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In this paper we study goodness-of-fit testing of single-index models.
The large sample behavior of certain score-type test statistics is investigated.
As a by-product, we obtain asymptotically distribution-free maximin tests
for a large class of local alternatives. Furthermore, characteristic function
based goodness-of-fit tests are proposed which are omnibus and able to
detect peak alternatives. Simulation results indicate that the approximation
through the limit distribution is acceptable already for moderate sample sizes.
Applications to two real data sets are illustrated.

1. Introduction. Suppose that a response variable ¥ depends on a vector
X = (xl,u.,xp)r of covariates, where T denotes transposition. We may then
decompose Y into a function m(X) of X and a noise variable e, which is
orthogonal to X, that is, for the conditional expectation of ¢ given X we have
E(¢|]X) = 0. When Y is unknown, the optimal predictor of ¥ given X = X
equals m(x). Since in practice the regression function m is unknown, statistical
inference about m is an important issue. In a purely parametric framework,
m is completely specified up to a parameter. For example, in linear regression
‘m(x) = BT'x, where 8 is an unknown p-vector which needs to be estimated from
the available data. Slightly more generally we may consider m(x) = d(BTx),
where the link-function & may be nonlinear but is again specified. This is the
so-called generalized linear model.

When ® remains unspecified, we arrive at a semiparametric model which
is more flexible on the one hand and, on the other hand, avoids the curse of
dimensionality one faces in fully nonparametric models. The estimator of g, as
well as of the link function ®, in this so-called single-index model was studied by
among others, Li and Duan [25], Hérdle, Hall and Ichimura [16], Ichimura [23]
and Hristache, Juditsky and Spokoiny [22]. Related work is [6] and [20]. Clearly,
any statistical analysis within the model, to avoid wrong conclusions, should be
accompanied by a check of whether the model is valid at all. For the single-index
model the diagnostic methods are less elaborate. We only mention Fan and Li [14],
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Ait-Sahalia, Bickel and Stoker [1] and Xia, Li, Tong and Zhang [38] here but come
back to them later. See Discussion 2.6, when we are prepared to compare their
approaches and results with ours. The paper by Hérdle, Mammen and Proenga
[19] considers a parametric link structure and therefore does not fall into the area
studied in this paper.

In the present paper, we aim at developing some formal tests for model checking
when the link function remains unspecified.

For more specified regression models the literature is much more elaborate. To
review only a few contributions, Cox, Koh, Wahba and Yandell [8] introduced
tests of the null hypothesis that a regression function has a particular parametric
structure. Azzalini, Bowman and Hirdle [3] considered nonparametric regression
as an aid to model checking. Cox and Koh [7] developed spline-based tests of
model adequacy. Eubank and Spiegelman [11] considered spline approaches to
testing the goodness of fit of a linear model. Simonoff and Tsai [28] proposed
diagnostic methods for assessing the influence of individual data values on
goodness-of-fit tests based on nonparametric regression. Gu [15] used spline
methods in a diagnostic approach to model fitting. Azzalini and Bowman [2] used
nonparametric regression to check linear relationships. Eubank and LaRiccia [10]
derived properties of two-sided tests in nonparametric regression based on Fourier
methods. Hirdle and Mammen [17] considered comparisons between parametric
and nonparametric fits and used the wild bootstrap for the computation of cr#tical
regions. Hirdle, Mammen and Miiller [18] investigated testing for parametric
versus semiparametric modeling in generalized linear models, again using the wild
bootstrap.

Note, however, that any test using a nonparametric regression estimator
runs into an ill-posed problem requiring the choice of a smoothing parameter.
Therefore, an alternative approach was developed which circumvents these
problems. To name only a few papers, Bierens [4] proposed to check a parametric
regression model by investigating the sum of properly weighted residuals. See also
[5] for an informative discussion of the resulting tests when local alternatives
are considered. In Stute [33] a method was studied which is based on the
integrated regression function and which corresponds to cumulative quantities
such as empirical distribution functions or ranks known from other areas in
statistics. In this setup the author was able to derive a principle components
decomposition of the underlying test process, which is extremely useful for
design of optimal tests versus local alternatives and for understanding the impact
of the design distribution and the noise variance on the power of the tests. In
particular, optimal Neyman—Pearson tests which are based on linear rather than
quadratic test statistics can be obtained from this decomposition. Stute, Gonzalez
Manteiga and Presedo Quindimil [35] studied the quality of the distributional
approximation of an associated cusum process via the wild bootstrap, while
Stute, Thies and Zhu [36] proposed an innovation process approach so as to
obtain asymptotically distribution-free and optimal tests. Finally, Stute and Zhu
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[37] developed nonparametric testing for the validity of a generalized linear
model, which is based on a proper transformation of a residual empirical process
and which perfectly adapts to a situation when the design vector is elliptically
contoured.

In the framework of the single-index model the link function is unknown and, as
part of the testing procedure, needs to be estimated in a nonparametric way. From
our preceding remarks on ill-posedness, one might conclude that nonparametric
estimation of the link function necessarily excludes the possibility of constructing
tests which have optimal power versus local alternatives converging to the null
model at the rate n~'/?. Fortunately, as this paper will show, this pessimistic
view is not justified. To obtain such tests, rather than comparing the estimator
of ® with the hypothetical semiparametric model, we embed the residuals into a
cusum process. This summation has a smoothing effect so that our test is much less
sensitive than usual to a wrong choice of the bandwidth. At the same time, each
residual is properly weighted by a function of the design vector. Our main result,
Theorem 2.1, is formulated for a given fixed weight function. Such an approach
has a long tradition in statistics. Typically, score tests are first analyzed (and
optimized) when the direction from which the alternative tends to the null model is
specified. Classical examples are linear one- and two-sample rank statistics or rank
correlation statistics. Also, robust tests focussing on a neighborhood of a given
family of distributions are designed in this spirit.

Theorem 2.1 not only provides the asymptotic normality of a large class of score
statistics, but also yields (up to a remainder) a representation as a sum of 1.i.d.
variables. From this, when the alternative is specified, we shall be able to choose
the weights so as to optimize local power. This discussion will give us a clue as to
how to proceed if the alternative model has arbitrary but finite codimension d. In
such a situation we propose and study a test which is asymptotically distribution-
free and shown to be maximin (Corollary 2.2). Since d is arbitrary, Corollary 2.2
covers most situations arising in practice. The i.i.d. representation is also useful
for implementation of a proper bootstrap approximation. See Section 3 for some
details.

For those readers who prefer omnibus tests, we also discuss (Theorem 2.3)
a situation where the deviation from the null model is completely nonparametric.
Also, in this case, the local asymptotic power can be derived. Finally, we include
a discussion of how our test behaves when local peak alternatives are to be
detected.

The paper is organized as follows. In Section 2 we introduce the basic test
statistics and formulate our main results. In Section 3 we report on some simulation
results and apply our method to two data sets. Proofs of theoretical results are
postponed to Section 4. Readers who want to skip the technical part may consult
Section 2 for an informal discussion and some background information on proofs.
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2. Main theorems. Throughout the paper we assume that the available data
(X:,Y), 1 <i <n, are independent and have the same distribution as (X, ).
Under the null hypothesis, that is, under the single-index model,

2.1) Y=dB"X)+e,

where B is an unknown p-vector and & is an unspecified link function defined on
the real line. The noise variable ¢ satisfies

(2.2) E(e|X) =E(|p’ X) =
which is tantamount to saying that
(2.3) E(Y|X)=EY|pTX) =287 X).

Note that (2.2) allows ¢ to depend on X so that (2.1) may include heteroscedastic
errors. The first equation in (2.3) features the projection pursuit character of the
single-index model in that the conditional mean of ¥ given X only depends on a
proper projection of X.

