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Interfacial waves due to a singularity in a system of two semi-infinite fluids
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The three-dimensional interfacial waves due to a fundamental singularity steadily moving in a
system of two semi-infinite immiscible fluids of different densities are investigated analytically. The
two fluids are assumed to be incompressible and homogenous. There are three systems to be
considered: one with two inviscid fluids, one with an upper viscous and a lower inviscid fluid, and
one with an upper inviscid and a lower viscous fluid. The Laplace equation is taken as the governing
equation for inviscid flows while the steady Oseen equations are taken for viscous flows. The
kinematic and dynamic conditions on the interface are linearized for small-amplitude waves. The
singularity immersed above or beneath the interface is modeled as a simple source in the inviscid
fluid while as an Oseenlet in the viscous fluid. Based on the integral solutions for the interfacial
waves, the asymptotic representations of wave profiles in the far field are explicitly derived by
means of Lighthill’s two-stage scheme. An analytical solution is presented for the density ratio at
which the maximum wave amplitude occurs. The effects of density ratio, immersion depth, and
viscosity on wave patterns are analytically expressed. It is found that the wavelength of interfacial
waves is elongated in comparison with that of free-surface waves in a single fluid. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2120447�
I. INTRODUCTION

When a body moves with a constant velocity on or be-
neath the free surface of water, the well-known Kelvin ship
waves are generated within a V-shaped region behind the
moving body. In classical theories of ship waves, the water is
regarded as an incompressible inviscid fluid, and the air-
water interface is treated as a free surface with a constant
atmospheric pressure.1,2 To remove the singular behavior
predicted by the potential theory for the diverging waves
near the moving path of a surface-floating pressure point,
Cumberbatch3 suggested an Oseen approximation for the
ship waves due to a surface-piercing point pressure. To study
the effect of viscosity on the free-surface waves due to a
submerged body, Luyre4 proposed a theoretical formulation
for the laminar interaction of viscous wakes with a free sur-
face, in which the moving body is mathematically modeled
as an Oseenlet, that is, the fundamental singularity of the
steady Oseen flow. Furthermore, using Lighthill’s two-stage
scheme,5,6 which in essence involves the Cauchy residue
theorem and the method of stationary phase, Luyre,7 Chan
and Chwang,8 and Lu9 derived the asymptotic expansions of
wave profiles in the far wake in a viscous fluid of infinite
depth. Chan and Chwang10 also provided an integral solution
for the image system of an Oseenlet bounded by a no-slip
wall. Liu and Tao11 studied the viscous free-surface waves
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due to a suddenly starting Oseenlet and found a finite region
of validity for the steady-state solution. Lu and Chwang12

obtained the transient components of free-surface waves due
to the impulsive motion of an Oseenlet. Taking the Oseen
approximation, Liu and Tao13 and Lu14 analytically studied
the free-surface waves and far wakes generated by a normal
pressure point moving at the surface of a viscous fluid of
infinite depth. Recently, the investigation on the ship wakes
has increased largely because of the development of syn-
thetic aperture radar.15,16

All the aforementioned works are based on a model
which involves singularities moving in a single fluid with a
free surface. To study the effect of air above the free surface
on water waves, He et al.17 considered a simple, but analyti-
cally solvable model which involves a simple source moving
in two semi-infinite inviscid fluids of different densities. Ap-
plying the method developed by Wehausen and Laitone,1 He
et al.17 derived the formal analytical solutions for the veloc-
ity potentials in terms of unevaluated double Fourier inte-
grals only, from which the corresponding physical interpre-
tation was not provided explicitly at that time. As a matter of
fact, the motion of a body near the interface between two
fluids is of fundamental interest due to its importance in
many engineering applications.18 Based on the potential
theory, Yeung and Nguyen19 and Gang et al.20 studied the
waves due to a moving source and dipole in a two-layer
ocean of finite depth, respectively. The preliminary math-
ematical formulation for the body-induced interfacial waves
between two incompressible and homogenous fluids, inviscid

21
or viscous, was provided by Lu and Chwang, in which the
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body is modeled as a potential doublet in the inviscid fluid
and as an Oseen doublet in the viscous fluid. According to
the basic idea of the singularity method,22 the effect of body
can be simulated theoretically by a discrete or continuous
distribution of various singularities in linearized flows.
Therefore, the investigation on the flows due to a fundamen-
tal singularity is of principal interest since all higher-order
singularities, such as doublet, can readily be derived from the
fundamental one.

The objective of the present work is to analytically study
the interfacial waves due to a simple source or an Oseenlet
steadily moving above or beneath the interface of two semi-
infinite immiscible fluids of different densities. A system
with two inviscid fluids, a system with an upper viscous and
a lower inviscid fluid, and a system with an upper inviscid
and a lower viscous fluid are considered in Secs. II–IV, re-
spectively. It is assumed that the density of the upper fluid is
less than that of the lower one. The Laplace equation is taken
as the governing equation for inviscid flows while the steady
Oseen equations are taken for viscous flows. The kinematic
and dynamic conditions on the interface are linearized for
small-amplitude waves. The integral-form solutions for inter-
facial waves due to point singularities are formally derived
for six cases. The corresponding asymptotic representations
of wave profiles in the far field are derived by applying
Lighthill’s two-stage scheme.5,6 Discussion and conclusions
are made in Secs. V and VI, respectively.

