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Statistica Sinica 6(1996), 403-418

ESTIMATING THE NUMBER OF SPECIES

VIA A MARTINGALE ESTIMATING FUNCTION

Anne Chao, Paul Yip� and Huey-Shyan Lin

National Tsing Hua University and University of Hong Kong�

Abstract: A martingale estimating function is proposed to estimate the number of

species under a multinomial model with possibly unequal cell probabilities. This

approach provides a class of estimators including the maximum likelihood estimator

for the equiprobable case and the nonparametric sample coverage estimator (Chao and

Lee (1992)) for the non-equiprobable case. Consistency of the proposed estimators is

discussed. A simulation study investigates the behavior of the proposed procedure.

A data set on Chinese poems is given for illustration.

Key words and phrases: Number of classes, multinomial, heterogeneity, sample cov-

erage, zero mean martingale.

1. Introduction

Estimating the number of species in a population is a classical problem in

biological applications. Bunge and Fitzpatrick (1993) provided a review of var-

ious models and approaches. They also compiled an extended bibliography on

this topic with over 550 references.

We focus on the most common multinomial model: Consider a population

which consists of N unknown distinct species. We search this population by se-

lecting one element at a time, noting its species identity and returning it to the

population. A search is called an n-stage search if n selections are made. Imag-

ine that the species are labeled 1; : : : ; N in any arbitrary fashion. In practical

species search studies, any sampling element is identi�ed by its species classi�ca-

tion rather than the labeling order. This labeling is just for convenience of math-

ematical treatment. Let pi be the probability that the selected one belongs to the

ith species and let Xik be the number of elements of the ith species in a k-stage

search, then (X1k; : : : ;XNk) is multinomially distributed for all k = 1; : : : ; n. Our

aim is to estimate N , the number of distinct species, after n selections are made.

As indicated in Bunge and Fitzpatrick (1993), there are three principal fre-

quentist procedures: In the �rst approach, one postulates a parametric func-

tional form for the multinomial cell probabilities (e.g., McNeil (1973)). In the

second approach, one approximates the distribution of the cell probabilities by
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a parametric probability density function (e.g., Sichel (1986)). In the third non-

parametric sample coverage approach, one estimates the number of species via

the estimation of sample coverage (e.g., Chao and Lee (1992)). The coe�cient of

variation of the cell probabilities is shown to play an important role in measuring

the heterogeneity of the population in the sample coverage approach.

In this paper, we present an alternative nonparametric technique using a

martingale estimating function (Godambe (1985)) via the notion of sample cov-

erage. This approach provides a class of estimators including the maximum

likelihood estimator for the equiprobable case and the sample coverage estimator

proposed by Chao and Lee (1992) for the non-equiprobable case. A history on the

application of sample coverage to species and population size estimation can be

found in Chao and Lee (1992) and references therein. The use of a martingale es-

timating function for related capture-recapture models is given in Becker (1984),

Becker and Heyde (1990), Yip (1989, 1991) and Yip, Fong and Wilson (1993).

However, the previous martingale estimating function approaches only deal with

the equiprobable case. This paper extends it to incorporate the heterogeneity of

species probabilities.

In Section 2, we present the martingale estimating function approach via

the idea of sample coverage. A class of estimators is derived and the bootstrap

method is proposed to obtain a variance estimator. In Section 3, results of a

simulation are reported to assess the performance of the proposed procedure.

A data set on the poems of Chinese poet Bai Juyi is given in Section 4 for

illustration.

2. Martingale Estimating Function

A zero-mean-martingale (ZMM) in discrete time is a stochastic process fMk :

k = 1; 2; : : :g such that E(M1) = 0, and for all k = 1; 2; : : : we have EjMkj <1

and E(Mk+j j Fk) =Mk for j = 0; 1; : : :, where Fk denotes the �-�eld generated

by the search process of a k-stage search, i.e., Fk = �fX1i; : : : ;XNi; i = 1; : : : ; kg.

