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Transverse electric current induced by optically injected spin current
in a cross-shaped InGaAs/InAlAs system
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We examine the electric response of a linearly polarized light normally shed on a cross-shaped

quasi-two-dimensional InGaAs/InAlAs

system with

structure inversion asymmetry. The

photoexcited conduction electrons carry a pure spin current with in-plane spin polarization due to
the Rashba spin-orbit interaction. We use the Landauer-Biittiker formalism to show that this spin
current induces two inward or outward transverse charge currents, which are observable in
experiments. This effect may serve as an experimental probe of certain types of spin current.
© 2006 American Institute of Physics. [DOI: 10.1063/1.2196230]

Spin-coherent transport of conduction electrons in semi-
conductor heterostructures is currently an emerging subject
due to its possible application in a new generation of elec-
tronic devices.! There have been considerable efforts to
achieve spin-polarized current or pure spin current in semi-
conductors such as injection from ferromagnetic contact,”
quantum spin pump,3 spin Hall effect, and spin-like An-
dreev reflection.’ Optical injection of spin current is based
largely on the fact that the spin-polarized carriers in conduc-
tion band can be injected in semiconductors via absorption of
the circularly or linearly polarized light.6’7 While there are
successful ways to inject or generate spin current, its detec-
tion is still a subtle problem. Despite the optical methods that
indicated spin accumulation due to the spin curlrent,8 it is
tempting to probe spin current by measuring its electric
effects.””'? In this letter, we theoretically study electric trans-
verse current driven by an optically injected spin current in a
two-dimensional (2D) electron gas of InGaAs/InAlAs with
structure inversion asymmetry. A linearly polarized light
pumps electrons from valence to conduction bands, which
induces a pure spin current with in-plane polarization due to
the spin-orbit coupling. The Hall effect related to this spin
current in a cross-shaped mesoscopic system is explored,
which yields two measurable inward or outward electric
transverse currents. By using the Landauer-Biittiker formal-
ism, we provide an estimate of the electric transverse current
measurable in experiments.

We begin with the optical injection of spin current in
quasi-2D InGaAs/InAlAs with structural inversion asymme-
try. The low-energy band structure is well known and is plot-
ted schematically in Fig. 1(a). The conduction electron can
be described by an effective Hamiltonian,

2
P a ~
H conduction = m - %(P X 0') cZ+ V(Z)’ (l)

where o are the Pauli matrices, V(z) is the asymmetric con-
fining potential perpendicular to the sample (x-y) plane, and
a is the strength of the Rashba spin-orbit coupling. The zero-
field splitting of the conduction band arises because of the
Rashba coupling, and electrons are spin polarized normal to
the momentum in each subband, as shown in Fig. 1(b). The
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electrons in the valence band near the I' point can be de-
scribed by the Luttinger Hamiltonian,
) p’ (p-S)°

— =2
2m %2 2m

H aience == (7/1 +>" + V(Z) > (2)
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where m, is the free electron mass, vy, and vy, are two Kohn-
Luttinger parameters, which are taken to be ;=7.0, and
v,=1.9 in this calculation,”” S represents three 4 X4 spin-
3/2 matrices. For simplicity, we approximate V(z) in Egs. (1)
and (2) by an infinite potential wall with a width of
d=10 nm. The wave functions for the holes in the valence
band can be obtained by a truncation method. We diagonal-
ize Hgence In a truncated Hilbert space only including the
lowest N basis states. In the present paper, we take N=80,
which is accurate enough for the lowest four hole
subbands."

The process of optical excitation is schematically illus-
trated with the el and hhl subbands in Fig. 1. When a lin-
early polarized light is shed normally onto the sample plane,
the electrons are pumped from the hhl subband of the va-
lence band to the el subband of the conduction band via
direct optical absorption provided that the photon energy is
higher than the band gap, i.e., iw>E,. Due to the Rashba
spin-orbit coupling, the conduction bands are split into two
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FIG. 1. (a) A schematic view of the 2D band structure of InGaAs/InAlAs.
(b) Schematic plot of spin polarization (arrow) of conduction electron in
momentum space with the same energy. (c) Calculated spin current induced
by linearly polarized light.
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subbands, as shown in Figs. 1(a) and 1(b). A photoexcited
electron has an in-plane spin polarization perpendicular to its
momentum, which induces a pure spin current. The spin
current operators for electrons in the conduction band and
holes in the valence band can be expressed in terms of the
velocity and spin operators of electrons and holes, respec-
tively, J’:(e)=(h/4){0"‘,v§f)} and J’:(h)=(ﬁ/2){S",v§}h)}, where
v©(k) and v("(Kk) are the velocity operators for the conduc-
tion and valence bands, respectively. The total spin current
from the photoexcited electrons and holes is

