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Using depth-sensing indentation with sub-nanometer displacement resolution, the
plastic deformation of a range of materials, including a metallic glass, amorphous
selenium, Ni;Al, pure Nb, Al, Cu, and Zn metals, and an Al-Mg alloy, has been
investigated at room temperature. In amorphous selenium, even the sub-nanometer
displacement resolution of the nanoindentation technique cannot reveal any strain burst
during deformation at room temperature. In all other metals studied, what may appear
to be smooth load-displacement curves at macroscopic scale during indentation
deformation in fact turn out to consist of a continuous series of random bursts of the
nanometer scale. The occurrence probability of the bursts is found to decrease at
increasing burst size. In all of the crystalline metals and alloys studied, the size
distribution of the strain bursts seems to follow an exponential law with a
characteristic length scale. The absence of the self-organized critical behavior is likely
a result of the small size of the strained volume in the nanoindentation situation, which
gives rise to a constraint of a characteristic strain. In the metallic glass sample, due to
the limited range of the burst sizes encountered, whether the deformation bursts follow

an exponential or a power-law behavior corresponding to self-organized criticality is
inconclusive. From a theoretical viewpoint based on the Shannon entropy, the
exponential distribution is the most likely distribution at a given mean burst size, .
and this is thought to be the reason for its occurrence in different materials.

I. INTRODUCTION

Many natural and artificial phenomena, including
earthquakes, avalanches in flowing sand piles, fluctua-
tions in commuodity prices, and so on, have been found to
exhibit self-organized critical (SOC) behavior.'* The
SOC behavior is likely to arise in an externally driven
physical system involving a large number of interacting
objects with an infinite interaction length. If locks that
may arise from such interactions are overcome, bursts or
avalanches of a wide spectrum of sizes but without any
characteristic length or time scale are induced. A char-
acteristic feature of SOC behavior is that the probabil-
ity density F of the size W of these catastrophic events
typically follows a power-law distribution pertinent to
fractals

FW)~ ¥~ | (1

where & is a dimensionless constant.
The deformation of crystals with significant intrinsic
or extrinsic resistance to dislocation motion is well
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known to be a discontinuous process with discrete strain
bursts. De Hosson et al.® measured the jump distances of
dislocations in solid-solution hardened Al-Zn alloys us-
ing a nuclear magnetic resonance technique and found
that these jumps exhibit a wide spectrum of sizes. Miguel
et al.* measured the acoustic emissions during slow de-
formation of ice crystals and found that larger emissions
followed a power-law spectrum of the form given by
Eq. (1). The main reason why the SOC behavior can be
observed in single crystals of ice is that long-range elastic
interactions between moving dislocations are not
shielded by obstacles such as solutes or forest disloca-
tions, so that the correlation length of dislocation jam-
ming is very large. Any kind of obstacles to dislocation
motion other than dislocation jamming is expected to
hinder the occurrence of the SOC behavior. On a related
issue, Hifner et al.> discovered that dislocations in Cu
following deformation arrange themselves into fractal
patterns, in which the dislocations form cells with sizes
obeying the power-law distribution in Eq. (1). These au-
thors developed a model of dislocation patterning, based
on the local balance between dislocation generation,
annihilation, and growth, which predicts fractal pattern-
ing to occur when the noise level is high enough.®

© 2005 Materials Research Society
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Recently, Ngan’ developed another model in which pat-
tern formation is governed by both energetics and noise,
and fractal geometry is again predicted to occur at high
enough noise levels.

In the present study, we use the nanoindentation
technique to investigate the strain bursts during continu-
ous deformation of a wide range of metals. The nano-
indentation technique provides sub-nanometer displace-
ment resolution and is therefore a convenient tool to
probe the occurrence of bursts during deformation. In
this study, we used a metallic glass, and a range of
crystalline metals and alloys, to investigate the univer-
sality of the observed scaling behavior of the deforma-
tion bursts.

Il. EXPERIMENTAL

In the present work, the deformation behavior during
nanoindentation of a range of metallic materials repre-
senting different structures was investigated. The details
of the materials used are summarized as follows:

(i) A metallic glass sample was supplied by Dr. S.H.
Shek of the City University of Hong Kong. Its compo-
sition was (Zre;Ni,,Cu, Al )-Be, the ratios between the
heavier elements were determined by energy-dispersive
x-ray analysis using a LEO field-emission scanning elec-
tron microscope (SEM). The x-ray diffraction as shown
in Fig. 1(a) using a Bruker D8 Advance Series 2 XRD
system (Bruker AXS GmbH, Karlsruhe, Germany) veri-
fied its amorphous structure.