Let fik =
PN

j=1 I[Xjk = i] be the number of classes that have exactly i ele-

ments in a k-stage search, where I(�) is the indicator function. Denote the number

of distinct species in a k-stage search by Dk, Dk =
Pk

i=1 fik =
PN

j=1 I[Xjk > 0].

Further, let mk = I[the kth selection is a discovered species] and uk = I[the kth

selection is an undiscovered species]. Thus uk + mk = 1 for all k. De�ne the

sample coverage of a k-stage search, Ck, as

Ck =
NX
i=1

piI[the ith species has already been discovered in a k-stage search].

(2:1)

Let Ai;k be the event that the ith species is not captured in samples 1; : : : ; k� 1

but captured in sample k and Bi;k be the event that the ith species is not captured
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in samples 1; : : : ; k. Then

E(uk j Fk�1) = E
n NX
i=1

I(Ai;k) j Fk�1

o
=

NX
i=1

piI[Bi;k�1]:

It follows from de�nition (2.1) that for k = 1; : : : ; n (C0 � 0)

E(uk j Fk�1) = (1�Ck�1): (2:2)

Similarly, we have

E(mk j Fk�1) = Ck�1: (2:3)

We can further show that

Var(uk j Fk�1) =Var
n NX
i=1

I(Ai;k) j Fk�1

o

=
NX
i=1

pi(1� pi)I(Bi;k�1) +
XX
i6=j

(�pipj)I(Bi;k�1)I(Bj;k�1)

= Ck�1(1� Ck�1): (2:4)

Similarly, we have

Var(mk j Fk�1) = Ck�1(1� Ck�1); (2:5)

and

Cov(uk;mk j Fk�1) = �Ck�1(1� Ck�1): (2:6)

Based on (2.2) and (2.3), we can construct the following martingale di�erence:

Dk = NCk�1[uk � (1� Ck�1)]�N(1� Ck�1)[mk �Ck�1]

= (NCk�1)uk �N(1� Ck�1)mk:

Thus the process M = fMk : k = 1; 2; : : :g where Mk =
Pk

1 Di is a ZMM. To

obtain a general martingale estimating function for N , we \integrate" a bounded

predictable weight function wk�1 with respect to M. Then the estimating func-

tion becomes

M�

n =
nX

k=1

wk�1Dk =
nX

k=1

wk�1[(NCk�1)uk �N(1� Ck�1)mk] (2:7)

=
nX

k=1

wk�1[(NCk�1)�Nmk]: (2:8)
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In this paper, we discuss two possible weight functions: wk�1 = 1 for all k and

the optimal weight function suggested in Godambe (1985). He showed that the

optimal weight function for a given martingale di�erence Dk is given by

w�k�1 =
E[@Dk=@N j Fk�1]

E[D2
k j Fk�1]

: (2:9)

Since N is an integer, instead of taking the derivative with respect to N we

compute the �rst di�erence of Dk. Here \optimal" is in the sense of giving the

tightest asymptotic con�dence interval in the class of estimating function M�

n.

For the special case that all pi's are equal, i.e., p1 = p2 = � � � = pN = 1=N , we

have NCk�1 = Dk�1 (D0 � 0) andN(1�Ck�1) = N�Dk�1. Hence the estimating

function (2.7) reduces to
P

wk�1[Dk�1uk � (N �Dk�1)mk], which is similar to

that considered by Yip (1989, 1991), Yip, Fong and Wilson (1993), Becker (1984)

and Becker and Heyde (1990) for capture-recapture models. Equating the above

estimating function to its mean gives the estimator
P

wk�1Dk�1=
P

wk�1mk.

If wk�1 = 1, the above reduces to

N̂0 =
nX

k=1

Dk�1

. nX
k=1

mk: (2:10)

This is equivalent to the Schnabel estimator for capture-recapture studies if each

selection is regarded as a trapping sample (Schnabel (1938) or Seber (1982)).

Note that the Schnabel estimator depends on the sequential ordering of the se-

lections. In other words, the Schnabel estimator is not invariant to permutation

of selections because of conditioning on the previous history sequentially.