II. INTERFACIAL WAVES BETWEEN TWO INVISCID
FLUIDS

A. Mathematical formulation

In this section, the two fluids are assumed to be inviscid,
incompressible, and unbounded. As is well known, the fun-
damental singularity for an inviscid flow is a simple source,
which represents a point mass source in the fluid. Cartesian
coordinates are taken fixed on the singularity. The x axis is
along the straight path of the moving simple source while the
z axis points vertically upward. Thus the fluid is moving at a
uniform velocity Uex, where U is a constant and ex is the unit
vector in the x direction.

For simplicity, we take U as the characteristic velocity,
�2U2 as a reference pressure, and the deep-water ship wave-
length U2 /g as a characteristic length, where �2 is the density
of the lower fluid and g is the gravitational acceleration.
Therefore, the dimensionless governing equations are

�2�mn = �mnM��x − x0� �m,n = 1,2� , �1�

where subscript m stands for the fluid �1: upper; 2: lower�
containing an observation point x= �x ,y ,z� while subscript n
stands for the fluid containing a source point x0= �0,0 ,z0�.
�mn is the velocity potential for the perturbed flow in fluid m
due to the singularity immersed in fluid n. �mn is the well-
known Kronecker delta, �� � the Dirac delta function, M the
magnitude of the simple source. It should be noted that for
n=1, z0�0 while for n=2, z0�0.

It is assumed that the wave amplitude is very small in

comparison with the wavelength. Thus, the linearized bound-
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ary conditions will be applied on the undisturbed interface
�z=0�. The kinematic conditions on the interface are given
by

��1n

�z
=

��2n

�z
, �2�

��n

�x
=

��1n

�z
, �3�

where �n is the dimensionless elevation of the interface due
to the singularity immersed in fluid n. Equation �2� repre-
sents the continuity of the normal velocity. Equation �3� im-
plies that fluid particles once on the interface will always
remain there. The dynamic condition on the interface is
given by

	� ��1n

�x
+ �n� =

��2n

�x
+ �n, �4�

where 	=�1 /�2, �1 is the uniform density of the upper fluid.
Equation �4� represents the balance of the normal pressure on
the interface. Since the finite disturbance caused by the mov-
ing source must die out at infinity,

��1n → 0 as z → + 
, � �2n → 0 as z → − 
 ,

�5�

which imposes a uniqueness on the problem concerned.
Thus, the governing equation �1� and boundary conditions
�2�–�5� constitute a well-posed boundary-value problem for
�mn and �n �m ,n=1,2�.

B. Integral solutions

The assumption of linearity allows us to envisage the
perturbed flow as the sum of a singular and a regular flow.
The former represents the effect of a moving singularity
while the latter represents the influence of the interface.
Thus, we write

�mn = �mn�mn
S + �mn

R , �6�

where �mn
S , �m ,n=1,2� are the potentials due to the singu-

larity while �mn
R , �m ,n=1,2� are harmonic functions every-

where in the corresponding domain. The singular component
is the fundamental solution of Laplace equation

�nn
S = −

M

4�r
�n = 1,2� , �7�

where r=�x2+y2+ �z−z0�2. Furthermore, by invoking Weyl’s
identity,23 Eq. �7� can be expressed by

�nn
S = −

M

8�2�
−


+
 �
−


+
 1

K
exp�if − K	z − z0	�d�d
 , �8�

where K=��2+
2 and f =�x+
y. For the regular compo-
nent in Eq. �6�, we have

�2�mn
R = 0. �9�

Thus, the relation between the singular and regular compo-
nent can be established through the boundary conditions at

the interface �z=0�,
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��1n
R

�z
−

��2n
R

�z
= − �1n

��11
S

�z
+ �2n

��22
S

�z
, �10�

��n

�x
−

��1n
R

�z
= �1n

��11
S

�z
, �11�

�	 − 1��n + 	
��1n

R

�x
−

��2n
R

�x
= �2n

��22
S

�z
. �12�

Next we denote the Fourier transform with respect to the

x and y of function F�x ,y ,z� by F̃�� ,
 ,z�. Taking Eq. �5�
into consideration and applying the Fourier transform to Eq.
�9�, we obtain

�mn
R =

1

4�2�
−


+
 �
−


+


�̃mn
R ��,
�exp�if + �− 1�mKz�d�d
 ,

�13�

where �̃mn
R �� ,
�, �m ,n=1,2�, are unknown functions. By

substituting Eqs. �8� and �13� into the Fourier transforms of
boundary conditions �10�–�12�, a system of simultaneous al-
gebraic equations is set up for the unknown functions

�̃mn
R �� ,
� and �̃n�� ,
� �m ,n=1,2�, which can readily be

solved. Upon some mathematical manipulations, the formal
integral expression for the interfacial wave profiles can be
written as

�n =
�

4�2�
−


+
 �
−


+
 A0n

D0
exp�if�d�d
 �n = 1,2� , �14�

where

A0n = �− 1�ni	2−nM� exp��− 1�nKz0� , �15�

D0 = �K − �2, �16�

and �= �1−	� / �1+	�= ��2−�1� / ��2+�1�, �=1/ �1+	�
=�2 / ��2+�1�. � is the Atwood number. D0 in Eq. �16� may
be regarded as the dispersion function that defines the dis-
persion relation for the interfacial waves in the two super-
posed inviscid fluids of infinite depth.