To motivate our approach, assume for a moment that we already have an
estimator B of B. Replacing g7 X; with 3TX,-, we could try to estimate ® through
a Nadaraya-Watson estimator ® or a local linear smoother as discussed, for
example, in [13]. The disadvantage of these smoothers, at least in our coptext,
comes from the fact that the distribution of ﬁ as well as X, will likely have an
effect on the distribution of our test statistic, even in the limit. This phenomenon
is well known in many other statistical problems, when unknown parameters
need to be estimated. Typically, the effect on the distributional character requires
some correction through a proper transformation of the test statistic. See, for
example, [34]. Moreover, the ratio structure of these estimators & creates some
technical problems when the denominator is small, that is, when x lies in a
region of low density. From time to time some structural assumptions on level
sets are imposed, but when it comes down to estimation, these assumptions can
hardly be justified for ®. To avoid all these nasty side effects, we decided to
use an estimator of ® which employs a transformation of ﬁTX to a variable
which is approximately uniform on the unit interval (0, 1). In other words, we
incorporate a transformation which makes everything distribution-free, as far as
the distribution of B X is concerned. This estimator is a symmetrized nearest-
neighbor (NN) estimator. Its consistency was proved by Yang [39], while Stute
[32] provided the asymptotic normality. In these papers, the regression function
itself was, of course, the target and the distribution-freeness only applies to the
random deviation but not to the bias term. In the context of the present paper,
® only appears as a tool to define the residuals. When we consider a properly
weighted sum of the residuals, averaging yields a smaller variance to the effect that
we may choose smoothing parameters so that at the same time the bias becomes
negligible and the variance part remains as the only nonnegligible source of error.
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This more or less enables us to construct tests which have nontrivial power when
the alternatives approach the null model at the rate n=1/2.

To motivate our approach on a more technical level, assume that A7 X has a
continuous distribution function F ﬂ, that is,

F(x)=FPx)=PB" X <x), x eR.

Here PP denotes a probability measure defined on a space (€2, »A) carrying all
random variables which may appear. Denote by F~! the quantile function of F:

F~'u) =inflx e R: F(x) > u}, O<u<l.

Put U := F(,BTX). By continuity of F, the variable U has a uniform distribution
on (0, 1). Setting

Y=doF !
equation (2.1) becomes (with probability one)
Y=v¢yU)+e.
In terms of regression, this may be expressed as
m(x) =E(Y|X =x) = (8% =y ).
where
u=F(B"x)and ¢ (u) =E(Y|F (BT X) =u).
Therefore, the kernel estimator for ¢ at 0 < u < 1 becomes
n
V() = % Z} YiKy(u—Up),
i=
where
Kn(w) = ~K ( 3)
h \h
and K is a symmetric kernel on the real line integrating to one, while h = h,, > 0
is a bandwidth. The random variables
Ui = FP (BT X))

are i.i.d. from the uniform distribution on (0, 1). Since F# and B areAunknown, 1/A/,,
cannot be our final estimator. For this, replace § by some estimator f and F = F#
by the empirical distribution function F, of 87 X;, 1 <i < n. This yields

U =F@B X)), l1<i<n,

with corresponding estimator

1 & N
Y () =~ D YiKu(u—Up).
i=1
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This estimator is related to that in [32], up to the fact that there umvarlate X;’s
were considered and no preliminary projection was required. The U;’s are the
normalized ranks pertaining to the projected values B 3T X;. Since these values
depend on the random /3 existing results on rank statistics cannot give us easy
access to the analysis of our final test statistic, in particular, since the Ui’s appear
as part of the smoothed function ¥, at u.

Worse than that, we have to evaluate ¥, at each U This finally leads to the
residuals

g =Y, —yn(U), 1<j=n

Actually, to reduce a possible bias, we shall consider estimators w,ﬁf ) computed in
the same way as ¥,,, but with the jth datum deleted from the observations. Hence,
the residuals are to be redefined as

§j=Yj—l,/f,§j)(0j), l<j<n.

The mathematical analysis of w,ﬁf ) U ;) and, hence, of &; requires careful study

of the local properties of F,, evaluated at /§ T x ;. The oscillation behavior for the

ordinary empirical process has been investigated in detail in [30, 32]. In the present

situation we need to study the fluctuations of empirical measures over halfspaces

rather than quadrants. -
Our final test statistic will be of the form

n
Ty=n"'123 8W;.
=1

The weights W; will be of the form W; = W(X ). The function W is a smooth
function defined on R”. A discussion of how to choose W in a testing situation is
postponed to the end of this section. Under the null model (2.2), we may expect
that fn behaves similarly to

n
:n_l/zzejo.
Jj=1

Since W; is orthogonal to ¢;, T, is centered. Hence, we may expect that also 7,
ﬂuctuates around zero under (2.2). Under (local) alternatives, the &; also comprise
quantities which hopefully are not orthogonal to the W;’s. If we choose W in a
proper way, this fact will guarantee nontrivial power of the test.

More specifically, we shall first consider models of the type

(2.4) Yie=®B X)) +n (X 4+,  1=isn
where the (X;, ¢;) are i.i.d. satisfying

(2.5) E(gX;)=0 forl <i <n.
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The function &, as well as the parameter 8, remain unspecified, as will be the
distribution of X; and ¢;. The function s may or may not be specified. When s =0,
the single-index model holds. For specified alternatives, we shall later discuss how
to choose W in order to maximize local power.

So far we have not discussed how to estimate 8. We shall come back to this
point in Section 3 when we apply our method in a simulation study and to real
data. In fact, the discussion of /3 may be delayed since our assumptions on B are
very general and do not assume any particular form for ,8

We now state the assumptions needed for Theorem 2.1 below. For this, put, for
O<u<l,

W) =E[W(X)|U = ul, Sw) =E[s(X)|U = u].

THEOREM 2.1. Assume that (2.4), (2.5) and the following conditions hold:

A () .5 and W are twice continuously differentiable.
(i) YW(X) and eW (X) have finite second moments.
B (i) E| XY < oo for some y > 2.
(ii) For all 6 in a neighborhood of B, the variables 87 X have continuous
densities ¢ which are uniformly bounded.
(iii) The distribution functions F? of 67 X are continuous in 0 at 6 = B.
(iv) The estimator,BA satisfies n'/? (,3 — B) = Op(l).
C W) n'2h? > 0and h—"'n=12tr 5 0.
(il) K is a symmetric kernel with compact support, twice continuously
differentiable with | K = 1. Furthermore, K is nonincreasing on the positive
real numbers.

Then we have

(2.6) Tyo=p+n""2Y " &[W; = W(U)) + op(1)

i=1
and, therefore, by the CLT,
f}l - N(u, 02) in distribution,
where
o =E[[W(X) - W(U)T)
and

u=E{[s(X) = E(s(X)|U)|W(X)}.

A discussion of A—C will be postponed until the end of this section.
The drift comprises the deviation of s(X) from the space of variables spanned
by 87 X. Under the single-index model, the bracket equals zero and so does .
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Also, W(X) should not depend on X through BT X, since then also u = 0. The
variance does not depend on s but, among other things, measures the deviations
between W (X ;) and the projected values W(U ). The 11m1t variance o2 also does
not depend on the unknown ®. A consistent estimator of o2 is obtained by

LA A
== ;5?[‘4’(’(1) - WU

where W(]) is defined similarly to lp(” Just replace Y; with W(X;) in the
definition of the NN-estimator. Putting

Ty =Ty /0n,
we then obtain
- N(C, 1) in distribution,
with
C=u/o.
The null model is rejected at level « if
| Ty > A—aj2 = A, -

where A is the (1 — %)—quantile of the standard normal distribution function @.
Hence, the asymptotic power of |T,,| against the local alternatives (2.4) equals
1 —[®(C + 1) — ®(C — 1)]. This is a monotone function of |C|. Thus, we should
select the weight function W in a way that makes C? as large as possible. If we
write, in an obvious notation,

ws, W)
o2(W)
it is easy to determine the optimal solution of our problem when the ¢’s are

independent of X, that is, if the homoscedastic case holds. Then the above ratio
equals

C2=C*s, W)=

(s, W)
Ee2E[W(X) — W(U)1?
and the Cauchy—Schwarz inequality immediately yields that the optimal weight
function W equals, up to a constant factor, the function s:
2.7 Wo(x) = s(x).