(7= 2 Tl 75 0) - 7Pk}, (3)
k

where p©(k) and pM (k) are the density matrices for the
conduction and valence bands, respectively. The density ma-
trices that appear in Eq. (3) can be obtained in a relaxation
time approximation. In the present study only the diagonal
components of the density matrices are kept, and the results
can be written as

w *
pfﬁ;h)(k) = E e,hE Mnm(k)an(k)

X [S(EL"(K) + ELS(K) - fiw,)], (4)

m

where 7, is the relaxation time for electrons (holes) and M
is the 2X4 transition matrix describing the direct optical
transition between the conduction and valence subbands,
which is caused by the external light. Under the dipole ap-

proximation, M can be expressed by M =D:-1A71Dw where
D, and D, are the 2X2 and 4 X4 transformation matrices
that diagonalize the Hamiltonian in Egs. (1) and (2), respec-

tively, and the matrix M is the coupling matrix in the original

basis of the row {|S.(=+1/2,-1/2))} and column
{1S.(=43/2,1/2,-1/2,-3/2))}, as
i¢ * =it 3
~ e 0 e "?IN3 0
M=(g Lot ) 5)
0 ge'?3 0 g

where ¢ is the polarization angle of the linearly polarized
light and the factor g is determined by the Bloch functions of
electron and hole at the I' point. In this way, the pure spin
current is obtained as a function of the frequency and polar-
ization of the light. The dominant component of the spin
current flowing in the x direction is J, which is similar to the
equilibrium current proposed by Rashba.' To calculate the
spin current, we adopt the parameters from a sample of
In,Ga,_,As/ Ino_52A10'48As,16 with the Rashba coupling
strength a=6.1 X 1072 eV m, (a/h=3X10"%c, where c is
the speed of light), the effective mass m.=0.05m,, the
incident light power is 100 mW with the wavelength
A=880 nm. We also extract from the experimental data'® that
mlg|?7,/ (h*/m,d?*)2:~0.78 X 1073, which is used in calcu-
lating the density matrices. Given a quantum well with the
size L X L, the induced current I4/=J%L varies approximately
with cos 2¢, as shown in Fig. 1(c) with L=100 um, the
function of [ is fitted to be LI =Iy+I;cos2¢ with
1p=12.32 nA and 1, =0.75 nA. It is also noticeable that there
is also a nonvanishing I; component of the spin current, al-
though it is comparatively negligible.

We now turn to investigate the consequence of applying
this in-plane polarized spin current to a cross-shaped meso-
scopic system with the Rashba spin-orbit coupling, and it
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FIG. 2. The ratio of the electric transverse current to the longitudinal spin
current as a function of the Fermi energy counted from the bottom of the
conduction band, with inset the geometry of the cross-shaped structure in
our calculation. The calculation was carried out on a 40 X 40 square lattice
with the total width L=100 nm, the effective electron mass m*=0.05mel, and
the Rashba spin-orbit coupling strength a=6.1X 1072 eV m.

turns out that electric transverse currents will be induced in
this case. We analyze this first from the symmetry point of
view, followed by an numerical estimation of the amplitude
of the transverse currents, then we propose an experiment for
the observation. In our proposal the whole setup is carved on
an InGaAs/InAlAs heterojunction with a central scattering
region and four leads for measurements, as shown in the
inset of Fig. 2. The transverse leads (leads y, and y_) and the
scattering region should be masked to prevent from the light
shining explicitly, while the longitudinal leads (leads x, and
x_) are opened to accept the linearly polarized light to gen-
erate the incident in-plane-polarized spin current. By avoid-
ing any possible interfaces of current injection, the spin cur-
rent is expected to circulate in the x direction without
conventional spin in_)jection problem. Under the Landauer-
Biittiker formalism,1 ‘1% \which has been extensively used in
the study of quantum transport in mesoscopic systems, 20
and will be applied to analyze the transverse currents in our
case, we simulate the generation of the spin current and the
measurement of the transverse currents by assuming a proper
setting of the spin-dependent chemical potential related to
each lead. In detail, if we denote the effective voltage related
to spin polarization u (u=1,]) at lead p by V7, then we
assume Vl_:—Vi_:—VjH: V}C+= Vo/2 and Vl_= V§_= VI+
= Vi .=0. It should noted that u can be oriented in the x, y, or
z direction (to consider either in-plane- or perpendicular-to-
plane-polarized spin current), which will be denoted by
Mm~x,y, or z. Given this voltage setting, the symmetry prop-
erties of the currents will be fully presented by the spin-
dependent transmission functions between the leads,20 as we
will see.