C. Asymptotic representations

The integral in Eq. �14� represents the exact solution for
the interfacial wave elevation due to the fundamental singu-
larity immersed in the upper �n=1� or lower �n=2� fluid. The
physical characteristics of the wave motion, however, are not
explicitly seen in these integral solutions. As stated by No-
blesse and Chen,24 the Fourier integral representations of
wave profiles can formally be decomposed into a near-field
nonoscillatory component and a far-field wave component,
and the near-field component vanishes rapidly as the distance
from the singularity increases. Therefore, the far-field behav-
ior of interfacial waves are of principal physical interest here.
Next, Lighthill’s two-stage scheme,5,6 which in essence in-
volves calculating the � integration by the residue theorem
and the 
 integration by the method of stationary phase, will

be employed to derive the asymptotic representation of inter-
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facial waves in the far field �see Appendix�. Finally, we have
the asymptotic representations for the far-field interfacial
waves as

�n = �− 1�n	2−n��1/2MdR

k=1

2

dk
SQk

3/4 cos �k + o� 1

R
�

�n = 1,2� , �17�

where

dR = � 2

�R cos �
�1/2

�1 − 8 tan2 ��−1/4, �18�

dk
S = exp�− �Qk	z0	� , �19�

�k = �Qk
1/2R�cos � − qk sin � tan �� + �− 1�k+1�/4, �20�

and the definitions of R, �, qk, and Qk can be found in the
Appendix.

III. INTERFACIAL WAVES BETWEEN AN UPPER
VISCOUS AND A LOWER INVISCID FLUID

A. Mathematical formulation

In this section, the upper fluid is assumed to be viscous
while the lower fluid inviscid. The fundamental singularity in
the viscous Oseen flow is an Oseenlet, which represents a
point force acting on the fluid. For the upper fluid, the di-
mensionless governing equations are

� · u1n = 0, �21�

�u1n

�x
= − �P1n + �1�

2u1n + �1nF��x − x0� , �22�

where u1n= �u1n ,v1n ,w1n� is the disturbed velocity field due
to a singularity immersed in fluid n, P1n is the corresponding
hydrodynamic pressure, and �1= ��1g� / ��1U3�, where �1 is
the dynamic viscosity of the upper fluid. F= �−F ,0 ,0� is the
dimensionless forcelet acting on the upper fluid. The dimen-
sionless parameter �1 can be regarded as the reciprocal of the
Reynolds number with respect to the characteristic length.
For the lower fluid, the dimensionless governing equation is

�2�2n = �2nM��x − x0� . �23�

For small-amplitude waves, we impose the linearized
boundary conditions on the undisturbed interface �z=0�. The
kinematic conditions on the interface are given by

��n

�x
= w1n =

��2n

�z
, �24�

where �n is the dimensionless elevation of the interface be-
tween the upper viscous and lower inviscid fluid. The dy-
namic conditions on the interface are given by

�1� �u1n

�z
+

�w1n

�x
� = 0, �25�

�1� �v1n +
�w1n� = 0, �26�
�z �y
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	�P1n − �n − 2�1
�w1n

�z
� = −

��2n

�x
− �n. �27�

Equation �25� represents the vanishing of shearing stress in
the x direction while Eq. �26� in the y direction. Equation
�27� represents the balance of the normal stresses.

B. Integral solutions

For the upper viscous fluid the disturbed flow is regarded
as the sum of an unbounded singular Oseen flow, which rep-
resents the effect of the singular forcelet, and a bounded
regular Oseen flow, which represents the influence of the
interface. Thus, we write

�u1n,P1n� = �u1n
R �x�,P1n

R �x�� + �1n�u1n
S �x;x0�,P1n

S �x;x0�� .

�28�

Furthermore, the continuous vector u1n
R is taken as the sum of

an irrotational and a solenoidal vector, u1n
R =��1n

R +V1n
T ,

where �1n
R is a harmonic function and V1n

T is a solenoidal
vector. Thus,

�2�1n
R = 0, �29�

� · V1n
T = 0, �30�

�V1n
T

�x
= �1�

2V1n
T , �31�

P1n
R = −

��1n
R

�x
. �32�

For the velocity potential of the lower inviscid fluid, the
same splitting as in Eq. �6� will be applied. Therefore, the
boundary conditions can be expressed in terms of �1n