Next we study an important extension of (2.4). For this, let sy, ..., sq be any finite
number of functions, where d > 1. In applications, these functions may constitute
a possible (mean) dependence of ¥ on X = x other than projections of x. For




1056 W. STUTE AND L.-X. ZHU

example, some of the s-functions may be quadratic forms, and others may be in
charge of possible interactions between coordinates of X.
Instead of (2.4), we therefore consider the more complex model

d
28)  Yu=0@ X)+n Y yisi(X) e, 1=<isn,
i=1
where B8 € R”, yy, ..., yq € R are unknown parameters and @ is a nonspecified

link function. The null model thus corresponds to
Ho:)/l :---:)/dzo.

In the following we shall derive maximin tests for Hy versus ||y || > ¢, where || - ||
is a proper norm and yT = (y1, ..., ya). Needless to say, such test problems have
been well studied in the context of linear regression. The present situation is much
more complex since now the null model is the semiparametric single-index model.
To the best of our knowledge, the following setup provides the first maximin-test
in semiparametric regression. For this, and in view of (2.7), we consider the score-

statistics 7] pertaining to W = sj,j=1,...,d.Put
B (BT
Theorem 2.1 implies that, under (2.8) (in the homoscedastic case), we have in
distribution, as n — 00,
| 4!
(2.9) To— x| ¢ |+ M0 p5).
Vd

Here, ¥ = (i) 1<, j<a With
O'gj =E{[S,'(X) — E(S,‘(X)|U)][S‘]‘(X) — E(S.j(XHU)]},

N, denotes a normal distribution on R? and p? = Ee?. Assertion (2.9) exhibits
that, in the limit, fn is a standard Gaussian shift model. Distributional character-
istics of the model (2.8) only appear through the (estimable) covariance matrix.
This observation once again supports our approach, in particular, the use of the
NN-smoother and the rank transformation.

We may now use existing maximin-theory to obtain optimal tests for Hj. See,
for example, [29], Theorem 30.2. For this define Y, = (0yjn)1<i. j<4 through

0Py = ;; &2si (X) = 5 (00][s5(X0 — 500,
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COROLLARY 2.2. For a given significance level 0 < o < 1, the test

r= IL{'IA},T Z;l 7A"rlZchr}

is a maximin o-test for Hy versus H\ : yTEy > ,oza. Here cy is the (1 — «)-quan-
tile of the chi-square random variable Xf with d degrees of freedom. The
asymptotic maximin power is given by P(Xj(a) > c¢o), Where now a is the
noncentrality parameter.

Since the codimension d is arbitrary, Corollary 2.2 covers many examples of
interest. Some, for example, interaction alternatives, are studied in Section 3.
For those who prefer omnibus tests, we now discuss a class of tests which has
reasonable power over a nonparametric class of alternatives.

Hence, we come back to (2.4) but leave s unspecified. In order to achieve power,
we need to consider a family of weight functions {W,, },, guaranteeing that at least
one W, is able to detect a possible deviation of s(X) — s(U) from zero. A class
of (smooth) score functions which has found a lot of interest in classical empirical
process theory is the family of trigonometric functions. This led to an intensive
study of the empirical characteristic function. See, for example, [12] for a nice
review and further applications. In our context, W, therefore becomes

(2.10) W (y,x) =expliy’x],

where i is the complex unit and y € R?. If we take only finitely many y’s, we may
conceive, as in Corollary 2.2, asymptotically distribution free x2-tests. To handle
a nonparametric alternative, we have to let y vary over R”. Hence, we come up
with a stochastic process

n
Tu(y) =n""23"8;W;(y).
j=1
where W;(y) = W(y, X;). Note that fn has continuous sample paths in y.
The convergence of the finite-dimensional distributions again follows from (2.6).
Tightness is not difficult as long as y varies in a compact set, since the W (y, x) are
smooth functions in y and x. For detailed arguments, one needs to check the proof
of Theorem 2.1 and show that the remainders are uniformly small on compact
y-sets, while the leading terms are uniformly continuous. After all this we then
come up with the following result.

THEOREM 2.3. Under the assumptions of Theorem 2.1, the stochastic
processes {T,(y):y € RP} converge in distribution (on compact sets) to a
continuous Gaussian stochastic process Tog such that

(2.11) 1w(y) =ETw(y) = E{[s(X) — 5(U)IW(y, X))
and
Cov(Tno(1), Too(12)) = E{*[W (11, X) — W (1, DWW (32, X) — W (2, U]}
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A Kolmogorov—Smirnov (KS) type test rejects Hy if

’fn ESUP|7A"n(V)| Z Cq,
Y

where ¢, is the (1 — «)-quantile of sup,, |f"oo(y)| under Hy, that is, s = 0. Since
this test is no longer distribution-free, a bootstrap approximation is recommended.
See Section 3 for further details. For power considerations, we expand p(y) at
yielding

w(y) =E{[s(X) = 5(U)IW (B, X)expli(y — B X1}
~E{[s(X) = 5(U)IW (B, X))
+iy — B E{(s(X) = 5U))W(B, X)X}

The first integral vanishes, since s(X) — s(U) is orthogonal to the space of
random variables measurable w.r.t. ,BTX . The second (vector-valued) integral
I = I (s), say, usually does not vanish so that, for example,

sup [p(y)| ~sup ly — Bl > 0.
Y v

This property guarantees that the KS-test has asymptotic power > « uniformly for
all s for which ||/ (s)]| is bounded away from zero.

Needless to say, a version of Theorem 2.3 also holds for other parametric
families of functions W (y, -). We focussed on trigonometric functions since they
are at the same time smooth and measure determining and allow for a simple
expansion of the drift function.

Though our results cover a large class of local alternatives, people sometimes
are interested in detecting so-called “peak alternatives.” For this, one needs to
consider shift functions s which depend on n in such a way that, as n — o0, s,
(weakly) converges to a Dirac function or a linear combination of such functions.
A typical candidate is

_ X— X0
(2.12) &m=%%<a )

n

where a, — 0 but nal — oo. The “density” ¢, as well as xq, the center of the
peak, remain unspecified. The test process Ty(-) may also serve as a basis to detect
alternatives (2.8), where some of the s;’s are of “global type,” that is, do not depend
on n. Others may be of type (2.12). Since the covariance is not affected by the
shift, the limit covariance remains the same as in Theorem 2.3. Relevant proofs
only deal with the null model so that no changes are required. The shift only enters
into Lemmas 4.4 and 4.5, resulting in Corollary 4.6. Taking into account the local
flavor of (2.12), these lemmas need some minor modifications resulting, under
s = s from (2.12), in the drift function

(2.13) 1(y) =EToo(y) = [s(x0) — 5(u0) W (¥, X0)p(0) f (x0),
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where f isthe density of X. Here ug = F (ﬁTxo). Details are omitted. The function
(2.13) nicely features the components which determine the power of the test when
s equals (2.12):

e The X-density at Xo: f(Xo)-
e The “height” of the peak at x¢ : ¢(0).
e The deviation of s from the null model at xg:5(Xg) — §(ug).

If we let y vary over a large compact set, the Kolmogorov—Smirnov test
associated with 7, is able to detect peak alternatives which converge to the
null model at the rate n~!/2. The asymptotic power exceeds a but is less than
one, depending on the three components discussed above. In particular, our
approach yields the correct asymptotics. This finding should be compared with
other approaches, where, for much simpler purely parametric regression models,
alternatives had to converge to the null model at a rate lower than n~1/2. See, for
example, [21] and references therein. Not unexpectedly, the power then converges
to one.

We continue with some comments on A-C.