In case all of the pi's are equal, the maximum likelihood estimator (MLE)

N̂0;mle is the solution of the following equation (Darroch (1958))

Dn�1X
i=0

(N � i)�1 = n = N : (2:11)

As N , n!1 such that n=N ! � > 0, the asymptotic variance of the MLE is

Var(N̂0;mle) = N =[exp(�)� �� 1]: (2:12)

Note that the MLE is invariant to permutation of selections.

It follows from (2.3)-(2.6) and (2.9) that the optimal weight in this case is

w�k�1 = 1=(N �Dk�1). Accordingly, the optimal estimator corresponding to the

optimal weight is the solution for the following equation

nX
1

[Dk�1 �Nmk]=(N �Dk�1) = 0:
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It is easy to see the above equation is equivalent to (2.11); hence the optimal

weight martingale estimator is exactly the MLE in the equiprobable case. Fol-

lowing a similar derivation as in Yip (1989, 1991), an estimated standard error for

N̂0 and N̂0;mle can be obtained by substituting appropriate weight and estimate

respectively in the following:

n nX
k=1

w2
k�1Dk�1(N �Dk�1)

o1=2. nX
k=1

wk�1mk: (2:13)

In most practical applications, the equally-likely assumption is invalid. To

relax this assumption, the nuisance parameters p1; : : : ; pN can be modeled by the

following two arguments:

(1) the �xed-e�ects model: p1; : : : ; pN are regarded as �xed parameters. The

essential relevant parameters are the mean �p =
PN

i=1 pi=N = 1=N and the coef-

�cient of variation (CV) 
 = [
PN

i=1(pi � �p)2=N ]1=2=�p.

(2) the random-e�ects model: p1, : : :, pN are a random sample from a N -

dimensional variable (P1; : : : ; PN ) with the constraint
P

Pi = 1. Assume that

(P1; : : : ; PN) has a symmetric joint CDF with a common marginal F (p) on (0,1).

Then F (p) has mean �p =
R
p dF (p) = 1=N by the common marginal assumption.

De�ne the CV of F (p) as 
 = [
R
(p� �p)2dF (p)]1=2=�p.

Both approaches will lead to exactly the same estimator. The basic motiva-

tion for handling the heterogeneous case is the following: instead of estimating N

directly, we estimate it via the estimation of NCk�1. The identity NCk�1 = Dk�1

is no longer valid when the pi's are not equal. From (2.8), if an \estimator"dNCk�1 of NCk�1 can be found such that the magnitude of the term

nX
k=1

wk�1[(NCk�1)� (dNCk�1)]

is negligible, then our estimating function for the heterogeneous case becomes

M��

n =
nX

k=1

wk�1D
�

k =
nX

k=1

wk�1[(dNCk�1)�Nmk]; (2:14)

where D�

k = (dNCk�1) �Nmk. Here
P

D�

i is approximately a ZMM and (2.14)

gives the following estimator:

nX
k=1

wk�1(dNCk�1)
. nX

k=1

wk�1mk: (2:15)

When the estimator dNCk�1 is Fk�1-measurable, an asymptotic standard error is

N
n nX
k=1

w2
k�1[Ck�1(1� Ck�1)]

o1=2. nX
k=1

wk�1mk: (2:16)
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Our procedure is to �nd an estimator for E(NCk�1) and subsequently use it as

an estimator of NCk�1. It can be shown that under both types of model

E(NCk�1) = E(Dk�1) + 
2E(f1;k�1) +R;

where f10 � 0 and R is the remainder term in the expansion. Under the �xed-

e�ects (random-e�ects) model, the expectation is in a conditional (unconditional)

sense. The magnitude of the remainder term R is generally negligible compared

to N . For example, if (P1; : : : ; PN ) has a symmetric Dirichlet distribution, we can

theoretically show that R=N tends to 0 as N , n ! 1 such that n=N ! � > 0.