In each lead (assumed to be ideal and semi-infinite by
convention) attached to the central shaded region in the inset
of Fig. 2, the wave function can be expanded in terms of
separate propagating modes, which are the eigenstates in the
lead. In x_, for example, the eigenstates are zﬁnﬁ’u(x, y)
=Ce**n ¢, (y) ® x,,» where C is the normalization constant,
&,,(y) is the mth eigenstate in the transverse dimension, y,, is
the spin eigenstate with w=7 or |, and * denotes the mode
as incoming or outgoing. The expansion coefficients of the
actual wave functions in terms of these eigenstates are
known as the wave amplitudes a'™°™, which are related by an
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unitary matrix a%ﬁ:ﬁny,,s%aifv and all the symmetries of the
transport properties in the system are embedded in this
S-matrix. For simplicity, we assume that the quantum modes
in opposite leads are symmetrical, which means that for each
mode with wave vector k,, and spin polarization w in lead
x_(y_), there is a mode with the same wave vector and spin
polarization in lead x,(y,), and vice versa. In the clean limit,
the Hamiltonian with the Rashba spin-orbit coupling term is
obviously invariant under three unitary transformations, i.e.,
H commutes with the time-reversal operator T=-io K,
where K is the complex-conjugate operator, and two com-
bined operators o,R, and o,R,, where R,(R,) denotes the
mirror reflection operator transforming x—-x (y—-y).
While the transformed eigenstates remain as eigenstates of
the original Hamiltonian, some of the amplitudes are trans-
formed in the following ways: under the transformation of 7,

ai,::# — (a;u}% *. a;u; — (ai:ﬁ)*; (6)

under the transformation of o;R;,

ai;‘ff”‘) — ai%‘ﬁfm) (meiijm~i)
in(out) in(out) (7)
miouf . . . B

Aoy i (meiiu~j#i);

where i=x or y, u=—pu and m is the counterpart of m in its
opposite lead. The phase factors are neglected in the above
transformations because they will not be manifested in the
following calculations of the transmission probabilities. The
symmetries as well as the unitary condition impose con-
straints on the S-matrix, and thus on the transmission prob-
ability from mode {n, v} to mode {m, u}, which is defined as
— 2 . . .
Th=|sk"12. For the time reversal symmetry T, this yields
T =T, (8)

nm?

for the symmetry under o;P;,
MV _ MV ~ 1
Tmn - Tm’n’ ('LL’ v l)

- ©)
T =T, (uv~j#i),

where i=x or y, m'=m if mei_, i,, or m otherwise. By
summing up all the transmission probabilities between two
leads with specific spin polarizations, the transmission func-

tions T,’fq" =2 TH", and the currents are obtained using

mep,neq- mn’®

the extended Biittiker formula!’ Igz(e/h)Eq’,,(Tl’,‘; vy

—T;;‘,‘V;,‘) with the electric and spin currents defined as

I;=e(I;+I]l,) and I;:(ﬁ/2)(];—1}l,), respectively. Combining
the symmetry-derived Egs. (8) and (9) with the preceding
voltage configuration, we find

I;:_:—I;_'_:O’ (MNx)’ (10)
L=E. (u~y). ()
I;_=_I;+, (Iu‘NZ)‘ (12)

It is clear now to see the difference between the transverse
electric currents induced by a z-direction-polarized spin cur-
rent and an in-plane-polarized spin current, that is in the
former case the transverse current is a truly circulating one,
which can be naturally regarded as a reversed effect of the
spin Hall effect,”™"! whereas in our case of in-plane polariza-
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tion, the transverse currents are flowing both inward or out-
ward instead of circulating through the two transverse leads.
Consequently, this will make an essential difference in the
measurements of the currents in such systems. To present a
quantitative estimate of the induced currents, we make nu-
merical calculations with the tight-binding approximation in
this cross-shaped mesoscopic system, and the ratio of the
induced electric transverse current /| to the spin current /; are
plotted in Fig. 2. Combined with the calculated value of the
injected spin current, we notice that the induced current is
about 0.1 ~0.2 nA, which is large enough to be measured
experimentally, while the small part of the spin current with
spin polarization along the x axis does not contribute to the
transverse currents.

All parameters in our calculation are adopted from a
realistic sample of InGaAs/InAlAs heterojunction. Thus, the
effect may serve as an experimental probe of in-plane-
polarized spin currents.
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