̂(β) are uncorrelated. Now ν̂(β) is the sum of independently and identically
distributed random variables so that its asymptotic distribution is easily seen to
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be normal with mean ν and variance σ2. Next, for some β∗ and β+ both between
β and β̂ we may write

ν̂(β̂) = ν̂(β) +
[
dν̂(β)
dβ

]T

β∗
(β̂ − β) = ν̂(β) −

[
dν̂(β)

dβ

]T

β∗

[
dS(β)

dβ

]−1

β+
S(β).

We have shown that ν̂(β) and S(β) are uncorrelated and hence, we have asymp-
totically, var(ν̂(β̂)) = σ2 + D(β)T I−1(β)D(β), where D(β) = E(dν̂(β)/dβ).
In practice we estimate σ2 by s2 , I(β) by the observed information matrix
−[dS(β)/dβ]β̂ and D(β) by [dν̂(β)/dβ]β̂ .
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