(See Lin, Chao and Lee (1993) for a proof). Thus R will be ignored and we have

dNCk�1 = Dk�1 + 
̂2f1;k�1; (2:17)

where 
̂ is a CV estimator. We adopt the estimator of the CV based on k � 1

selections, 
̂2k�1, from Chao and Lee (1992) where


̂2m = max

�
Dm

Pm
i=1 i(i� 1)fim

m(m� 1)[1 � f1m=m]
� 1; 0

�
: (2:18)

It follows from (2.15), (2.17) and (2.18) that an estimator for N when wk = 1 is

given by

N̂ =
nX

k=k0

[Dk�1 + 
̂2k�1f1;k�1]
. nX

k=k0

mk: (2:19)

All the summation starts with an initial time k0 since we need su�cient observa-

tions to get a stable estimate of the CV. In the simulation of Section 3, we chose

k0 =
P10

i=1 ifin=2 since those species with more than 10 occurrences are treated

separately as will be described later. The estimation of the CV is the most dif-

�cult part in this procedure. Alternatively, we estimate this parameter after all

observations have been obtained. That is, consider the following estimator with

a modi�ed CV estimate:

~N =
nX

k=1

[Dk�1 + 
̂2nf1;k�1]
. nX

k=1

mk

= N̂0 + 
̂2n

nX
k=1

f1;k�1

. nX
k=1

mk: (2:20)

The optimal weight can be shown to be approximately equal to w�k�1 =

1=(1 � Ck�1). An estimated weight ŵ�k�1 is obtained by substituting Ĉk�1 =

1 � f1;k�1=(k � 1); (see Good (1953) and Robbins (1968)). Thus, we have two

estimators associated with the optimal weight:

N̂w =
nX

k=k0

ŵ�k�1[Dk�1 + 
̂2k�1f1;k�1]
. nX

k=k0

ŵ�k�1mk (2:21)
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and

~Nw =
nX

k=1

ŵ�k�1[Dk�1 + 
̂2nf1;k�1]
. nX

k=1

ŵ�k�1mk: (2:22)

Simulation results showed that the estimates of the asymptotic standard

error given in (2.16) usually underestimate the true standard error in the non-

equiprobable case. We adopt a bootstrap method to obtain a variance estimator.

First, note that in many situations, (f0n; f1n; : : : ; fnn) is approximately multino-

mially distributed with parameter N and cell probabilities N�1
PN

i=1

�
n

k

�
pki (1 �

pi)
n�k or

�
n

k

� R
pk(1�p)n�kdF (p), k = 0; 1; : : : ; n for the �xed-e�ects and random-

e�ects models respectively. The argument is similar to that given in the Appendix

of Darroch et al: (1993). Note here we only have
Pn

i=1 iE(fin) = n instead ofPn
i=1 ifin = n in this approximation. In the case of N̂ , a bootstrap replication

(f�0n; f
�

1n; : : : ; f
�

nn) under both models is then generated from a multinomial distri-

bution with parameter N̂ and estimated cell probabilities fkn=N̂ , k = 0; 1; : : : ; n.

However, the occurrence history of each species is needed to calculate the mar-

tingale estimator. For each of the species appearing i times, i = 1; : : : ; n, we

randomly selected i observations from f1; 2; : : : ; n�g without repetition, where

n� =
Pn

i=1 if
�

in, indicating this species is discovered in the selected observations

and not in others. That is, we randomly choose one sequential order from all

possible permutations as the searching order.

For each set of the data, we generate B replications and B bootstrap esti-

mates N̂�

i can then be obtained, i = 1; : : : ; B. The bootstrap variance of N̂ is

simply the sample variance of N̂�

i , i = 1; : : : ; B, i.e.

