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Improved Global Robust Asymptotic Stability Criteria
for Delayed Cellular Neural Networks

Shengyuan Xu, James Lam, Daniel W. C. Ho, and Yun Zou

Abstract—This paper considers the problem of global robust stability
analysis of delayed cellular neural networks (DCNNs) with norm-bounded
parameter uncertainties. In terms of a linear matrix inequality, a new suf-
ficient condition ensuring a nominal DCNN to have a unique equilibrium
point which is globally asymptotically stable is proposed. This condition is
shown to be a generalization and improvement over some previous criteria.
Based on the stability result, a robust stability condition is developed, which
contains an existing robust stability result as a special case. An example
is provided to demonstrate the reduced conservativeness of the proposed
results.

Index Terms—Cellular neural network, global asymptotic stability,
linear matrix inequality, parameter uncertainty, robust stability, time
delays.

I. INTRODUCTION

Cellular neural networks (CNNs), which were introduced in [8] and
[9], have received much attention in the past years due to their exten-
sive applications in signal processing, moving image processing, opti-
mization, speed detection of moving objects, and other areas [8]. It has
been shown that such applications rely on the existence of equilibrium
points or of a unique equilibrium point and its qualitative properties
of stability. For example, when a CNN is applied to image processing
where the main function of CNNs is to transform an input image into a
corresponding output image, it is then necessary that the CNN must
be completely stable in the sense that every trajectory converges to
an equilibrium point. Therefore, stability analysis of CNNs has been
studied recently and a great number of results on this topic have been
reported in the literature via various approaches.

In implementations of artificial neural networks, however, time de-
lays may occur due to finite switching speeds of the amplifiers and com-
munication time. Time delay is often a source of instability and poor
performance of a CNN. Considering this, the problem of stability anal-
ysis of delayed cellular neural networks (DCNNs) has become one of
the most active research areas and has attracted much attention during
the past years [5]–[7]. For instance, a sufficient condition ensuring the
uniqueness and global asymptotic stability of an equilibrium point of
DCNNs was proposed in [5]; this was shown to be less conservative
than some earlier asymptotic stability results in [3], [11], and [13]. Via
a new approach, sufficient conditions for the uniqueness and global
asymptotic stability for a DCNN was proposed in [12]. Very recently,
a linear matrix inequality (LMI) approach was developed and a suffi-
cient condition for global asymptotic stability of DCNNs was given in
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[14]; it was shown in [14] that the asymptotic stability results in [1],
[5], [11] are special cases of that in [14]. When norm-bounded param-
eter uncertainties appear in a DCNN, a sufficient condition for robust
stability was obtained in [15] via an LMI approach.

In this paper, we deal with the problem of robust stability analysis for
DCNNs. The parameter uncertainties are assumed to be norm-bounded
and appear in both the feedback and delayed feedback matrices. Firstly,
a sufficient condition ensuring the uniqueness and global asymptotic
stability of the equilibrium point for a nominal DCNN is developed.
This condition is expressed in terms of an LMI, which can be checked
numerically very efficiently by resorting to recently developed inte-
rior-point methods, and no tuning of parameters will be involved [4].
Based on the asymptotic stability result, a new global robust asymptotic
stability condition is obtained in terms of an LMI. It is theoretically es-
tablished that the developed stability result in this paper contains the
earlier asymptotic stability results in [1], [2], [11], and [14] as special
cases, while the derived robust stability condition contains that in [15]
as a special case. A numerical example is provided to demonstrate the
reduced conservatism of the proposed results in this paper.
Notation. Throughout this paper, for real symmetric matrices X and
Y , the notation X � Y (respectively, X > Y ) means that the matrix
X � Y is positive semi-definite (respectively, positive definite). The
superscript “T ” represents the transpose. We use �min( � ) to denote
the minimum eigenvalue of a real symmetric matrix. The notation kxk
denotes a vector norm defined by kxk = ( n

i=1 x
2

i )
1=2 when x is a

vector. Matrices, if not explicitly stated, are assumed to have compat-
ible dimensions.