R , V1n
T ,

�2n
R , u11

S , and �22
S on the undisturbed interface �z=0�,

� ��1n
R

�z
+ w1n

T � −
��2n

R

�z
= − �1nw11

S + �2n

��22
S

�z
, �33�

��n

�x
− � ��1n

R

�z
+ w1n

T � = �1nw11
S , �34�

2
�2�1n

R

�x�z
+

�u1n
T

�z
+

�w1n
T

�x
= − �1n� �u11

S

�z
+

�w11
S

�x
� , �35�

2
�2�1n

R

�y�z
+

�v1n
T

�z
+

�w1n
T

�y
= − �1n� �v11

S

�z
+

�w11
S

�y
� , �36�

�	 − 1��n + 	
��1n

R

�x
+ 2	�1� �2�1n

R

�z2 +
�w1n

T

�z
� −

��2n
R

�x

= �1n	�P11
S − 2�1

�w11
S

�z
� + �2n

��22
S

�x
. �37�

By invoking the Fourier transform and the Cauchy resi-
due theorem, the integral-form fundamental solutions of Eqs.
�21� and �22� due to a forcelet F= �−F ,0 ,0� located at x0 can

25
be obtained as
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u1n
S �x;x0� =

1

8�2F · ���− I�2��
−


+
 �
−


+


d�d

exp�if�

i�

� � 1

K
exp�− K	z − z0	�

−
1

B1
exp�− B1	z − z0	�� , �38�

P1n
S �x;x0� = −

1

8�2 �F · ���
−


+
 �
−


+


d�d

1

K

�exp�if − K	z − z0	� , �39�

where B1=�i� /�1+K2.
In order to obtain the formal solution for interfacial

waves, a joint integral transform is introduced as

��̃n,�̃1n
R ,Ṽ1n

T ,�̃2n
R �

= �
−


+
 �
−


+


d�d
 exp�− if�

� ��n,�1n
R exp�Kz�,V1n

T exp�B1z�,�2n
R exp�− Kz�� . �40�

By taking transform �40� over the continuity equation �30�
and Eqs. �33�–�37�, we obtain a system of linear equations

for ��̃n ,�̃1n
R , Ṽ1n

T ,�̃2n
R �, which can readily be solved. Upon

some mathematical manipulation, the integral-form solutions
for the wave profiles on the interface can be written as

�n =
�

4�2�
−


+
 �
−


+
 A1n

D1
exp�if�d�d
 �n = 1,2� , �41�

where

A11 = − 	F��i� + 2�1K2�exp�− Kz0� − 2�1KB1 exp�− B1z0�� ,

�42�

A12 = i�M exp�Kz0� , �43�

D1 = �K − �2 + 4i�1�K2� + 4�1
2K3�K − B1�� , �44�

and �=	 / �1+	�=�1 / ��1+�2�. D1 in Eq. �44� may be re-
garded as the dispersion function for the interfacial waves
between an upper viscous and a lower inviscid fluid.

C. Asymptotic representations

Next, the asymptotic representations of Eq. �41� in the
far field for large Reynolds numbers, which are of principal
physical interest, will be derived by means of Lighthill’s
two-stage scheme. The reciprocal of the Reynolds number,
�1, will be used as the perturbation parameter throughout the
asymptotic analysis.

For small �1, the dispersion equation has two zeros with
respect to �,

� j = �− 1� j+1a0 + i�1a1 + O��1
3/2� �j = 1,2� , �45�

where a1�
�=4�a0
6�2a0

2−�2�−1, and a0 is given by Eq. �A1�

�see the Appendix�.
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The approximation of the phase function near the saddle
points is similar to Lurye’s Eq. �52� �Ref. 7� and Lu’s Eq.
�45� �Ref. 9�. The analysis involving the first term on the
right-hand side of Eq. �45� follows that in the Appendix,
while the analysis involving �1 follows those given by
Lurye,7 Chan and Chwang, 8 and Lu.9 The procedure will not
be reproduced here. The asymptotic representations for the
far-field interfacial waves can be written as

�1 = 

l=0

2

�1l + o� 1

R
� , �46�

�2 = ��1/2MdR

k=1

2

dk
Sd1k

V Qk
3/4 cos �k + o� 1

R
� , �47�

where

�10 = − ��1/2FdR

k=1

2

dk
Sd1k

V Qk
3/4 cos �k, �48�

�11 = − 2�1��3/2FdR

k=1

2

dk
Sd1k

V Qk
9/4 sin �k, �49�

�12 = 2�1
1/2��FdR


k=1

2

d1k
B d1k

V Qk
3/2

�sin��k −
�1/2Qk

1/4	z0	
�2�1

+
�

4
� , �50�

d1k
V = exp�− 4�1��4qk

−1Qk
3R cos �� , �51�

d1k
B = exp�−

�1/2Qk
1/4	z0	

�2�1
� . �52�

IV. INTERFACIAL WAVES BETWEEN AN UPPER
INVISCID AND A LOWER VISCOUS FLUID

In this section, the upper fluid is assumed to be inviscid
while the lower fluid to be viscous. The governing equations
and boundary conditions can be obtained by switching sub-
scripts 1 and 2 in Eqs. �21�–�26� and by replacing �n by �n

and Eq. �27� by

− 	� ��1n

�x
+ �n� = P2n − �n − 2�2

�w2n

�z
, �53�

where �n is the elevation of the interface between the upper
inviscid and lower viscous fluid, �2= ��2g� / ��2U3�, �2 the
dynamic viscosity of the lower fluid, and w2n the velocity
component in the z direction.