REMARK 2.4. Condition A comprises standard smoothness and moment as-
sumptions on the involved functions. Condition B requires some weak conditions
on the design vector and on B .In C, /nh?> — 0 will be needed to make the Bias
tend to zero. The second assumption on 4 will be needed to control the fluctuations
of the random sums. In view of the fact that we always deal with standardized sums
and also that large X;’s may enter the statistics, some connection with the tails of X
(in terms of y ) are natural. The conditions on K are also standard. The monotonic-
ity of K guarantees that K’ has identical signs on the positive and negative reals.
Moreover, K’(0) = 0. In other words, K may be decomposed into two parts, each
of which is compactly supported, by the positive and negative real lines, respec-
tively, and having identical signs there. This property is useful in proofs when,
after Taylor’s expansion, K’ appears as a smoothing kernel.

REMARK 2.5. The conditions on A are weak and are satisfied for a large
class of bandwidths. A referee pointed out that this fact could be interpreted as
a kind of robustness of the method w.r.t. the choice of 4. In particular, they do not
depend, as in related work, on the dimension p of the X-vector or higher degrees
of smoothness of the involved functions. We may choose / so that n'/2h? and
h='n=1241/7 are of the same order. This yields

B~ = 1/34173y

In the next section we propose two adaptive methods of bandwidth choice
which worked very well in our simulation study. If we are not only interested
in maximizing power for a given alternative, we may choose a W with compact
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support. In this way the test is robust against outliers among the X;’s. Our proof
then works with ¥ = oo, that is, % = 0. In this case, h ~n~1/3.

DISCUSSION 2.6. It is time to compare our approach and results with those
of Fan and Li [14], Ait-Sahalia, Bickel and Stoker [1] and Xia, Li, Tong and
Zhang [38]. The tests of the first two papers are based on a (weighted) residual
sum of squares and are in the spirit of Hirdle and Mammen [17]. The asymptotic
normality of the test statistic is achieved by a clever application of central limit
theorems for sequences of degenerate U -statistics. More precisely, Fan and Li
[14] (FL) based their test on a quadratic form of the estimated residuals. Since no
rank transformation is involved, they had to weight each residual with estimators
of marginal and high-dimensional densities, to get rid of the denominator in the
Nadaraya—Watson estimator. Consequently, two different smoothing parameters
need to be involved. It is heuristically argued that local alternatives only can be
detected when they approach the null model at the rate O((nh?'%)~1/2) which
gets worse as the dimension of X increases. The estimator of 8, being square-root
consistent, does not have any impact on the limit distribution because the other
quantities converge at a slower rate, thus compensating for the effect of estimating
unknown parameters. In a general situation of testing a model or hypothesis,
efficient methods involve test statistics and estimators which admit expansions
of the same order. See, for example, [9], to name only one landmark paper on
this topic. Unless some orthogonality assumptions are satisfied, the parameter
estimator does have an impact on the limit, and martingale transformations, as
‘in [36], were designed to keep track of this issue. See also [34]. Efficient model
checks would therefore create terms which when replacing B with B are not
negligible and thus have an impact on the distributional behavior of the test
statistic. As to practical applications, computation of critical values would then
not be easy. Worse than that, the complicated geometric structure of the test
statistic would not enable us to derive optimal scores. Actually, these are only
two of several reasons why we designed our test as we did. There are others.
As a by-product, the assumptions on the design variable X remain weak. No
additional support or higher smoothness conditions need to be assumed. The
variable Y may be discrete and no joint density of X and Y is required. Compared
with Fan and Li [14], Ait-Sahalia, Bickel and Stoker [1] is mainly concerned
with the problem of dimension reduction for high-dimensional inputs. Only some
comments on the applicability to single-index models are included. Their test
statistic is a sum of weighted residual squares, the weights now being deterministic
functions of the regressors. In their Proposition 2 the local power of the test is
derived when the alternatives tend to the null model at a rate depending on p.
It should also be mentioned that the test statistic admits a bias increasing to
infinity as n — 00. Moreover, the constants defining the asymptotic bias are
unknown and require further smoothing when being estimated. Similarly, in Xia,
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Li, Tong and Zhang [38], who extended the marked empirical process approach
of Stute, Gonzdlez Manteiga and Presedo Quindimil [35] in the parametric case
to the single index model. Compared with these papers our test achieves local
power known from parametric tests, though the nonparametric components can
only be estimated at a worse rate. Mathematically, we have to pay a price for
this. For example, Theorem 2.1 cannot be obtained by just applying Taylor’s
expansion and U -statistic theory. Rather, our proofs require some new techniques
involving (local and global) properties of the rank-transformed projected values
,3 Tx;, 1 <i < n. Unfortunately, techniques also developed in [31] to analyze the
(rank-transformed) nearest-neighbor regression function estimator at a point are of
no help here.

3. Simulation study and applications.

3.1. A simulation study. In our simulations we studied two models. The first
is with continuous response, namely,

P
3.1 Y:(ﬂTX)3+C(ZIX1I>+6,

=1
where X and € are independent, x; are the components of X and the distributions
of X and € are N(0,1,) and N(0, 1), respectively. The hypothetical mod®l is
d (BT X) = (87 X)? and s(X) = Y°I_, [x|. Therefore, the null model holds if and
only if ¢ =0.

The second model is with binary response,

y _ OPBTX + (L, D)
(3.2) 1 +exp(—=BTX +c(Xi_; lxl)

= d(BTX +cs(X)) +e.

where Y = 0, | is a binary variable for which ¥ = 1 with probability d(BTx +
cs(x)) for any given X = x. Also, here ¢ = 0 corresponds to the hypothetical
model, that is, the logit model. It is heteroscedastic, and X and € are not
independent. Again, X ~ N (0, I,). We used ¢ = 1,2, 3 to investigate the power
of the test.

Two weight functions were considered in the simulation, W;(x) = s(x) and
WHh(x) = Zlexlz. Based on our findings in Section 2, Wj is optimal for
model (3.1) as € is independent of X, and W, is a natural candidate for an
even function. For model (3.2), we also use these two weight functions due
to the following observation: When ¢ is small, & (—BTx + es(x)) is close to
b(— ﬂTx) + c®'(BTx)s(x), where ®'(-) is the derivative of ®(-). Therefore, 5(x)
is also a good choice of a weight function in this case.

In order to implement the omnibus test based on T, = sup,, iT (y)] of
Theorem 2.3, we have to use a resampling approximation to determine critical
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values. The wild bootstrap is clearly an option. In view of (2.6), however, we
suggest the following algorithm: for any y, fn(y) is asymptotically equal to
u+n’1/2 r & Wi — W(U,-)]. Under Hy, ;¢ = 0. For any i.i.d. random variables
ei, i = 1,...,n, independent of the (x;, y;)’s with mean O and variance 1, it is
easy to prove that, for almost all sequences {(x|, y1), ..., (xxn, Yn), - . .}, the process
T/ (y) = n=' 230 eiéi[Wi — W, (Up)] has the same limit as T,(y). It is
worthwhile noting that, using this resampling scheme, we do not need to estimate
the variance. In a different setup, this algorithm has been used by Zhu [40] and
Zhu and Ng [42]. The proof and the procedure are similar. We omit the details.
To implement the test, we can generate, by Monte Carlo, m sets of {e|, ..., en}
and then compute m values of Tn’ = sup,, |f"nr(y)|. The [(1 — a)m]th value can be
used as the critical value, where « is the significance level and [a] stands for the
integer part of a. In the following simulation, we used standard normal random
variables ¢;.