II. PROBLEM FORMULATION

Consider a CNN with a time delay and parameter uncertainties de-
scribed by [15], as follows:

_x(t) = �x(t) + (A+�A)y(x(t))

+ (A� +�A� )y(x(t� � )) + u (1)

or

_xi(t) = �xi(t) +

n

j=1

(aij +�aij)yj(xj(t))

+

n

j=1

a
�
ij +�a�ij yj(xj(t� � )) + ui; i = 1; 2; . . . ; n

where

x(t) = [x1(t) x2(t) � � � xn(t)]
T

is the state vector

y(t) = [y1(t) y2(t) � � � yn(t)]
T

is the output vector and

u = [u1 u2 � � � un]
T

is the constant external input vector. A = faijg is the feedback ma-
trix, A� = fa�ijg is the delayed feedback matrix, �A = f�aijg and
�A� = f�a�ijg represent the parameter uncertainties in the matrices
A and A� , respectively. In this paper, we assume �A and �A� are of
the following form [15]:

�A = HFE; �A� = H
�
F
�
E

� (2)

where

F
T
F � I; (F � )TF � � I; (3)
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�A and �A� are said to be admissible if both (2) and (3) hold. In
system (1), the scalar � > 0 is the transmission delay, and yi are the
activation functions, which are given by

yi(xi) =
1

2
(jxi + 1j � jxi � 1j); i = 1; 2; . . . ; n: (4)

Now, suppose that

x
� = [x�1 x

�

2 � � � x
�

n]
T

is the equilibrium point of (1). Then, by setting

z(t) = x(t)� x
� (5)

it can be shown that the equilibrium point x� of (1) can be shifted to
the origin; in this case, system (1) is transformed to

_z(t) = �z(t)+ (A+�A)�(z(t))+ (A� +�A
� )�(z(t� � )) (6)

where

z(t) = [z1(t) z2(t) � � � zn(t)]
T (7)

�(z(t)) = [�1(z1(t)) �2(z2(t)) � � � �n(zn(t))]
T (8)

�i(zi(t)) = yi(zi(t) + x
�

i )� yi(x
�

i ); i = 1; 2; . . . ; n: (9)

It is easy to see that

�i(zi(t))
2 � zi(t)�i(zi(t)); �i(0) = 0; i = 1; 2; . . . ; n: (10)

Then, the problem to be addressed in this paper is to develop im-
proved global robust asymptotic stability conditions for the cellular
neural network in (6) via an LMI approach.

III. GLOBAL STABILITY AND ROBUST STABILITY

In order to develop improved robust stability conditions, we first con-
sider the nominal DCNN of (6); that is

_z(t) = �z(t) +A�(z(t)) + A
��(z(t� � )): (11)

The following theorem provides a new asymptotic stability condition
for the DCNN in (11).

Theorem 1: The origin of the DCNN in (11) is the unique equilib-
rium point and is globally asymptotically stable if there exist matrices
P > 0; Q > 0 and two diagonal matrices D > 0 and S > 0 such that
the following LMI holds:

�2P PA �D + S PA�

ATP �D + S DA+ATD +Q� 2S DA�

(A� )TP (A� )TD �Q

< 0: (12)

Proof: Firstly, we show the uniqueness of the equilibrium point
by contradiction. To this end, we let �z be the equilibrium point of the
delayed cellular neural network in (11), then we have

��z + (A+ A
� )�(�z) = 0: (13)

Now, suppose �z 6= 0. Then, by (13), it is easy to see that

�2�zTP �z + 2�zT [P (A+A
� )�D]�(�z)

+ 2�(�z)TD(A+ A
� )�(�z) = 0: (14)

Noting that S > 0 is diagonal and using (10), we have

�(�z)TS�(�z) � �zTS�(�z):

This, together with (14), gives

� 2�zTP �z + 2�zT [P (A+ A
� )�D + S]�(�z)

� �(�z)T [2S �D(A+A
� )

� (A+A
� )TD]�(�z) � 0: (15)

On the other hand, pre- and post-multiplying (12) by

I 0 0

0 I I

and its transpose, respectively, we can deduce

2S �D(A+ A
� )� (A+ A

� )TD > 0; (16)

and

� 2P + [P (A+ A
� )�D + S][2S �D(A+ A

� )

� (A+A
� )TD]�1[P (A+ A

� )�D + S]T < 0: (17)

By (16) and Lemma 1 in [16], it can be shown that

2�zT [P (A+ A
� )�D + S]�(�z)� �(�z)T

� [2S �D(A+A
� )� (A+A

� )TD]�(�z)

� �zT [P (A+A
� )�D + S][2S �D(A+ A

� )

� (A+ A
� )TD]�1[P (A+ A

� )�D + S]T �z: (18)

Then, it follows from (15) and (18) that

�zT (�2P + [P (A+ A
� )�D + S][2S �D(A+ A

� )