The procedure to obtain the integral-form solutions for
the wave profiles on the interface follows that in Sec. III and
will not be reproduced here. Upon some mathematical ma-

nipulation, we have
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�n =
�

4�2�
−


+
 �
−


+
 A2n

D2
exp�if�d�d
 �n = 1,2� , �54�

where

A21 = − i�	M exp�− Kz0� , �55�

A22 = F��i� + 2�2K2�exp�Kz0� − 2�2KB2 exp�B2z0�� ,

�56�

D2 = �K − �2 + 4i�2�K2� + 4�2
2K3�K − B2�� , �57�

B2 = �i�/�2 + K2. �58�

The application of Lighthill’s two-stage scheme to Eq.
�54� yields the asymptotic representations for the far-field
interfacial waves as

�1 = − ��1/2MdR

k=1

2

dk
Sd2k

V Qk
3/4 cos �k + o� 1

R
� , �59�

�2 = 

l=0

2

�2l + o� 1

R
� , �60�

where

�20 = ��1/2FdR

k=1

2

dk
Sd2k

V Qk
3/4 cos �k, �61�

�21 = 2�2��3/2FdR

k=1

2

dk
Sd2k

V Qk
9/4 sin �k, �62�

�22 = − 2�2
1/2��FdR


k=1

2

d2k
B d2k

V Qk
3/2

�sin��k −
�1/2Qk

1/4	z0	
�2�2

+
�

4
� , �63�

d2k
V = exp�− 4�2��4qk

−1Qk
3R cos �� , �64�

d2k
B = exp�−

�1/2Qk
1/4	z0	

�2�2
� . �65�

V. DISCUSSION

First, the effect of density ratio on the interfacial wave
profile is analyzed. It can be seen from Eq. �17� that for a
fixed 	z0	, �1=−	�2. There is a phase shift of � between
them, as shown in Fig. 1. When the effect of the upper fluid
disappears �i.e., 	=0, �=�=1, and n=2�, Eq. �16� simply
reduces to Crapper’s Eq. �15� �Ref. 26�. for the classical
dispersion relation of ship waves in a single inviscid fluid of
infinite depth, while Eq. �17� does so to Wehausen and Lai-
tone’s Eq. �13.42� �Ref. 1� for the inviscid ship waves. Equa-
tion �57� simply reduces to Cumberbatch’s Eq. �25� �Ref. 3�
for the complex dispersion relation of ship waves in a single
viscous fluid while Eq. �60� does so to Lu’s Eq. �47� �Ref. 9�

for viscous free-surface waves due to a horizontal Oseenlet.
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Lurye’s Eqs. �69� and �70� �Ref. 7� and Chan and Chwang’s
Eqs. �69� and �70� �Ref. 8� for 0��� tan−1�1/8 are also
recovered by Eq. �60�. Mathematical proof was provided by
Lu27 for the equivalency between Lurye’s7 and Lu’s9 analyti-
cal representations for viscous ship waves in the region 0
��� tan−1�1/8. The solutions for a single fluid, inviscid or
viscous, are recovered by the results presented here for a
two-fluid system.

The interfacial inviscid wave patterns may be character-
ized by constant phase lines, which are described by para-
metric equations

x =
2l� + �− 1�k�/4

�Qk
1/2�1 − qk tan2 ��

, �66�

y =
�2l� + �− 1�k�/4�tan �

�Qk
1/2�1 − qk tan2 ��

, �67�

where � is the parameter and k=1,2, l=0,1 ,2 , .... It is clear
that the wave patterns resemble the classical Kelvin ship
wave pattern in a single fluid. A remarkable conclusion can
be made about the wavelengths of interfacial waves, which
are defined by

L = 2���Qk
1/2�cos � − qk sin � tan ���−1 �k = 1,2� . �68�

The effect of parameter 	 on the wavelength is shown in Fig.
2. Close examination of Eqs. �66� and �67� and Fig. 2 shows
that the expression involving q1 corresponds to the so-called
transverse waves, while the expression involving q2 corre-
sponds to the so-called diverging waves. It can be seen from
Eq. �68� and Fig. 2 that as � tends to tan−1�1/8, the wave-
length of all steady waves tends to 4�3� / �3��. As � tends to
zero, the wavelength of transverse waves tends to 2� /�
while that of diverging waves tends to zero. Figure 3 shows
the interfacial waves between two inviscid fluids with a sin-
gularity immersed in the lower one. It is found that the wave-
length is elongated in comparison with that of free-surface
waves on a single fluid �	=0�. As the density ratio 	 be-
comes larger, the wavelength becomes longer. In the limit as
	 approaches 1, the wavelengths go to infinity.

To study the effect of density ratio on the interfacial

FIG. 1. Interfacial waves due to a singularity moving in the upper or lower
inviscid fluid with M =1, 	=0.1, �= 1

2 tan−1 �1/8, z0= +1, and z0=−1,
respectively.
inviscid wave amplitude, a wave envelope is defined as

Downloaded 26 Apr 2007 to 147.8.143.135. Redistribution subject to 
Enk�M,	, 	z0	;R,�� = 	2−n��1/2MdRdk
SQk

3/4 �n,k = 1,2� .