(ii) An amorphous selenium sample was prepared by
first melting 99.999% selenium pellets at 300 °C, and
then pouring the liquid selenium into a hole in a cylin-
drical brass block for quenching. The brass with the se-
lenium sample was mechanically polished sequentially
on 400- and 800-grit silicon carbide abrasive papers,
6- and 1-wm diamond slurry, and finally finished in a
0.3-pwm alumina solution. The x-ray diffraction analysis
as shown in Fig. 1(b) revealed that the structure of the
sample was amorphous.

(iii) A Ni;Al(Cr) single crystal was grown by the
Bridgeman method. The composition of this material is
Ni-75, Al-16.7, Cr-8, and B-0.3 in at.%. The crystal was
homogenized at 1250 °C for 120 h in a vacuum better
than 107° Torr followed by furnace cooling. A specimen
button with (111) direction was cut and electropolished
in a solution containing 10% perchloric acid in ethanol to
remove any mechanical deformation layer.

(iv) A 99.99% pure polycrystalline niobium specimen
was annealed for 20 days at 1200 °C in a vacuum of ap-
proximately 107> Torr, followed by furnace cooling to
room temperature. The resulted grain size is 300-700 pm.
The annealed sample was mechanically ground using
600-grade emery paper and then electropolished for
2—5 min in a solution containing 1 part of HF and 9 parts
of H,SO, in volume.
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FIG. 1. XRD pattern for (a) (Zrg;Ni oCu,6Al, ) ,_Be, metallic glass
and (b) amorphous selenium.

(v) A 99.99% polycrystalline copper sample was an-
nealed for 5 h at 800 °C in a vacuum better than 10~° Torr,
resulting in a grain size larger than 300 pm. The speci-
men was carefully ground with 600-grade emery paper,
followed by polishing with 5- and 1-pm diamond sus-
pension. The specimen was then electropolished for
about 30 s to remove any deformation layer on the sur-
face using an electrolyte containing two parts of ortho-
phosphoric acid and one part of distilled water at a volt-
age of 2.6 V at room temperature.

(vi) A 99.99% pure polycrystalline zinc sample was
annealed for 4 h at 280 °C in a vacuum better than
107® Torr, and the final grain size was larger than
400 wm. The specimen was then mechanically polished
down to 1 wm surface finish and finally electropolished
in 10% (by volume) HCIO, in CH;COOH.

(vii) A polycrystalline Al sample (>99.99% pure) was
in the as-cast state, polycrystalline state. It was first me-
chanically polished to 1 pm followed by etching in
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NaOH solution and electropolishing in an electrolyte
containing 10% perchloric acid in alcohol. Such a proc-
ess produced a mirror surface with grain size of about
800 pm.

(viii) An Al-5%Mg (by weight) alloy sample with
composition listed in Table I was annealed at 500 °C for
I h, followed by quenching in water. It was then elec-
tropolished in a solution containing 6% perchloric acid,
80% ethanol, and 14% distilled water to mirror surface
for indentation.

In this work, indentation tests were carried out at room
temperature on either a nanoindentation system compos-
ing of a Hysitron® transducer mounted on a Thermo-
microscopes® scanning probe microscope, or a nano-
hardness tester supplied by CSM Instruments SA in
Switzerland. These two systems represent different load
ranges and data sampling rates, but both have sub-
nanometer displacement resolutions. The Hysitron sys-
tem can apply loads up to 10 mN with higher locating
capability of the indentation point, and its maximum
number of sampling points in one run is 8000, implying
that the sampling rate is more frequent in the time do-
main for shorter tests. The CSM nanoindenter was used
due to its much higher load and displacement range when
compared with the Hysitron machine. Its sampling rate is
fixed at 10 points per second, regardless of the test du-
ration. The typical loading sequence in this work con-
sisted of a simple load ramp with a holding period at a
small load for the measurement of drift rate, as shown in
Fig. 2. A range of loading rates spanning at least 2 orders
of magnitude was used in most cases to examine any
strain rate effects. The peak loads were not necessarily
identical for different materials. The test at each load
specification was repeated 10 times or more to generate
enough statistical information. When testing polycrystal-
line specimens, the indentation points were always well
within the interior of selected grains of sizes much larger
than the indent sizes, so that the measurements were
effectively on single crystals. This was possible since the
grain sizes of the polycrystalline samples used were all
several hundreds of microns, but the typical size of an
indent was of the order of one micrometer.