Another concern is bandwidth selection. As we noticed in Remark 2.5, & ~
n~'73_In other words, compared with nonparametric estimation of regression, in
the context of model checking, undersmoothing is needed. So existing bandwidth
selection methods cannot be recommended in the setting of this paper and, indeed,
may lead to a considerable bias. Therefore, we adopt a semidata driven selection
procedure. The steps are as follows:

1. Select h) by minimizing the mean integrated squared error, subject to weight
function W (.),

(3.3) MISE(h) = " (Y; =0 ) WX ),
j=1

which is analogous to the criterion used by Hérdle, Hall and Ichimura [16]. The
kernel K is 15/16(1 — u?)?I(Ju| < 1); see [17].
2. Our final choice for A is h = h; x n=1/3+1/5,

The rationale of this algorithm is that, under our conditions and the choice of the
kernel function, the rate of h; is n~"/>. Therefore, h is of the order n—!/3 and,
hence, ensures convergence of the test statistic. For validation purposes we also
considered a grid point search and chose /4 so that the empirical level was closest
to the nominal level.

Finally, we need to estimate the parameter 8. There are at least three methods
in the literature; see [ 16, 20, 25]. In our simulation study we applied Li and Duan’s
least squares estimator for ease of implementation.

We considered the case with p=2,3and 8 = (1, -1)" /~/2, B=(1, -1, )T/
V3, respectively. The sample sizes were n = 50, 100. The significance level was
a = 0.05. The test statistics were computed for 1000 replications.

Table 1 presents the attained levels for the various scenarios.
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TABLE_]
Size of the tests Ty and T,®

Model (3.1) Model (3.2)
n=>50 n =100 n=>50 n =100
Wy p=2 0.048(0.046) 0.045(0.047) Wy p=2 0.060(0.056) 0.057(0.054)
Wy p=3 0.053(0.053) 0.047(0.052) 14} p=3 0.054(0.052) 0.052(0.054)
W, p=2 0.048(0.047)  0.052(0.053) Ws p=2 0.055(0.054)  0.052(0.054)
Ws p=3 0.047(0.053) 0.046(0.051) Ws p=3 0.055(0.055) 0.050(0.054)
T,, p=2 0.048(0.051) 0.053(0.052) 7~}, p=2 0.058(0.056) 0.057(0.051)
Ty p=3 0.045(0.048)  0.052(0.054) Ty p=3 0.061(0.053)  0.054(0.049)

2 The values in parentheses are the estimated sizes when the bandwidth is selected by a grid search.

It becomes apparent that the significance level is well attained in most cases,
although, for model (3.2), the size of the tests for n = 50 is slightly larger
than 0.05. Furthermore, the size of the tests with the bandwidth selected by the
above algorithm is similar to that obtained from the grid point search. This shows
that our data-driven approach works well. We will therefore use this algorithm also
to select the bandwidth in the following simulation and the applications to two real
data examples.

To demonstrate power through simulations, we considered models 13.1)
and (3.2) withc=1,2,3.

For model (3.1), as expected, the test T, based on the optimal W, outperforms
the others. In model (3.2), when we have dependent errors and 7, is no longer
optimal, all three tests have a similar behavior.

To compare the performance of our method with other existing tests through a
simulation study, we considered two scenarios. The first aim was to test the single
index model versus the existence of interaction effects. Particularly, we considered

(3.4) m(x) = (B7x)> + c1|x1x2| + ealx1x3] + c3lxaxs).

For nonvanishing c¢’s, this model allows for interaction terms. The comparison
is among our maximin test, the omnibus test fn, Fan and Li [14] (FL-test) and
Ait-Sahalia, Bickel and Stoker [1] (ABS-test). In the simulation, similar to the
previous case, we took g = (1, —1, I)T/ﬁ. The sample size was n = 50, while
the significance level was 0.05. The constants were taken to be equal: c; = ¢z =
c3 = c with ¢ =0, 1.0, 2.0, 3.0. ¢ # 0 corresponds to the alternative. In Figure 3
the estimated power was computed from 1000 replications. Recall that FL- and
ABS-tests require selection of two bandwidths. Since the significance levels of
their tests heavily depend on the choice of the bandwidths and there is no data
driven selection, a fair comparison causes some problems. In a simulation study,
however, one may determine (through replications) the bandwidth on a grid in such
a way that the nominal level is best attained. In this way we are able to produce
tests which attain the right level for the null model.
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FIG. 1. The estimated power for model (3.1): The dashdot line is for our test with the weight
function Wy, the solid line with the weight function Wa, and the dotted line is for T,,.

We also ran many simulations with other bandwidths. It turned out that the
FL-test and the ABS-test are nonrobust in % so that the nominal level may not be
attained after a slight change in 4.

As expected, 7,, with optimal weight W; has larger power than the test with
weight function W. fn has a power similar to 7, with W5. The FL- and ABS-tests
are clearly outperformed but behave similarly otherwise in the situation considered
by us. Similar to the case with model (3.1), the FL-test has larger power than the
ABS-test.

We also compared the performance of all tests for a model studied by Xia, Li,
Tong and Zhang [38] in their Example 1, where, in our notation, p = 2 and

m(x) =x; + x2 +4exp{—(x —+—xz)2} + c(x12 +x22)'/2,

and the errors ¢ are independent of X with & ~ N (0, 0.2).

In Table 2 we report on the power results of 7, with Wi(-) and W5(-), fn,
ABS- and FL-tests and the XLTZ-test. The bootstrap approximation of the XLTZ-
test is similar to that of Theorem 2.3. For T},, we again used the weights W (x) =
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FIG. 2. The estimated power for model (3.2): The dashdot line is for our test with the weight
Sunction Wy, the solid line with the weight function W, and the dotted line is for Ty, .

[x1]4 |x2] and Wh(x) = xl2 +x§. The significance level was 0.05. The test statistics
were computed for 1000 replications. Note that these two weights are not optimal
for this model. We do not report the results with the optimal weights because the
previous simulations have provided evidence of its good performance and, from
Table 2, we can see that the suboptimal weights W; and W, already work well.
Again, for ABS and FL, bandwidths were chosen so as to yield the nominal level
under Hy as closely as possible.

In Table 2, the values for the XL.TZ-test are from Table 1 of [38]. We see that
T,, with Wy is best. Second, between f,, and the XLTZ-test, when the variance 082
of the errors ¢; is small, the XLTZ-test is slightly better, while when 052 gets large,
f’n outperforms the XL.TZ-test. Third, comparing f,, with T,, with W5, we see that
T, performs slightly worse. For this model, we find that the ABS- and FL-tests do
not work well.

3.2. Applications. In this section we apply our test to two data sets.
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FIG. 3. The estimated power for model (3.4). The dashdot line is for the maximin test with the
weight function W\, the solid line with the weight function Wy the dotted line is for the ABS-test,
the dashed line for the FL-test, and the dashed line plus star x for T,.

EXAMPLE 3.1. The data set is the bull data; see [24]. The data are the
measured characteristics of 76 young bulls sold at an auction. It is interesting
to study the relationship between the selling prices and the characteristics of the
bulls: yearling height at shoulder; fat-free body (pounds); percentage of fat-free
body; scale from 1 (small) to 8 (large); back fat (inches); sale height at shoulder
(inches) and scale weight (pounds). The response Y is the standardized selling
price and the other standardized measurements are the covariates X = (x, ..., x7).
Figure 4(a) provides a plot of BT X against the response Y. This linear fitting was
also used in [24]. There is some indication of a relationship between the residuals
€; and BTXj, see Figure 4(b). We tested the linearity of the model using the
Stute, Gonzdlez Manteiga and Presedo Quindimil [35] test. The p-value was 0.044.
Therefore, the linear model needs to be rejected at level o = 0.05.