�69�

The stationary points of wave envelope Enk with respect to 	,
denoted by 	nk, can be determined by

dEnk

d	
= 0. �70�

Since 0�	�1 and Qk�1, the solutions of Eq. �70� in real-
ity are

	1k =
− 1 + 2Qk	z0	 + �9 + 4Qk	z0	 + 4Qk

2z0
2

4�1 + Qk	z0	�
�k = 1,2� ,

�71�

	2k = 1
2 �1 + 2Qk	z0	 − �9 − 4Qk	z0	 + 4Qk

2z0
2� �k = 1,2� ,

�72�

at which the transverse/diverging wave envelopes might
reach their extrema when M, 	z0	, and � are fixed. It is noted
that 	1k and 	2k are independent of R. Figures 4–6 show the
transverse, diverging, and resultant wave components, re-
spectively, versus the density ratio for M =1, z0=−1, and �

= 1
2 tan−1�1/8. By Eq. �72�, we have the corresponding sta-

tionary points for the transverse and diverging wave enve-

FIG. 2. The effect of density ratio on the wavelength.

FIG. 3. The effect of density ratio on wave profiles with M =1, �
1 −1�
= 2tan 1/8, and z0=−1.
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lopes shown in Figs 4 and 5, i.e., 	21
0.022 013 7 and
	22
0.875 334, respectively. It is well known that the free-
surface wave system due to a submerged source moving in a
single inviscid fluid �	=0� primarily consists of transverse
waves2 because the diverging waves are heavily damped by a
submergence decay factor exp�Qkz0� with z0�0, especially
near the path of moving source ��=0�. However, the contri-
bution from the transverse and diverging components to the
interfacial wave profiles presented in Eq. �17� depends on the
density ratio. Figures 4 and 5 show that as the density ratio
increases from zero, the transverse component first rises to
the extremum at 	21 and then decreases, while the diverging
component first increases gradually from zero to its extre-
mum at 	22 and then drops rapidly. Figure 6 shows that the
maximum resultant wave height appears near 	22. In the
limit as 	 approaches 1, as shown in Figs. 4–6, the wave
height drops rapidly to zero, which indicates that the singu-
larity moving in a homogeneous fluid does not produce wave
motions in the far field.

Next, the effect of viscosity on the wave profile is con-
sidered. When the viscosity of the upper fluid tends to zero
��1→0�, Eq. �41� simply reduces to Eq. �14� if F=M while
Eqs. �46� and �47� reduces to Eq. �17�. When the viscosity of
the lower fluid tends to zero ��2→0�, Eq. �54� simply re-
duces to Eq. �14� if F=M while Eqs. �59� and �60� simply
reduce to Eq. �17�. It is observed that the governing equa-

FIG. 5. The diverging wave component vs the density ratio for M =1, z0
1 −1 �

FIG. 4. The transverse wave component vs the density ratio for M =1, z0

=−1, R=30, and �= 1
2 tan−1 �1/8.
=−1, R=30, and �= 2tan 1/8.
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tions and boundary conditions for the two-inviscid-fluid sys-
tem cannot be obtained by simply dropping the terms involv-
ing viscosity for the system with a viscous and an inviscid
fluid. However, as far as the wave motion at the interface is
concerned, the solutions for ship waves in an inviscid fluid
are recovered from those for a viscous fluid as the viscosity
tends to zero. As for the system consisting of a viscous and
an inviscid fluid, it can be seen from Eqs. �47� and �59� that
the interfacial waves due to the moving source immersed in
the inviscid one are damped by viscous decay factors. A
viscous wake, however, will be generated when the singular-
ity moves in the viscous fluid. The additive terms �11, �12,
�21, and �22 represent the effect of viscous wake on the
interfacial wave amplitude and vanish as the viscosity tends
to zero. Figure 7 shows the effect of viscosity for different
physical configurations. It is noted that as 	 increases from
zero to 1, � increases from zero to 1/2 while � decreases
from 1 to 1/2. By a comparison between Eq. �51� and Eq.
�64� and from Fig. 7, it can be concluded that for a small 	,
�n is more heavily damped than �n, �n=1,2�.

It should be noted that all the solutions obtained here are
valid for 	�	� tan−1�1/8. The analytical solution for the in-
terfacial waves at 	�	=tan−1�1/8 can be calculated by using
Ursell’s method28 for the inviscid system and Cumberbatch’s

FIG. 6. The resultant wave amplitude vs the density ratio for M =1, z0

=−1, R=30, and �= 1
2 tan−1 �1/8.

FIG. 7. The wave elevation for M =F=1, z0=−1, 	=0.1, �1=�2=0.01, and
1 −1 �
�= 2tan 1/8.
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method3 for the viscous system. For 	�	� tan−1�1/8, there
are no waves. The wave region of validity for the interfacial
waves considered here is the same as that for Kelvin ship
waves on the free surface of a single fluid of infinite depth.