lll. RESULTS AND ANALYSES
A. Metallic glass

Serrated flow, which has been observed by many pre-
vious researchers,* ' is also found to occur in the pres-
ent nanoindentation experiments on our metallic glass

TABLE I. Chemical composition of the Al-5%Mg (weight %).

Mg Fe Si Ti Mn Cr Zn Zr Al

47 001 001 0005 0001 0001 0001 0001 Bal

sample. These are in the form of random bursts of vari-
ous sizes along the loading curve as shown in Fig. 3.
While the occurrence of the majority of the bursts is
random, it is found that a major burst, with much larger
excursion than others in the same run, always occurs at a
depth of about 500 nm for all the loading rates studied,
and its size generally increases at lower loading rates.
The major burst that consistently occurred at ~500 nm is
likely to result from some characteristic event, such as
the formation of a macroscopic crack in the sample, and
in what follows, we focus instead on the smaller, random
bursts along the entire load-displacement curve. As
shown in Fig. 4, the load-displacement curves at different
loading rates studied overlap quite well when their ori-
gins are aligned, indicating that the overall elastoplastic
deformation is rather rate-insensitive. The reduced
modulus and the hardness are about 118 and 8.2 GPa,
respectively, for all the loading rates studied.

max

High holding for 50s

Load

Load ramp Partial unloading

Low holding at 5% P, for 50s

max

Time
FIG. 2. Schematic illustration of the typical indentation sequence.
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FIG. 3. P-h curve during indentation of metallic glass, showing a
series of minor or major displacement bursts. The inset is the displace-
ment-time curve obtained during low holding at a very small load.
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FIG. 4. Representative loading (P-h) curves of metallic glass under

different loading rates. The origins of the curves are offset to show the
difference between the curves.

The random strain bursts were quantified by subtract-
ing the average elastoplastic behavior from the experi-
mental data. To do this, the raw displacement () versus
load (P) data were first fitted with a smoothing equation
of the form

h=aP +bP'"* +cP"* +d 2)

where a to d are fitting constants. Figure 5(a) shows an
example in the metallic glass, from which it can be seen
that the fit using Eq. (2) is rather satisfactory. The upper
panel of Fig. 5(b) shows the net difference between the
raw data and the fitted curve during a typical section of
the nanoindentation deformation in metallic glass, from
which strain bursts are clearly seen as sudden displace-
ment jumps of the order of a few nanometers. On top of
the strain bursts due to deformation, oscillations with
much higher frequencies but much smaller amplitudes
due to machine noises are also seen in the upper panel of
Fig. 5(b). To minimize the effect of noise, the raw data,
after being utilized for the curve fitting according to
Eq. (2), were then smoothened by a Savitzky—Golay fil-
ter.'? The net difference between the smoothened data
and the fitted curve is shown in the lower panel of
Fig. 5(b), from which the starting points and end points
of the bursts can be identified easily, and are marked as
crosses and squares in Fig. 5(b). The upper panel of
Fig. 5(c) shows the plot of the sizes of the displacement
jumps (Ah = h — hg,) versus the indentation depths / at
which the jumps occur during loading of the metallic
glass. It is obvious that the jump size Ah exhibits an
increasing trend with A, on top of random fluctuations.
However, a normalized quantity Ah/h, plotted in the
lower panel of Fig. 5(c), exhibits no rising trend with
respect to /1, but only random fluctuations. In fact, since

bursts in stzrain rather than in displacement are the con-
cern here, the characterizing quantity should be dimen-
sionless, and this is why AA/h should be a better measure
of the size of the strain burst than A/ alone. Figure 5(d)
shows the statistical distribution of Aha/h from the metal-
lic glass sample in double-logarithmic scale. It can be
seen that the burst data appear to exhibit linear trend on
the double-logarithmic scale, corresponding to the SOC
power-law relation in Eq. (1). However, the small bursts
at the slowest loading rate of 1 mN/min clearly deviate
from linearity. Figure 5(e) shows the same set of data
plotted in the semi-logarithmic scale, and apparent linear
trends, corresponding to an exponential distribution of
the form