Next consider single-index fitting. Again 8 was estimated as in [25]. To justify
their estimation method, we first tested the elliptical symmetry of the distribution
of X. The nonparametric Monte Carlo test proposed by Zhu and Neuhaus [41] was
employed. The p-value was 0.83. The statistic 7,, was computed for the weight
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TABLE 2
Estimated power of six tests with n = 50, p = 2%

O¢ 0.30 0.50

¢ 0 0.25 0.50 0 0.25 0.50
TW (W) 0.044 0.122 0.508 0.052 0.106 0.452
Tn(W2) 0.060 0.092 0.408 0.062 0.090 0.300
XLTZ-test 0.063 0.099 0.376 0.043 0.043 0.163
Tn 0.063 0.090 0.350 0.043 0.073 0.253
ABS-test 0.050 0.060 0.140 0.050 0.055 0.085
FL-test 0.042 0.052 0.090 0.050 0.046 0.065

& Tw(W;), i = 1,2, stand for the tests 7, with Wy and W», respectively.

function W(x) = p:I sz. The kernel function K(-) is the same as for (3.3),

and the bandwidth is 4 = 0.35. The p-value was 0.310. Therefore, a single-index
model need not be rejected.

EXAMPLE 3.2. The data are the automobile collision data as analyzed by
Hirdle, Hall and Ichimura [16]. The sample size is # = 58. We also tested the
elliptical symmetry of the distribution of the X-data using the nonparametric
Monte Carlo test of Zhu and Neuhaus [41]. The p-value was 0.25. This justifies
the use of the Li—Duan method for estimating the projection direction 8 for
this data set. For a single-index fitting, the kernel function K (-) was again the
same as for (3.3), the bandwidth was & = 0.4, while the weight function was
W(x) = Zle sz.. The test statistic 7, was used and the asymptotic p-value
was 0.32. The single-index model is therefore tenable.

3 =
2
s 1
3 . .
k= ,
a KRS
9 :' -.‘....
IR O
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-2
3 -2 -1 0 1 2 3
x*b (a) xX’b (b}

FIG. 4. (a) Fit to the bulls data: the projected data /§TXj versus the linear fit (solid line) and the
response data (dots); (b) the projected data versus the residuals.
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4. Proofs. To prove Theorem 2.1, we expand our test statistic T, as

n' 21, =3 8w =Y [ — i (Fa(BT X )W

j=1 j=1
(4.1) =Sy = Y~y (EaBT X)) + vl (Fa (BT X)W,
i=1

n

+ [ =y SR BTX )W =1+ 11,

j=1

where Y 0 is computed under the null model s = 0, and 1,0(1 Vis computed as 1/f,§j ),

with the same /3 but with on. The second sum will be further decomposed. For
this, put

Gyn 0% u—F(BTX;)
¥y () = l)h ZY ( h )
175/

This function is based on the true 8 and F and is therefore unknown in practice. It
will, however, play an important role in proofs, since it is close to 1//(" ) and, on the
other hand, is computed from independent observations. Write
n
=3[ - g0 (FB" X)W
Jj=1
n
+ Y[l (FBT X)) =9t (Fa (BT X)W =1L+ 1V.
j=I

Observe that

Lo 0 Uj — U
III:ZleWj l)hZZY WK( p )
J:

j=li=lI
i#]

with
Uj=F@B"X)), j=1,...,n,
being independent and uniformly distributed on [0, 1]. Hence, III is a U-statistic

of degree two. Summarizing, we have
n
(4.2) S W, =I+1+1V.
Jj=1
After standardization, term I will be shown to tend to a limit which depends on the
shift s and, hence, will determine the local power of the test. As already mentioned,
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Il is a U-statistic of degree two, with a kernel depending on %, and hence on #n.
The term IV is more complicated, since the kernel contains empirical quantities.
After all, it will turn out that /// and /V admit i.i.d. representations which will
partly cancel out and jointly determine the (limit) distribution of 7,, under Hy. To
carry out this program, note that both w,(/ ) and W,E(j)) are evaluated at F), (/§TX )
Hence, the mathematical analysis of our test statistic requires a careful study of the
terms

K(Fn(BTX,o - Fn<BTx,~>)

h k]
For this, denote by F,(,’ the empirical distribution function of 0Tx,,...,07X,.
Hence, F, = F”@ if0 = ,3 Since K has compact support, say [—1, 1], indices i, j
only contribute to (4.3) if

(4.4) IFCOTX) —Fl@TX) <h,  6=4.

4.3) 1<i#j<n.

Since by assumption B(iv)
n'(f - B) = Op(D),
for each given ¢ > 0, we may find a large constant C such that
Pr'Z1B—BIl=>C)<e  foralln>1. -

In other words, up to a small event, /f? is contained in the Crn~'/2-neighborhood
of 8. The first goal will be to analyze the effect of replacing F, (BTX j) and
Fo(BTX;) in (4.3) with U; = F(BT X ;) and U; = F(BT X;), respectively, subject
to (4.4). Introduce F?, the distribution function of 87 X. Hence, F = FY for6 = 8.

In our first lemma we derive a maximal bound for F¥ — F# evaluated at 7 X j
and 5TXJ-. Recall that, by assumption B(i), E|| X ||V < oo. This implies that

max | X;| = Op(n®) fora =y
I<i<n

For this reason, it will suffice to analyze all leading and error terms on the set
where

(4.5) max || X;| <Cn® for some large finite C;.

I1<i<n

Denote by ® the set of all p-vectors.

LEMMA 4.1. Put, foreach® € ® and 1 < j <n,
al=F'0"x) - FPB"X).
We then have, on the set (4.5),

max max |a§»| = Op(n~ /3oy,
10— Bl <Cn=V/21<j<n
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PROOF. We shall first deal with an upper bound for the a?’s. Fix a possible
value x; of X ;. Then

al=F' 0 x;) - FP(B"x)) =P0O" X <67x;)) —P(BTX <B"x))
=PO X <0"x;, 8T X <Tx) +POTX <07x;, "X > B"x))
—PBTX <pTx;)) <POTX <0"x;. "X > B'x)).
Now, 67 X < QTXJ' implies
BIX=0"X+B-0)"X<0'x; +(B-0"X
=pTx; + (B—0)" (X —x;) < B7x; + Cn” 2{IX] + Ix;11}.
Under (4.5) we therefore obtain, for each 1 < j <n,
af <P(BTx; < BTX < BTx; +2CC T F) £ P(IX || > Cin®).

Since, by B(ii), 87 X has a bounded density, the first probability is O(n~ /7y,
As to the second probability, apply Markov’s inequality to get

EjlX{1¥
P(|X] > Cin%) < .
x| 1nt) < C%/n

This completes the proof. For the lower bound, just reverse the roles of 8 and 8.
Now one needs the fact that the densities of #7 X are uniformly bounded for all 6
in a small neighborhood of 8. [

In the following lemma we investigate the local oscillations of the empirical
process
(x,0) = Ff(x) — F/(x)
in a neighborhood of 8. For this, introduce
Gh(x, y) = F(x) = F'(x) = FY () + FP ()
for 6 € ® and x, y € R satisfying
(i) ll6 — Bl <Cn™'2,

(i) |x —y| < Cn /2t

LEMMA 4.2. Under the assumptions of Theorem 2.1, we have

sup |G%(x, y)| = Op(Vn=3/241nn),

x,y;60

where the supremum extends over all x, y and 6 satisfying (1) and (ii).
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PROOF. The proof is a modification of the proof of Theorem 37 in [26],
page 34. First note that the halfspaces form a class with a polynomial covering
number. The measure of each set involved in the above supremum, F P(x)—FP( y),
is bounded from above in absolute value by

IPOTX <x) —P(B" X <)l
<IP@O"X <x) ~P(B" X <x)|
+IP(BTX <) —P(BT X < y)| < Con™V/2He,
by (i), (ii) and assumption B. For the first difference apply a technique already

used in the proof of the previous lemma. If we replace the small ¢ in Pollard’s [26]
Theorem 37 by a large K > 0 and set

2_lnn

[0 = —
n 2
né;

therein, we obtain the required in-probability bound 0(8,210{,1), rather than a

convergence rate to zero. Here 8,% equals the maximal measure of the included
sets. Since 82 = O (n~!/27%), the result follows. [J

In the next lemma, we expand n~'/2[I[ into a sum of independent random
variables plus a negligible error. The leading term will contribute to the limit of
our test statistic when the null hypothesis is true. Recall

W) =E[W,|U| = ul.