� (A+A
� )TD]�1[P (A+ A

� )�D + S]T )�z � 0:

This contradicts (17). The contradiction implies that �z = 0. That is, the
origin of the delayed cellular neural network in (11) is the unique equi-
librium point. In the following, we shall establish the global asymptotic
stability of the unique equilibrium point of (11). To this end, we denote

D = diag(d1; d2; . . . ; dn);

and choose a Lyapunov–Krasovskii functional candidate for system
(11) as

V (zt; t) = z(t)TPz(t) + 2

n

i=1

di

z (t)

0

�i(�) d�

+
t

t��

�(z(�))TQ�(z(�))d� (19)

where

zt = z(t+ �); �� � � � 0:

Then, the time-derivative of V (zt; t) along the solution of (11) gives

_V (zt; t) = �2z(t)TPz(t) + 2z(t)T (PA�D)�(z(t))

+ 2z(t)TPA��(z(t� � ))

+ �(z(t))T (DA+A
T
D +Q)�(z(t))

+ 2�(z(t))TDA
��(z(t� � ))

� �(z(t� � ))TQ�(z(t� � )): (20)

By (10), we obtain

�(z(t))TS[z(t)� �(z(t))] � 0: (21)

Therefore

_V (zt; t) � �(t)T��(t) (22)

where

�(t) = [z(t)T �(z(t))T �(z(t� � ))T ]T ;

and

� =

�2P PA �D + S PA�

ATP �D + S DA+ATD +Q� 2S DA�

(A� )TP (A� )TD �Q

:
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Then, by (12) and (22), it can be seen that

_V (zt; t) � �akz(t)k2; (23)

where a = �min(��) > 0. Finally, by [10], it follows from (23) that
the DCNN in (11) is globally asymptotically stable. This completes the
proof.

Remark 1: Theorem 1 provides a new sufficient condition for the
global asymptotic stability of the DCNN in (11) in terms of an LMI.
This LMI condition can be checked numerically very efficiently by
using the interior-point algorithms which have been developed recently
in solving LMIs [4].

Now, we are in a position to provide the robust asymptotic stability
condition for the uncertain DCNN in (6).

Theorem 2: The origin of the uncertain DCNN in (6) is the unique
equilibrium point and is globally asymptotically stable for all admis-
sible uncertainties if there exist matrices P > 0; Q > 0, two diagonal
matrices D > 0; S > 0, and scalars �1 > 0 and �2 > 0 such that the
LMI shown in (24), at the bottom of the page, holds.

Proof: Noting (2) and (3), and using Lemma 1 in [16], we have

0 P�A 0

�ATP D�A+�ATD 0

0 0 0

� �
�1

1 �1�
T

1 + �1�
T

2 �2;

(25)

and
0 0 P�A�

0 0 D�A�

(�A� )TP (�A� )TD 0

� �
�1

2 �1�
T

1 + �2�
T

2 �2

(26)

where

�1 = [HT
P H

T
D 0]T ; �2 = [0 E 0];

�1 = [(H�)TP (H�)TD 0]T ; �2 = [0 0 E� ]:

Now, applying Schur complements to (24) and using (25) and (26),
we have the second equation shown at the bottom of the page. Fi-
nally, by this inequality and Theorem 1, the desired result follows
immediately.

IV. COMPARISON WITH PREVIOUS CRITERIA

In the literature, a great number of asymptotic stability and robust
stability results for the DCNN in (11) have been reported. In this sec-
tion, we will show that the stability conditions in [1], [2], [11], and [14]
are the special cases of our results in Theorem 1, while the robust sta-
bility condition in [15] is a special case of our result in Theorem 2. To
this end, we first restate the results in [2], [14], and [15] as follows.

Theorem 3: [14]: The origin of the DCNN in (11) is the unique
equilibrium point and is globally asymptotically stable if there exist
matrices P > 0; Q > 0 and a diagonal matrix D > 0 such that the
following LMI holds:

2P �PA �PA�

�ATP 2D �DA� ATD �Q �DA�

�(A� )TP �(A� )TD Q

> 0: (27)

Theorem 4: [2]: The origin of the DCNN in (11) is the unique equi-
librium point and is globally asymptotically stable if there exist a matrix
K > 0 and a diagonal matrix P > 0 such that the following matrix
inequalities hold:

PA + A
T
P +K < 0 (28)

�2P �K + I + PA
� (A� )TP � 0: (29)

Theorem 5: [15]: The origin of the uncertain DCNN in (6) is the
unique equilibrium point and is globally asymptotically stable for all
admissible uncertainties if there exist a diagonal matrix D > 0 and
scalars �1 > 0; �2 > 0 such that the LMI, shown in (30) at the bottom
of the page, holds.