In the framework of the linear potential theory for ship
motion in a single inviscid fluid, Chen and Wu29 revealed
that the highly oscillatory and singular properties of the
Green’s function occur when the field point approaches the
track of the source point located at the free surface. One can
see from Eq. �17� that the interfacial inviscid waves will tend
to infinity when both z0 and � approach zero. It has been
demonstrated by Cumberbatch,3 Chan and Chwang, 8 and
Lu9 that the highly oscillatory and singular behavior can be
removed by the inclusion of viscosity in the mathematical
formulation of ship waves. Likewise, one can verify that
Eqs. �46�, �47�, �59�, and �60� predict finite wave amplitudes
due to the presence of viscous decay factors. Recently,
Chen30 proposed another approach to eliminate the non-
physical behavior by introducing the surface tension for ship
waves in an inviscid fluid. The combined effect of viscosity
and surface tension on singularity induced waves remains a
mathematical task and will be studied in the future.

VI. CONCLUSIONS

By means of Lighthill’s two-stage scheme, the
asymptotic solutions for the interfacial waves due to a fun-
damental singularity moving above or beneath the interface
are obtained for three systems: one with two inviscid fluids,
one with an upper viscous and a lower inviscid fluid, and one
with an upper inviscid and a lower viscous fluid. The physi-
cal interpretations for interfacial waves are explicitly given.
The previous works7–9 for a single viscous fluid are ex-
tended. It is felt that the mathematical models and method-
ology presented here can be extended to the system consist-
ing of two semi-infinite viscous fluids. However, a more
complicated mathematical analysis will be involved.

It is found that the wavelength of interfacial waves is
elongated in comparison with that of free-surface waves in a
single fluid. For small density ratio, the contribution from
transverse waves to the wave elevation is predominant and
the contribution from diverging waves is insignificant. As the
density ratio increases, the transverse waves decrease while
the diverging waves become significant. When the density
difference between the two fluids is small, the maximum
wave amplitude occurs. A theoretical prediction for such a
density ratio is analytically presented.
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APPENDIX: ASYMPTOTIC SCHEME

In accordance with Lighthill’s theory, the asymptotic be-
havior of the wave integral in Eq. �14� is predominated by
the contribution from poles of the integrand. It is easily seen
that D0 has two simple zeros with respect to �,

� j = �− 1� j+1a0�
� = �− 1� j+1��2 + ���2 + 4
2 �j = 1,2� .

�A1�

It should be noted that the poles lie on the real axis in the
Fourier plane. In order to derive a correct physical solution
for the wave propagation, it has long been customary to in-
troduce a “fictitious viscosity” to move the poles off the real
axis. The solution for the original problem can be obtained as
the “fictitious viscosity” tends to zero, as stated by Yeung
and Nguyen.19

We introduce the cylindrical coordinates �R ,�� on the
horizontal �x ,y� plane by

x = R cos �, y = R sin � .

Using the Cauchy residue theorem, the leading terms which
contribute significantly to the far-field wave profiles can be
written as

�n =
�− 1�n+1	2−n�M

2�


j=1

2 �
−


+
 � a0
2

�2 − 2a0
2

�exp�iRf j + �− 1�n�−1a0
2z0� + o� 1

R
��d
 , �A2�

where

f j�
� = � j cos � + 
 sin � . �A3�

The integrals in Eq. �A2� can further be approximated by
the method of stationary phase. The dominant contribution to
the far-field wave profiles stems from the stationary points of
the phase equations, which can be determined by

�f j�
�
�


=
�

�

��− 1� j+1a0 cos � + 
 sin �� = 0. �A4�

To solve Eq. �A4�, a change of variable is introduced as


�b� = �− 1� j b

�
��2 + b2. �A5�

Thus

a0�b� = ��2 + b2. �A6�

The substitution of Eqs. �A5� and �A6� into Eq. �A4� yields

�− 1� j+1 �

�b
��cos � −

b

�
sin ����2 + b2� �b

�

= 0. �A7�

Taking a straightforward mathematical manipulation on Eq.
�A7�, we have the identity

�2 + b2 =
1

2
� �b

tan �
+ �2� �A8�
and the solutions of Eq. �A7�
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bk = �qk tan � , �A9�

where

qk = 2�1 + �− 1�k+1�1 − 8 tan2 ��−1 �k = 1,2� . �A10�

The substitution of Eq. �A9� into Eqs. �A8�, �A5�, and �A1�
yields the formal expressions for the stationary points
�� jk ,
 jk� as

� jk��� = �− 1� j+1a0�bk� = �− 1� j+1�Qk
1/2, �A11�


 jk��� = �− 1� j�qkQk
1/2 tan � , �A12�

where

Qk = �qk + 1�/2 �j,k = 1,2� . �A13�

Near the stationary points, we can put

�n =
�− 1�n+1	2−n�M

2�


j=1

2



k=1

2
a0k

2

�2 − 2a0k
2

�exp�iRf jk + �− 1�n�−1a0k
2 z0�

� �
−


+


exp�R

2

�2f j�
 jk�
�
2 �
 − 
 jk�2�d
 + o� 1

R
� ,

�A14�

where

f jk = � jk cos � + 
 jk sin � . �A15�

By a standard stationary-phase approximation, we have Eq.
�17�.

1J. V. Wehausen and E. V. Laitone, “Surface waves,” in Encyclopedia of
Physics IX: Fluid Dynamics III, edited by S. Flügge �Springer, Berlin,
1960�, pp. 446–815.