F(W) = ke V| 3)

are also apparent. The small bursts at | mN/min also
seem to be better described by Eq. (3) as shown in
Fig. 5(e) rather than Eq. (1) as shown in Fig. 5(d). How-
ever, due to the limited range of the burst sizes encoun-
tered in the present experiment, it is not possible to con-
clude unambiguously from Fig. 5(d) and 5(e) whether the
SOC power law in Eq. (1) or the exponential form in
Eq. (3) actually better describes the bursts in metallic
glass.

Loading rates higher than 100 mN/min were also used
in the present study, but the data were discarded. This is
because the data acquisition rate is fixed at 10 points per
second in the CSEM nanoindentation system used, and at
such an acquisition rate, the sampling frequency is in the
range of 1 point per 20 nm to about 1 point per 2 nm at
a loading rate of 300 mN/min, for example. As can be
seen from Fig. 5(b), such a low sampling frequency in the
displacement domain is insufficient to reveal the bursts
even if they really exist.

B. Amorphous selenium

To illustrate a totally different behavior, we look at the
plastic flow of amorphous selenium. At room tempera-
ture, selenium undergoes viscoplastic deformation with
very smooth P—/ curves, a typical example of which is
shown in Fig. 6(a). Figure 6(b) shows the difference
between the raw displacement data and the fitted curve
during a typical section of the deformation cycle, and
when compared with Figure 5(b) for the case of metallic
glass, strain bursts cannot be unambiguously identified in
amorphous selenium, and only high-frequency, low-
amplitude machine noises are observed. In other words,
no strain bursts can be detected in amorphous selenium
using the present nanoindentation technique.

C. Crystalline metals

All the crystalline metals studied exhibited continuous
bursts in the nanometer scale. Figure 7(a) shows a typical
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FIG. 5. (a) Typical displacement-load plot from metallic glass showing the raw data and the fitted curve using Eq. (2). Inset is an enlarged portion.
(b) Identification of the starting and ending points of the strain bursts in metallic glass. Upper panel shows the difference between the raw
displacement data and the fitted curve during a typical period of nanoindentation deformation in metallic glass. The lower panel shows the
difference between the smoothed displacement data and the fitted curve, and the crosses and squares mark the strain-burst starting and ending
points respectively. The size of each burst is calculated as the ending value minus the starting value. (¢) Ah and Ah/h versus h plots for metallic
glass during loading at 1 mN/min. (d) Log(probability density) versus log(Ah/h) plots in metallic glass during loading at various rates.
(e) Semi-logarithmic plots of probability density of Ah/h in metallic glass during loading at various rates.

loading curve observed from the Al-Mg alloy sample,
from which intermittent bursts can be seen. Figure 7(b)
shows the probability density profiles of Ah/h at three
different loading rates. It can be seen that for log(Ah/h)
smaller than ~2, the probability density is almost con-
stant, but for log(Ah/h) larger than ~2, the burst sizes
appear to follow the power-law distribution in Eq. (1).
The fitted SOC exponent k at different loading rates is
approximately constant within the burst range encoun-
tered. Figure 7(c) shows the same set of data plotted in
the semi-logarithmic scale. It can be seen that the data for
small bursts seem to be better fitted by the exponential
law in Eq. (3) than by the power law in Eq. (1). However,
the large bursts seem to deviate from the exponential law
behavior and indeed as shown in Fig. 7(b), they are better
fitted by the power-law behavior.

3076

The other crystalline metals studied also exhibit strain
bursts with a spectrum of sizes. Figure 8 shows the flow
behavior in the intermetallic compound Ni,Al. As shown
in Fig. 8(a), although the plastic loading curve appears to
be smooth on a low-resolution scale, close inspection at
a magnified view of any portion of the curve reveals
random bursts of various sizes. Figure 8(b) shows the
double-logarithmic plots of the probability density varia-
tion of the burst size Ah/h at different loading rates. The
plots in Fig. 8(b) clearly exhibit continuously changing
slope, indicating that the experimental data cannot be
described satisfactorily by the power-law relation in
Eq. (1). However, the same data exhibit much clearer
linear trends when plotted in a semi-logarithmic format
as in Fig. 8(c). This indicates that the data are much
better described by the exponential distribution in Eq. (3).