Now, we have the following results.
Theorem 6: Suppose that there exist matrices P > 0; Q > 0 and

a diagonal matrix D > 0 such that the LMI in (27) holds, then there
exist matrices ~P > 0; ~Q > 0 and two diagonal matrices ~D > 0 and
~S > 0 satisfying the LMI in (12); that is

�2 ~P ~PA � ~D + ~S ~PA�

AT ~P � ~D + ~S ~DA+ AT ~D + ~Q� 2 ~S ~DA�

(A� )T ~P (A� )T ~D � ~Q

< 0: (31)

�2P PA�D + S PA� PH PH�

ATP �D + S DA+ ATD +Q� 2S + �1E
TE DA� DH DH�

(A� )TP (A� )TD �2(E
�)TE� �Q 0 0

HTP HTD 0 ��1I 0

(H�)TP (H�)TD 0 0 ��2I

< 0: (24)

�2P P (A+�A)�D + S P (A� +�A� )

(A+�A)TP �D + S D(A+�A) + (A+�A)TD +Q� 2S D(A� +�A� )

(A� +�A� )TP (A� +�A� )TD �Q

< 0:

D �DA� ATD � �1E
TE � �2(E

�)TE� �(A� )TD 0 DH

�DA� D DH� 0

0 (H�)TD �2I 0

HTD 0 0 �1I

> 0: (30)
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Proof: Suppose that there exist matrices P > 0; Q > 0 and a
diagonal matrix D > 0 such that the LMI in (27) holds, then it is easy
to see (27) is equivalent to

�2P PA PA�

ATP DA+ATD +Q� 2D DA�

(A� )TP (A� )TD �Q

< 0: (32)

Now, choose

~P = P; ~Q = Q; ~D = D; ~S = D: (33)

Then, by (32), it is easy to see that ~P > 0; ~Q > 0 and diagonal matrices
~D > 0 and ~S > 0 in (33) satisfy (31). This completes the proof.

Theorem 7: Suppose that there exist a matrixK > 0 and a diagonal
matrix P > 0 such that (28) and (29) hold, then there exist matrices
~P > 0; ~Q > 0 and two diagonal matrices ~D > 0 and ~S > 0 satisfying
the LMI in (31).

Proof: Suppose that there exist a matrix K > 0 and a diagonal
matrix P > 0 such that (28) and (29) hold, it can be seen that there
exists a scalar � > 0 such that

PA+ A
T
P +K + �I < 0: (34)

Choose a matrix P̂ > 0 satisfying

�2P̂�1 + A
� (A� )T < 0 (35)

��I + [AT + PA
� (A� )T ][2P̂�1 � A� (A� )T ]�1

� [A + A
� (A� )TP ] < 0: (36)

Then, by (29), (35), (36), and (34), it can be seen that

�2P̂�1 A A�

AT PA +ATP � 2P + I PA�

(A� )T (A� )TP �I

< 0: (37)

Pre- and post-multiplying (37) by diag(P̂ ; I; I), we obtain

�2P̂ P̂A P̂A�

AT P̂ PA + ATP � 2P + I PA�

(A� )T P̂ (A� )TP �I

< 0: (38)

Now, choose

~P = P̂ ; ~Q = I; ~D = P; ~S = P: (39)

Then, by (38), it is easy to see that ~P > 0; ~Q > 0 and diagonal matrices
~D > 0 and ~S > 0 in (39) satisfy (31). This completes the proof.

Remark 2: Theorems 6 and 7 show that the asymptotic stability con-
ditions for delayed cellular neural networks in [14] and [2] are special
cases of Theorem 1 in this paper. Furthermore, we note that in [14], it

was shown that the stability conditions in [1] and [11] are special cases
of Theorem 2. Therefore, by Theorem 6, we have that the stability con-
ditions in [1] and [11] are also special cases of Theorem 1 in this paper.

For the robust stability result in Theorem 2, we have the following
theorem.

Theorem 8: Suppose that there exist a diagonal matrix D > 0 and
scalars �1 > 0; �2 > 0 such that the LMI in (30) holds, then there exist
matrices ~P > 0; ~Q > 0; two diagonal matrices ~D > 0; ~S > 0, and
scalars ~�1 > 0 and ~�2 > 0 satisfying the LMI in (24); that is (see (40),
as shown at the bottom of the page).