2Y. K. Chung and J. S. Lim, “A review of the Kelvin ship wave pattern,” J.
Ship Res. 35, 191 �1991�.

3E. Cumberbatch, “Effects of viscosity on ship waves,” J. Fluid Mech. 23,
471 �1965�.

4J. R. Lurye, “Interaction of free surface waves with viscous wakes,” Phys.
Fluids 11, 261 �1968�.

5M. J. Lighthill, “Studies on magneto-hydrodynamic waves and other an-
isotropic wave motions,” Philos. Trans. R. Soc. London 252, 397 �1960�.

6S. L. Wen, “An extension of Lighthill’s result on asymptotic evaluation of
multiple Fourier integrals,” Int. J. Eng. Sci. 7, 53 �1969�.

7J. R. Lurye, “Wave height and wave resistance in the presence of a viscous

wake,” Phys. Fluids 16, 750 �1973�.

Downloaded 26 Apr 2007 to 147.8.143.135. Redistribution subject to 
8A. T. Chan and A. T. Chwang, “Interaction of laminar far wake with a free
surface,” Phys. Fluids 8, 421 �1996�.

9D. Q. Lu, “Interaction of viscous wakes with a free surface,” Appl. Math.
Mech. Engl. Ed. 25, 647 �2004�.

10A. T. Chan and A. T. Chwang, “Ship waves on a viscous fluid of finite
depth,” Phys. Fluids 9, 940 �1997�.

11M. J. Liu and M. D. Tao, “Transient ship waves on an incompressible fluid
of infinite depth,” Phys. Fluids 13, 3610 �2001�.

12D. Q. Lu and A. T. Chwang, “Unsteady free-surface waves due to a sub-
merged body moving in a viscous fluid,” Phys. Rev. E 71, 066303 �2005�.

13M. J. Liu and M. D. Tao, “Velocity field in ship waves on the viscous
fluid,” Appl. Math. Mech. Engl. Ed. 23, 1221 �2002�.

14D. Q. Lu, “Free-surface waves and far wakes generated by a floating body
in a viscous fluid,” J. Hydrodynam. Ser. B 15, 10 �2003�.

15J. H. Milgram, “Theory of radar backscatter from short waves generated
by ships, with application to radar �SAR� imagery,” J. Ship Res. 32, 54
�1988�.

16A. M. Reed and J. H. Milgram, “Ship wakes and their radar images,”
Annu. Rev. Fluid Mech. 34, 469 �2002�.

17Y. S. He, C. J. Lu, and X. N. Chen, “Analytical solutions of singularities
moving with an arbitrary path when two fluids are present,” Appl. Math.
Mech. Engl. Ed. 12, 131 �1991�.

18D. Palaniappan, “General slow viscous flows in a two-fluid system,” Acta
Mech. 193, 1 �2000�.

19R. W. Yeung and T. C. Nguyen, “Waves generated by a moving source in
a two-layer ocean of finite depth,” J. Eng. Math. 35, 85 �1999�.

20W. Gang, D. Q. Lu, and S. Q. Dai, “Waves induced by a submerged
moving dipole in a two-layer fluid of finite depth,” Acta Mech. Sin. 21, 24
�2005�.

21D. Q. Lu and A. T. Chwang, in Recent Advances in Fluid Mechanics:
Proceedings of the Fourth International Conference on Fluid Mechanics,
Dalian, China, 20–23 July 2004, edited by F. G. Zhuang and J. C. Li
�Tsinghua University Press and Springer, Beijing, 2004�, pp. 292–295.

22A. T. Chwang and T. Y. T. Wu, “Hydromechanics of low-Reynolds-
number flow. Part 2. Singularity method for Stokes flows,” J. Fluid Mech.
67, 787 �1975�.

23D. G. Duffy, Transform Methods for Solving Partial Differential Equa-
tions �CRC, Boca Raton, FL, 1994�, p. 117.

24F. Noblesse and X. B. Chen, “Decomposition of free-surface effects into
wave and near-field components,” Ship Technology Res. 42, 167 �1995�.

25D. Q. Lu and A. T. Chwang, in Proceedings of the 17th National Confer-
ence on Hydrodynamics and the Sixth National Congress on Hydrodynam-
ics, Hong Kong, China, edited by L. D. Zhou, W. W. Shao, C. J. Lu, and
W. H. Hui �China Ocean Press, Beijing, 2003�, pp. 283–291.

26G. D. Crapper, “Surface waves generated by a traveling pressure point,”
Proc. R. Soc. London, Ser. A 282, 547 �1964�.

27D. Q. Lu, “A note on the complex dispersion relation for steady viscous
ship waves,” J. Hydrodynam. Ser. B 17, 22 �2005�.

28F. Ursell, “On the Kelvin’s ship-wave pattern,” J. Fluid Mech. 8, 418
�1960�.

29X. B. Chen and G. X. Wu, “On singular and highly-oscillatory properties
of the Green function for ship motions,” J. Fluid Mech. 445, 77 �2001�.

30X. B. Chen, in Proceedings of the 17th International Workshop on Water
Waves and Floating Bodies, edited by R. C. T. Rainey and S. F. Lee

�Peterhouse, Cambridge, UK, 2002�, pp. 25–28.

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