V̂ar(N̂) =
h BX
i=1

(N̂�

i )
2 � (

BX
i=1

N̂�

i )
2=B

i.
(B � 1):

We now show the sample coverage estimator proposed in Chao and Lee (1992)

can be regarded as a special case of our approach in the following sense: Suppose

we can extend the search one additional stage, i.e., the (n+ 1)th selection, after

an n-stage search has been made. If we consider only the martingale di�erence

D�

n+1 in (2.14), then an estimator becomes

dNCn= mn+1; (2:23)

where mn+1 = I[the additional observation is a discovered species]. Further, note

that

E(mn+1) =
NX
i=1

pi[1� (1� pi)
n] = E(Cn):
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Replacing mn+1 in (2.23) by an estimator Ĉn of E(Cn) and substituting dNCn =

Dn + 
̂2nf1n (see Equation (2.17)), we then have exactly the sample coverage

estimator (Chao and Lee (1992))

N̂s =
Dn

Ĉn

+
f1n

Ĉn


̂2n; (2:24)

which is invariant to permutation of selections. Thus, the sample coverage esti-

mator can be regarded as a martingale estimator conditioned on all data.

Simulation results have suggested that the above procedure generally pro-

duces reasonable estimates if the CV is not too large. When the CV is large,

it implies long frequency data. Hence, a modi�ed procedure is recommended

as follows: Since the species with large class probabilities are discovered many

times, they may be ignored from a practical point of view; i.e: we only consider

those species with no more than � occurrences. A suitable value of � might be

10 as suggested in Chao, Ma and Yang (1993). The number of species that have

occurred more than � times is then added to the resulting estimate. That is, we

only concentrate on a subset of species so that the CV for these species is smaller

than that of the original one. In the simulation of Section 3, we treat species

more than 10 times (� = 10) separately and apply our procedure to only those

species appearing up to 10 times.

A theoretical justi�cation on the use of sample coverage and the martingale

estimator is the consistency property based on an extended result of Chen (1980,

1981a, 1981b). (See Lin, Chao and Lee (1993) for details.) We merely summarize

the conclusion as follows: Under a multinomial model, if the species probabilities

(P1; : : : ; PN) follow a symmetric Dirichlet distribution with parameter �, then


2 � 1=�. As N , n!1 such that n=N ! � > 0, then

(1) if the CV can be consistently estimated by an estimator 
̂, say, then the

sample coverage estimator is consistent, i.e., we have

N�1
hDn

Ĉn

+
f1n

Ĉn


̂2
i
! 1 in probability;

(2) under the same condition, the martingale estimator is consistent. That is,

for any initial starting time k0, we can show that

N�1
n nX
k=k0

[Dk�1 + 
̂2f1;k�1]
. nX

k=k0

mk

o
! 1 in probability.

It is clear that the CV plays the most important role in the consistency property.

If the CV is known or can be consistently estimated, we are able to estimate the

number of \invisible" species consistently. Otherwise, consistency becomes an
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unattainable ideal because \there is nearly always a good chance that there are

a large number of extremely rare species", as I. J. Good pointed out in Bunge

and Fitzpatrick (1993).

3. Simulation Study

A simulation study was carried out to compare the relative merits of the

martingale and sample coverage estimators. Comparisons of sample coverage es-

timator and other estimators are given in Chao and Lee (1992). We have focused

on heterogeneous populations, since for the equi-probable case, the martingale

estimators are reduced to the traditional estimators, which have already been

studied by Chao and Lee (1992) and many others. We only present the simula-

tion results for the �xed-e�ects model. Conclusions for the random-e�ects trials

are generally similar. The following cases are reported: (the number of species

N was �xed to be 100, the constant c in the �rst �ve cases is a normalizing

constant such that
P

pi = 1). The �rst �ve cases are in a form of Zipf's law

which is widely prevalent in natural frequency data. For the other cases, the

proportions of a set of 100 negative binomial variables were �xed through the

simulation and used as the cell probabilities based on numismatics applications

(see Esty (1985)).

Case 1. (CV = 2:25). pi = c=i, i = 1; 2; : : : ; 100.

Case 2. (CV = 1:34). pi = c=(i + 2), i = 1; 2; : : : ; 100.

Case 3. (CV = 0:99). pi = c=(i + 5), i = 1; 2; : : : ; 100.