Proof: Suppose that there exist a diagonal matrix D > 0 and
scalars �1 > 0; �2 > 0 such that the LMI in (30) holds, then, by Schur
complements, it follows from (30) that

M D � �
�1

2 DH
� (H�)TD > 0;

and

DA+ A
T
D �D + �1E

T
E + �2(E

�)TE�

+ �
�1

1 DHH
T
D + (A� )TDM�1

DA
�
< 0: (41)

By this, we can choose a scalar � > 0 such that

DA+A
T
D � 2D + �1E

T
E + �2(E

�)TE� + �
�1

1 DHH
T
D

+ (A� )TDM�1
DA

� + �
�1

2 DH
�(H�)TD +DA

�

� [(A� )TDM�1
DA

� + �I]�1(A� )TD + �I < 0: (42)

Set

~Q = (A� )TDM�1
DA

� + �2(E
�)TE� + �I: (43)

Then, we can re-write (42) as

DA+ A
T
D + ~Q� 2D+ �1E

T
E + �

�1

1 DHH
T
D

+ �
�1

2 DH
�(H�)TD +DA

� [ ~Q� �2(E
�)TE� ]�1(A� )TD < 0

which, by Schur complements, implies that there exists a matrixP > 0
such that we have (44), as shown at the bottom of the page. Now choose

~P = P; ~D = D; ~S = D; ~�1 = �1; ~�2 = �2: (45)

Then, by (44), it is easy to see that a matrix ~Q > 0 in (43) and ~P > 0,
diagonal matrices ~D > 0 and ~S > 0, scalars ~�1 > 0; ~�2 > 0 in (45)
satisfy (40). This completes the proof.

Remark 3: By Theorem 8, it can be seen that the robust stability
result for DCNN in [15] is a special case of Theorem 2 in this paper,
which implies that the robust stability result in Theorem 2 in this paper
is less conservative than that in [15].

�2 ~P ~PA� ~D + ~S ~PA� ~PH ~PH�

AT ~P � ~D + ~S ~DA+ AT ~D + ~Q� 2 ~S + ~�1E
TE ~DA� ~DH ~DH�

(A� )T ~P (A� )T ~D ~�2(E
�)TE�

� ~Q 0 0

HT ~P HT ~D 0 �~�1I 0

(H�)T ~P (H�)T ~D 0 0 �~�2I

< 0: (40)

�2P PA PA� PH PH�

ATP DA+ ATD + ~Q� 2S + �1E
TE DA� DH DH�

(A� )TP (A� )TD �2(E
�)TE�

�
~Q 0 0

HTP HTD 0 ��1I 0

(H�)TP (H�)TD 0 0 ��2I

< 0: (44)
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Now, we provide a numerical example to show the reduced conser-
vativeness of the result in Theorem 2.

Example 1: Consider an uncertain DCNN in (1) with parameters as

A =

0:1063 �0:9370 0:3655

�0:1589 0:2141 0:2889

0:5475 0:4478 0:0202

A
� =

�0:2031 0:1132 0:0702

�0:1707 0:0888 �0:0355

0:0767 0:4425 �0:0944

H =

0:2887

�0:1702

0:1246

; H
� =

0:2397

0:2823

�0:2976

E = [ 0:0212 0:0238 �0:1008 ] ;

E
� = [�0:0742 0:1082 �0:0131 ] :

Then, it can be verified that the robust stability condition in Theorem 5
is not satisfied. Thus, the robust stability condition in [15] fails to con-
clude whether this DCNN is asymptotically stable or not. However, by
resorting to the Matlab LMI Control Toolbox, we find that the LMI
in (24) is feasible. Therefore, by Theorem 2, we have that the uncer-
tain DCNN has a unique equilibrium point which is globally robustly
asymptotically stable.

V. CONCLUSION

This paper has studied the problem of global robust stability analysis
for DCNNs with norm-bounded parameter uncertainties. A sufficient
condition ensuring the uniqueness and global asymptotic stability of the
equilibrium point for a nominal DCNN has been proposed in terms of
an LMI. Based on this, a robust stability condition has been developed.
It has been theoretically established that both the stability and robust
stability results obtained in this paper contain some existing ones in the
literature as special cases. A numerical example has been provided to
demonstrate the reduced conservativeness of the proposed results.
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