J. Mater. Res., Vol. 20, No. 11, Nov 2005
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FIG. 6. (a) Indentation P—h curve in amorphous selenium at 20 °C.
The inset demonstrates the smooth flow all through the indentation
test. (b) Difference between the raw displacement data and the fitted
curve versus # during loading in amorphous selenium at 20 °C. Only
machine noise is detectable, and no strain bursts are observed.

The burst behaviors of copper, aluminum, zinc, and
niobium are very similar to that of NijAl. The loading
curves of these materials all consist of random bursts on
a nanometer scale. Figures 9(a) and 9(b) show respec-
tively the double-logarithmic and semi-logarithmic plots
of the probability density of the burst size Ah/h. The
burst distributions in all these metals are better described
by the exponential form in Eq. (3) rather than the power-
law scaling behavior in Eq. (1).

IV. DISCUSSION

In this work, nanoindentation is used to quantify and
characterize the continuous strain bursts during plastic
deformation of a few representative materials. If inden-
tation is performed with a pyramidal or conical indenter,
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FIG. 7. (a) Indentation P-h curve in Al-5%Mg alloy at 0. mN/s
loading rate. Curves obtained at different loading rates exhibit very simi-
lar overall responses. (b) Log(probability density) versus log(Ah/h)
plots in Al-5%Mg alloy during loading at various rates. (c¢) Semi-
logarithmic plots of probability density of Ai/h in Al-5%Mg alloy
during loading at various rates.

the average stress and strain fields in the sample evolve
in a self-similar manner. When the self-similar stress
field propagates through the specimen, every material
point in the specimen will eventually experience the
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FIG. 8. (a) Indentation P—h curve in Ni;Al(Cr) (111) single crystal,
and the inset demonstrates the presence of the intermittent bursts.
(b) Log(probability) - log(Ah/h) plots at different loading rates in
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different loading rates in Ni;,Al(Cr).
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FIG. 9. (a) Log(probability) — log(Ah/h) plots for copper, aluminum,
zine, and niobium. Loading rates and peak loads used: 30 mN/min to
30 mN for Cu; 1.7 mN/min to 2 mN for Al; 20 mN/min to 30 mN for
Zn; 10 mN/min to 10 mN for Nb. (b) Semi-logarithmic plots of prob-
ability density of Ah/h for copper, aluminum, zinc, and niobium. Same
data as in (a).

same average stress path, although a time lag in general
exists between one point and another. Thus, the strain
bursts statistics observed from a nanoindentation experi-
ment should represent the bulk situation at a stress which
is some representative stress underneath the indenter. In
particular, the analysis by Bower et al.'"* shows that the
stress field g(7) and the strain-rate field €(r) scale as

a(f) - ; SGh) and e TEGH) @
respectively, where 7 is the field point, P the indentation
load, 4 the indentation depth, and 2, and E are dimen-
sionless tensor functions independent of P or . Although
these two scaling relations were derived for the case of
constitutive power-law, rate-dependent deformation, we
assume here that a scaling relation similar to the second
relation in Eq. (4) can also approximately describe the
strain rate produced by a local strain burst. In this case,
the reciprocal of the function E will be a Green’s function
relating a local event at 7 to a displacement response at
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the sample free surface. Because P = h* during defor-
mation, Eq. (4) suggests that if a strain burst of magni-
tude Ae happens at 7| causing a sudden depth change Ah,
when the indentation depth is 4, then in a new situation
with another indentation depth /,, we can find a corre-
sponding point 7, = (r,/h,) X h, which experiences the
same stress as the burst point in the h, situation, and
hence would have the same probability to produce a
strain burst of the same magnitude Ae, and furthermore,
Ahy/h, = Ahy/hy. In other words, iso-stress locations in
different indentation load or depth situations should have
the same probability to produce a given magnitude of
strain burst, with the same overall quantity Ah/h. This
explains why the quantity Ai/h can serve as an indi-
cator for the strain burst, as experimentally observed in
Fig. 5(c).