Case 4. (CV = 0:54). pi = c=(i + 20), i = 1; 2; : : : ; 100.

Case 5. (CV = 0:32). pi = c=(i + 50), i = 1; 2; : : : ; 100.

Case 6. (CV = 0:93). pi = Xi=
P100

j=1Xj , where X1;X2; : : : ; X100 are realizations

from negative binomial (1, 0.04).

Case 7. (CV = 0:68). pi = Xi=
P100

j=1Xj , where X1, X2; : : : ;X100 are realizations

from negative binomial (2, 0.04).

Case 8. (CV = 0:43). pi = Xi=
P100

j=1Xj , where X1, X2; : : : ;X100 are realizations

from negative binomial (4, 0.04).

For each case and �xed sample size (100 and 200), 200 data sets were gen-

erated. For each generated data set, four martingale estimators (N̂ , ~N , N̂w and
~Nw) and the sample coverage estimator N̂s proposed by Chao and Lee (1992)

as well as their estimated s.e.'s were calculated. If there were species appearing

more than 10 times, we treated them separately. The initial value k0 in calculat-

ing N̂ and N̂w was taken as
P10

i=1 ifin=2. To get s.e: estimates for the martingale

estimators, 200 bootstrap replications were used for each generated data set. The

s.e: estimator for the sample coverage estimator was provided in Equation (2.21)

of Chao and Lee (1992). Based on the 200 simulated data sets, the sample s.e:
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as well as sample root mean squared error (RMSE) for each estimator were then

obtained. All the results are given in Table 1.

Table 1. Simulation results for comparing estimates, 200 runs;

N̂ : martingale estimator, see (2.19);
~N : martingale estimator using a modi�ed CV estimator, see (2.20);

N̂w: optimal weighted martingale estimator, see (2.21);
~Nw: optimal weighted martingale estimator using a modi�ed CV estima-

tor, see (2.22);

N̂s: sample coverage estimator proposed in Chao and Lee (1992), see

(2.24).

estimated sample sample

n method estimate bias s.e. s.e. RMSE

Case 1. (pi = 1=i, CV= 2:25)

100 N̂ 78 �22 21.0 18.0 28.7
~N 78 �22 19.1 15.3 26.5

N̂w 79 �21 21.5 17.7 27.7
~Nw 80 �20 19.4 15.8 25.2

N̂s 89 �11 22.5 20.8 23.6

200 N̂ 92 �8 14.7 13.4 15.9
~N 91 �9 12.6 12.2 14.9

N̂w 92 �8 14.5 13.3 15.2
~Nw 93 �7 13.7 12.2 13.9

N̂s 100 0 16.3 14.8 14.8

Case 2. (pi = 1=(i+ 2), CV= 1:34)

100 N̂ 86 �14 18.6 17.2 22.4
~N 85 �15 17.0 16.2 22.0

N̂w 87 �13 18.8 17.2 21.7
~Nw 88 �12 17.3 15.4 19.9

N̂s 96 �4 20.4 20.7 21.1

200 N̂ 95 �5 11.8 11.6 12.6
~N 94 �6 11.0 10.8 12.3

N̂w 96 �4 11.6 11.6 12.3
~Nw 96 �4 11.0 11.0 11.7

N̂s 201 1 13.0 13.3 13.3



SPECIES ESTIMATION 413

Table 1. (Continued)

estimated sample sample

n method estimate bias s.e. s.e. RMSE

Case 3. (pi = 1=(i+ 5), CV= 0:99)

100 N̂ 87 �13 17.0 17.2 21.5
~N 88 �12 15.4 16.6 20.7

N̂w 88 �12 16.8 17.3 20.9
~Nw 90 �10 15.6 16.6 19.6

N̂s 95 �5 17.9 19.4 20.1

200 N̂ 97 �3 10.3 10.0 10.4
~N 96 �4 9.7 8.9 9.6

N̂w 98 �2 10.1 9.7 10.0
~Nw 98 �2 9.6 8.8 9.0

N̂s 101 1 11.2 10.4 10.5

Case 4. (pi = 1=(i+ 20), CV= 0:54)