LEMMA 4.3. Under the assumptions of Theorem 2.1, we have in probability
asn— oo,

n n
nT =8, =72y e Wi —n P (YIWW,) - EYPW (U] + op(1)
j=1 j=l1

=n" 123 e (W — WU
j=1
—dBTXHWWU ) +EIOBTXHWUNH])
+ op(1).

PROOF. §,, is a U-statistic of degree two with a kernel depending on 4 and
Yi ;Ui ) equals

therefore on n. The Héjek projection of Yi0 WiK(

1 S 1 .
y? W(v)K(U hU’)dv+Wj/ w<u)K<Ufh ”)du
0

0

—/01/01 W(v)w(u)l((f’—;—“>dvdu.
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Conclude that the Héjek projection of Sy, equals

R n n 1 _ — U
Snl:n_l/zzYJQW,-—n‘l/zh‘IZYiO/O W(v)K(v - l)dv
j=l1 i=1

—1/2, -1 : : Uj—u
—n h E Wj/ Y(u)K ; du
, 0
j=1

1l _
+h—‘n‘/2// W(v)W(u)K<u>dvdu.
0J0 h
Furthermore (see [27]),
- 1
E{Sy, — S} =0<%),
whence
Suy — Spy = Op((nh) ™) = 0p(1).

Hence, it suffices to further expand S“,” . For this, put

el o v—u
Eh:ff W(u)xﬂ(v)K(—)dvdu
0Jo h
and consider

n 1 —U:
R,,,:n—l/2h—‘z[yf’/ W(v)K(v - ’>dv—E,,]
i=1 0

B & 1 U: —u
+n"2h ‘;[Wj/o 1//(u)K< fh )du—Eh}

— " 2w W) — E(rYW W)

i=1
—n 2N Wi U) — E(Wiy (U)].
j=1

It may be written as a single sum of centered i.i.d. random variables. Its variance
is bounded from above by the second moment of

ot v—-U -
YP[h ‘/0 W(v)K( ; l)dv—W(U;)]

W [h“ /01 w<u>K(U‘h_“)du - w(un],
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which is easily seen to go to zero as i — 0. Conclude that R,, = op(1) and,
therefore,

Sn1 = S‘nl +op(1)

n n
=n" Y YIW = V2N (Y)W — E(Y{W(UD)]
— =
n

w2 WipU)) — E(Wigr (UD)] = 020 Ey + op(1)

j=1
=n712Y ;W —n T 2 [YOW (W) - E(r{W(U)]
Jj=1 j=1
+ ! P[E(Wiy (U) — h ™ Ex] + op(1).

To complete the proof of the lemma, it suffices to show, in view of assumption C(i),
that the last bracket is O (h?). But

8 ]—/0 W(v)[w(v) h- /1//(L¢)K< ; )du}du

_ v/h
:/ W(v)[w(v)—/ w(v—sh)K(s)ds]dv.
0 (w=1)/h

v—

-

For h < v < 1 — h, the inner integral extends over the whole support of K, namely,
[—1, 1]. Using the facts that K is symmetric at zero, f_ll K(s)ds =1 and ¢ is
twice continuously differentiable, Taylor’s expansion yields that the difference is
uniformly in 2 < v <1 — h of the order O(hz). For 0 < v < & (and similarly for
1 —h < v < 1), the difference is O (k). Since, however, 0 < v < h has Lebesgue
measure /1, we also obtain the upper bound /7 for this part of the integral. [

The quantity S,, introduced and studied below will be the leading term for
n~12] with I from the expansion (4.2).

LEMMA 4.4. Under the assumptions of Theorem 2.1, we have in probability
asn — oo,

1 U[
Sy = n7 'Y s(X)HWj — I)h ZZ;(X YW K( )
j=1 =1 i=l
i#j

E{[s(X) —E(s(X)|I)]W(X)} = u

PROOF. §,,isa U—étatistic of degree two. Recall s(u) =E(s(X)|U = u). The
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Héjek projection of s(X;)W; K (

s(X)/ W(v)K( ; )de/ v(u)K(U h"”)du
// s(u)W(v)K( )dva’u

Hence, the projection of S,,, equals

) equals

n

R 2l - U;
Sp, =n" jz:ls(X)W i 9(X)/ W(v)K( - )dv

1 & 1 Ui—u
——S'WwW, | sk )d
nh; f/os(”) ( o )

h// s(u)W(v)K( )dvdu

Furthermore, E{S,, — S,,z} is of the order O(n~'h=") = o(1).
Hence, it remains to show that S‘n2 tends to the desired limit. Now similar to the
proof of the previous lemma, it may be shown that

n n
S, =07 S S(XHWi+nT Y s(X)W(U)
j=1 i=1
n 1
+n7' Y WU - /0 5(u)W(u)du— 0 in probability.

j=1
The assertion of the lemma now is a straightforward consequence of the law of
large numbers upon noticing that

- 1 -
IE[s(X)W(U)]:/ sw)Wu)du. 0
0
The next lemma will be helpful to find the final expansion and limit of /.
LEMMA 4.5. Under the assumptions of Theorem 2.1, we have

1

Sny =

nn—1)h
non Fu(BTX ) — F, (BT X)) U;— U
XZZS(X,-)WJ-[K - K{L— }
e ( h ) ( h )

-0 in probability as n — 00.
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PROOF. By Taylor’s formula,

Fu(BTX ) — Fu(BT X)) — U;j + U
Sy = n(n_l)hZZs(X)WKm,,)[ : ]

where A;; is between the two K-ratios in the definition of S,3. For each j (and
similarly for i),

IFuBTX ) — Uyl < | Fa(BT X)) — FPBTX )+ | |

<sup|F{(t) — F’(t)| + sup|af],
1,6 (&

where the suprema extend (with large probability) over the set of 6’s with
6 — Bl < Cn~1/2. Now it is well known that empirical measures approach the true
measure at the rate Op(n~1/?) uniformly over the class of all halfspaces. See, for
example, [26]. In other words, the first supremum is Op(n~ 1/2). From Lemma 4.1,
the second supremum is OI;»(n"/ 2ta) uniformly in 1 < j < n. Conclude that
(4.6) sup |Fu (BT X ;) — Ujl = Op(n~"/*7) = Op(h).

1<j<n
Furthermore, since K has support [—1, 1], the summation in S,, takes place only
w.r.t. those i, j for which at least one of the ratios falls into [—1, 1]. If this happens
to be true for the first ratio, then by (4.6) also

|U;j — Ui < Csh,
with large probability for some appropriate C3. Summarizing, since K’ is bounded,
we get, with large probability,
1/24a 7

4h 3 Z|s(x NIWS L0, vyl <Camy-

j]l]

|[Sns| < C

The expectation of the right-hand side is, however, of the order O (n—1/24ep—1y =

o(1). This completes the proof of the lemma. []

We are now ready to analyze the term /. From its definition we have

n
n P =Y s(X)W;

j=1
n Fu(BTX)) — Fu(BT X))
S S (X0W, K( )
JZ' pory !

l)h

In view of Lemmas 4.4 and 4.5 we therefore get the following result.
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COROLLARY 4.6. Under the assumptions of Theorem 2.1, we have
n 121 o in probability.

To summarize the results obtained so far, Lemma 4.3 yielded an i.i.d.
representation of n~!/ 2711, while Corollary 4.6 provided an in-probability limit
for n=1/2]. The analysis for n~!/2]V is a bit tricky. At the end it will turn out that
it admits an i.i.d. expansion which cancels with the second sum in Lemma 4.3. We

may thus conclude that

n
Ty=p+n"2Y &lWi — WU+ op(1),

i=1
which coincides with the i.i.d. representation (2.6) of Theorem 2.1. So it remains
to show the following representation of n~!/2[V.