100 N̂ 95 �5 15.9 17.2 17.8
~N 95 �5 14.5 14.7 15.5

N̂w 96 �4 16.2 16.9 17.4
~Nw 96 �4 14.7 14.8 15.4

N̂s 98 �2 16.1 17.1 17.1

200 N̂ 98 �2 7.6 7.8 8.1
~N 97 �3 7.3 7.1 7.6

N̂w 98 �2 7.4 7.6 7.9
~Nw 98 �2 7.0 7.1 7.4

N̂s 99 �1 7.9 8.2 8.2

Case 5. (pi = 1=(i+ 50), CV= 0:32)

100 N̂ 101 1 16.3 16.4 16.4
~N 99 �1 14.4 13.9 13.9

N̂w 102 2 16.4 16.3 16.5
~Nw 100 0 14.6 14.1 14.1

N̂s 101 1 15.4 15.3 15.3

200 N̂ 99 �1 6.8 7.1 7.1
~N 99 �1 6.6 6.8 6.8

N̂w 100 0 6.7 6.9 6.9
~Nw 100 0 6.2 6.4 6.4

N̂s 100 0 6.9 7.2 7.2
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Table 1. (Continued)

estimated sample sample

n method estimate bias s.e. s.e. RMSE

Case 6. (class size � NB(1; 0:04), CV= 0:93)

100 N̂ 76 �24 11.9 11.8 26.9
~N 75 �25 11.2 10.2 26.9

N̂w 77 �23 11.9 11.7 26.3
~Nw 76 �24 11.1 10.0 25.7

N̂s 79 �21 12.7 11.8 23.7

200 N̂ 83 �17 7.5 8.2 18.8
~N 84 �16 7.3 8.4 18.3

N̂w 84 �16 7.4 8.1 18.1
~Nw 85 �15 7.1 8.1 17.2

N̂s 88 �12 8.3 9.0 15.3

Case 7. (class size � NB(2; 0:04), CV= 0:63)

100 N̂ 86 �14 13.2 12.2 18.8
~N 85 �15 12.0 10.9 18.5

N̂w 87 �13 13.1 12.0 18.0
~Nw 86 �14 12.0 10.8 17.6

N̂s 88 �12 13.1 12.1 17.4

200 N̂ 91 �9 6.8 7.5 11.8
~N 90 �10 6.6 6.8 12.1

N̂w 91 �9 6.7 7.4 11.4
~Nw 91 �9 6.4 6.9 11.2

N̂s 93 �7 7.2 8.0 10.7

Case 8. (class size � NB(4; 0:04), CV= 0:42)

100 N̂ 94 �6 15.1 15.4 16.6
~N 94 �6 13.4 13.2 14.5

N̂w 95 �5 15.0 15.3 16.3
~Nw 94 �6 13.5 13.0 14.1

N̂s 95 �5 14.6 14.1 14.9

200 N̂ 98 �2 6.8 7.2 7.5
~N 97 �3 6.5 7.3 8.1

N̂w 98 �2 6.6 7.2 7.5
~Nw 97 �3 6.2 7.0 7.4

N̂s 98 �2 6.9 7.8 8.1
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It is clear from Table 1 that all four martingale estimates are very close. As

expected, the martingale estimator using an estimated optimal weight has smaller

s.e: than the constant weight estimator, but the improvement is not signi�cant.

The martingale estimator ~N( ~Nw) using a modi�ed CV estimator has smaller

RMSE than the estimator N̂(N̂w) using an adaptive CV estimator. As far as the

RMSE is concerned, the martingale and sample coverage estimators are generally

comparable. Note that the sample coverage estimator has smaller bias whereas

the martingale estimators have smaller s.e.'s. It seems that ~Nw generally has

the smallest RMSE for the trials of Zipf's law. In all cases, the sample coverage

estimate is higher than the four types of martingale estimates. The bootstrap

s.e: estimates are generally satisfactory since they are close to the sample s.e.'s

in most cases.

Table 2. Frequencies of Chinese poem data (n = 2800, Dn = 857).

i fin i fin i fin i fin i fin

1 393 7 17 13 6 19 1 26 1

2 171 8 16 14 3 20 2 27 1

3 89 9 3 15 1 21 1 30 1

4 51 10 10 16 3 23 1 32 1

5 25 11 9 17 6 24 2 34 1

6 29 12 7 18 4 25 1 56 1

4. Chinese Poem Data

A seven-character quartet is a Chinese poem of 28 characters which are

divided into four parts with seven characters in each part. In a study of the seven-

character quartets of China's most popular poet of the Tan'g Dynasty, Bai Juyi,

200 seven-character quartets were randomly selected from Bai's collected work.

See Ma and Chao (1993) for a discussion on this data set. In this application,

the species are distinct characters. Here we use the �rst 100 selected poems for

illustration. Totally there were n = 2800 Chinese characters and Dn = 857 for

distinct ones. The plot of Dk, k = 1; 2; : : : ; 2800 is presented in Figure 1. The

frequencies for this data are listed in Table 2. Our aim is to estimate the number

of distinct characters that had been used in Bai's collected quartets.

Usually the long frequency data as given in Table 2 implies large variation on

the class probabilities, and consequently a large CV. The CV estimate 
̂n = 1:43

for all frequencies is quite large, which shows strong evidence of heterogeneity

among the classes. If we wrongly assume that all the classes are equally-likely, the

Schnabel estimate given in (2.10) is 910 with s.e: 18 using (2.13) and the MLE is

896 with s.e: 7 using (2.12). Based on many previous simulations, the estimates

derived from the equiprobable assumption are generally biased downwards in
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the heterogeneous situation. Hence these two estimates are likely to have severe

negative biases.

1000

800

600

400

200

0

0 300 600 900 1200 1500 1800 2100 2400 30002700

(2800; 857)

Dk

k

Figure 1. Plot of Dk with respect to k for Chinese Poem Data

Table 3. Analysis results for Chinese poem data

Equi-probable:

N̂0 910 (s.e. = 18)

N̂0;mle 896 (s.e. = 7)

Martingale (weight = 1):

N̂ 1297 (s.e. = 44)
~N 1216 (s.e. = 41)

Martingale (optimal weight):

N̂w 1311 (s.e. = 46)
~Nw 1264 (s.e. = 46)

Sample coverage:

N̂s 1372 (s.e. = 57)

As suggested in Section 3, we treat high and low frequency separately to ob-

tain both the sample coverage and martingale estimates. A restriction is imposed

on the subset with frequency no more than only 10 times, and the CV estimate

reduces to 
̂n = 0:78. The classes appearing more than 10 times are then added

to the resulting estimate. All the estimates and their s.e.'s are given in Table 3.

The sample coverage estimate 1372 is slightly higher than the four martingale

estimates, which is consistent with the �ndings in the simulation. The sample

coverage estimator has also slightly higher estimated s.e: as expected. For a con-
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stant weight, the martingale estimate and bootstrap s.e: based on 200 replications

are N̂ = 1297 (s.e: = 44) and ~N = 1216 (s.e: = 41); for the estimated optimal

weight, we have N̂w = 1311 (s.e: = 46) and ~Nw = 1264 (s.e: = 46). The initial

value for the estimators N̂ and N̂w is taken as k0 =
P10

i=1 ifin=2 = 940. All the

four martingale estimates are very close. Thus, we conclude the total number

of distinct characters is around 1300 with an estimated s.e: around 50 in Bai's

collected quartets. This number is much less than that of the most commonly

used Chinese characters, 5000, as adopted in the Chinese E�TEN software sys-

tem. The statistical result here may provide interesting evidence for Bai's honor

as \the most popular poet in the Tan'g Dynasty" and \the poet of ordinary

people". A program (written in C Language) which calculates all the proposed

martingale and sample coverage estimates as well as their s.e.'s is available upon

request.
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