LEMMA 4.7. Under the assumptions of Theorem 2.1,

n V2V =07 23 0BT X HWU)) —E[@BT X)W U1+ op(1),
j=1

PROOF. By Taylor’s expansion,

a2y =
" 7 2(n — Dh
non F(/éTX')—F(ﬁTX‘) U:. — U
< 23w [ (HEE ) -k (2
;; / h h
i#]
(4.7) = :
'  n!2(n—1h
' Ui — U\ Fa(BTX)) — Fo(BT X)) — U; + U;
Y() 'K/ i 1) n 7 n i J I
w25 h
i=1j=I
i#] .
1 2 0 [--1%
+2n1/2(n—1)hzzyf Wik A5

i=l j=1

i)
where A;; is between the two K -ratios in the representation of /V. We shall show
that the second double sum is negligible, while the first contributes to the i.i.d.
representation of 7},. First, we write

FuBTX ) =FuBTX) - FPB X)) — FF BT X)) + FP(BTX))

+FRBTX )+ FP BT X)) - FP(BT X)),
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and similarly for the index i. The first line equals, with 8 = ﬂ and x = ' X 3T x
y=pTX j» the quantity G(’(x y) appearing in Lemma 4.2. Conclude from that

result that
( )‘16% o

K(557)
The double sum is easily seen to be bounded in probability. Since

n~ 120 0,

1/2(n l)hzzzlyo

i=1j=1

=01p>(\/n_’/2+“lnn 2ZZ|Y0

i=1j=1

4.8)

this proves that (4.8) tends to zero in probability. Next we study

—U;
1/2(n_1)h2}:ZYOW K( jh )

i=1j=1

x [FEBTX;) — FP(B" X)) — FE(BT X;) + FA(BT X))

This sum is a V-statistic (see [27]), with a kernel depending on % and hence on n.
It is asymptotically equal to a U-statistic whose Hajek projection equals

1 ri .
hiz/o/(; w(u)W(v)K'<”h_“>[an(v)—an(u)]dudv_

Here, @, is the (uniform) empirical process pertaining to the U;’s. Transformation
of integrals, C-tightness of &, n > 1, and the fact that K’ has compact support
[—1, 1] yield that the last double integral is equivalent to

1 pl B
h! f / Y (v —wh)WW) K (w)[a,(v) —a,(v—wh)]dwdv.
0J-1

By continuity of v, this is asymptotically equivalent to

1, _
h! / / YW ) K (W)@ (v) = @n (v — wh)] dw dv
0J-—1

(4.9) O
! 7 ) (1 —
=—h [)ﬁlw(v)W(v)K (w)ay (v — wh)dwdv.
Check that
1 ! _
[ K W)~ whydw = Val @) = 11
hJ
Here

)

_ 1 & v
fn<v>=@§1<(
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is the kernel density estimator for the uniform sample Uy, ..., U,.
Hence, (4.9) equals
! _ _
(4.10) i [ W@ = 11y

Introducing the smoothed empirical distribution,

dF, = f,dv,
and the pertaining empirical process &, = /n (F, — Id), where Id denotes the
identity function on (0, 1), (4.10) becomes

I _
- fo ¥ ()W (0)@n (dv).
It is known that
1 o
@.11) wwm&,,:f YW déy, + op(l).
0 0

A simple proof of (4.11) may be obtained by using oscillation results for empirical
processes; see [30]. We shall shortly see that all other terms will be negligible for
the i.i.d. representation of n=121v, so that

ro
(4.12) n_'/ZIV:/ wW da, + op(l),
0

as desired. To justify (4.12), we next bound
0 Ui =Ui\, » A

(4.13) 1/2( PYCTmstYe: X%IZIY W;K ( p )(Uj —U; = U; + Uy,
where

U;=F@B"x), 1<j=n
Hence, the U ; and U; incorporate the theoretical distribution functions

Fx)=PO"X <x)

at & = B and 6 = B, respectively. From Lemma 4.1,
(4.14) max |U; — U;| = Op(n~'/71%).

I<j<n

This bound will sometimes be helpful to further simplify (4.13). First, because K’
is an odd function, (4.13) may be written as

1 n o n 0 0 , Uj _Ui ~
4.15) mZZ(YZ W, +Yj WK ( )(Uj_Uj).

i=1j=1
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We shall only deal with the sum involving Y ,.0 W, the other being dealt with in
a similar way. Now

1

n n ( U_U
> ) ! J {
mnm(n "R E : WiU; -Uj) E 1 Y K <—_h )
J= i=

Y S ww vy sk (VY
_(n_l)hgwj(l], U‘,)I:ﬁh;s,K( p )}
(n—])hZW(U

[fhz{w () |
+ ﬁ,}: W0, — Uj)/ol w(u)K’<%) dv.

In the first two double series, first apply (4.14) to bound \U ; — Uj| uniformly
in j. The expectation of, for example, -

1 & 1 " U; —-U;
_ Wil —— K’ J ’)
nj§| ]lfhzgl ( h

i=1

’

is easily seen to be bounded. Similarly for the second series. Conclude that each
sum is

Op(h~'n=12%) — 5p(1).

Taylor’s expansion to ¥ (U; —

As to the last j-sum, substitute w = U/}: ,
wh) and use the fact that

1 1
/ K'(w)dw =0, / WK (w)dw = —
-1 -1

to finally get that the last sum equals

1
L Z Wiy (U (U — Uj) +op(1)

Z WU (WUU; —Uj)+ op(1).

j=1

f
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Similar arguments yield for the double sum in (4.15) including the factors Y ? Wi
the representation ‘

szl W/ (UG UHU; - Uj)+op(1).

Conclude that so far we have shown that (4.13) equals

n
(4.16) n V23T (W) U0 = Up) + op(h).
j=1
At this point we see that another simple application of (4.14) even for
bounded X s, that is, & = 0, does not yield an op(1) term. Therefore, we have to
analyze U and U; in a different way. As we shall see, finally, and in a disguised
form, we take advantage of the fact that, for each 6 every projection 87 X of X is
transformed into a uniform random variable F?(#7 X). Fix such a 6 and note that,
for a random vector X with the same distribution as X but being independent of
the sample (X;, ¥;), 1 <i <n, one gets
FOOT X)) =E{Ligr o7 x )| Fn}-
Here Fp = o(X;,Yi,1 <i < n) is the o-field generated by the observations.
Conclude that, for 8 = 8,
U] - Uj == E{]]'{QTXSQTX]} - ]]'{ﬂTXS,BTXj} |.¢n}
=E{Ljprx<p7x,) — Ligrx<prx )1 Fn}
+ E{ﬂ{@TXEﬂTXj} - ﬂ{ﬂTXEﬂTXj}I?.’l}’
whence
n
n~2Y (WY WU U5 - Uj)

j=1

@17 =2 W UHNB =B X P X)) + op(D)

j=1

n
(4.18) +1E{n“/2 YWY WUp[ligrx<prx,) — 11wrxiﬂrxj}]|5fn}.
j=I
The process inside the conditional expectation is, after centering, asymptotically
C-tight. With 6 = ﬂ B, we therefore obtain

| (AT
E{---|Fn} =n" E{fﬂwrx) (W) (u)du| Fy § + op(1)

=n'2(8 = HEI(W ) W)X BB X)) + op(1),
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where the last equality follows from the mean value theorem, n'/ Z(ﬁ —B) = 0p(1)
and the facts that B is measurable with respect to ¥;, and X is independent of F,.
Inserting this in (4.17) and (4.18), we thus get

a2 (W) (WU (U - U

j=1

=n'2(B = pyn" Y AW WHX; fP (BT X))~ EL-1) + op(D).

j=1

Since n'/ 2(3 — B) is stochastically bounded and the sample mean tends to zero
according to the SLLN, this shows that (4.16) tends to zero in probability.

It remains to bound (4.7), but this is easy. In view of Lemma 4.2, upon applying
by now standard arguments, we have

[(4.7)] = op(D).
This completes the proof of Lemma 4.7. [
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