A range of different materials was selected in the pres-
ent work in an attempt to reveal the effects of material
structure. The deformation of amorphous selenium was
found to be smooth with no unambiguous bursts. This is
not surprising, as room temperature is already a very high
homologous temperature compared to the glass transition
temperature of about 35-40 °C,'® and so deformation at
this temperature is likely to occur by bulk viscous flow,
which should be very smooth with little discrete internal
obstacles. On the other hand, serrated flow is a well-
known phenomenon in metallic glass at room tempera-
ture, and is thought to be due to the operation of shear
bands in the amorphous structure.*'# The Portevin—
Le Chatelier serrated flow phenomenon has also been
~ reported previously to occur during nanoindentation of
Al-Mg alloy.'®"” The bursts in solid-solution alloys are
thought to be related to the free-flight motion of dislo-
cations between anchoring events at obstacles.?® Dislo-
cation motion in NizAl and body-centered-cubic Nb are
subjected to frequent thermal barriers, in the form of
strong locks®'*? and kink-pair barriers,>*** respectively.
In NijAl in situ transmission electron microscopy ex-
periments actually revealed discrete dislocation jumps of
variable distances.” In conclusion, strain bursts in these
materials are therefore well within expectation, and in-
deed, the present experiments successfully reveal them.

An important observation from the present experi-
ments is that the bursts in the crystalline metals and
alloys are found to be better described by the exponential
law rather than the SOC power law. Due to the limited
range of the burst sizes encountered in the present ex-
periment, the bursts in the metallic glass cannot be con-
cluded unambiguously to obey the exponential law, but
such a possibility cannot be ruled out. The results here
seem to contradict the acoustic emission experiments on
ice crystals by Miguel et al.,* who revealed the SOC
power-law behavior. The varying stress field underneath
an indenter should not be an artificial factor to suppress
the occurrence of an overall SOC behavior even though

the “intrinsic,” constant-stress behavior is SOC. This is
because an “intrinsic” SOC behavior has no mean burst
size to correspond to any “far-field” stress, and so there
is also no mean burst size even though the stress field is
non-uniform. However, there are other fundamental dif-
ferences between nanoindentation and a macroscopic set-
ting which must be considered when making a compari-
son. In Ref. 4, the majority of the strain bursts detected
by acoustic emission in ice were of the order of 107> or
0.001%. In the present experiments, the strain bursts
Ah/h detected by nanoindentation as shown in Figs. 5, 7,
8, and 9 range typically from 0.5% to 2%. The reason for
the much higher strain burst amplitudes in the nanoin-
dentation setting is likely a result of the micron-scale
strained volume. A single dislocation with a Burgers vec-
tor of typically 3 A traveling over a distance of the order
of one micron, which is roughly the size of the strained
volume under the indenter, produces a strain increment
of about 0.03%. Thus, each of the smallest strain bursts
with magnitude 0.5-2% corresponds to the collective ac-
tivities of only a few dozens of traveling dislocations. On
the other hand, the strain produced by one single dislo-
cation in a macroscopic sample in the acoustic emission
experiment is many orders of magnitude smaller, and
hence even the much smaller strain burst of size ~0.001%
as detected by the acoustic emission technique represents
the collective effect of pany more moving dislocations
than the nanoindentation situation. Owing to the very
small size of the strained volume, the nanoindentation
technique is therefore able to reveal large local deforma-
tions obtained from the motion of a very small number of
individual dislocations, whereas the acoustic emission
technique reveals small deformations obtained from the
collective motion of a large number of dislocations.
The small size of the strained volume is probably the
reason why the present results are better fitted by an
exponential law rather than an SOC power law. The
scale-free SOC behavior is generally believed to arise
from interactions of a very large number of objects, giv-
ing bursts of any amplitude. On the contrary, the nanoin-
dentation situation is concerned with the motion of a
limited number of dislocations in a limited volume, and
hence is characterized by a specific scale. This charac-
teristic scale can be expressed in terms of a characteristic
strain amplitude. Unlike the SOC power-law distribution
which is free of any characteristic size, the exponential
distribution in Eq. (3) is associated with a mean size
given by (W) = [VWF(W)dWV = 1/k, where k is the
exponent in the distribution. From the fitted values of k in
Fig. 8(c) for Ni;Al, for example, the mean strain burst
size falls between 0.5% and 0.6% for the range of the
loading rates studied. Similarly, the mean strain burst
sizes in the other metals are 0.8-1.1% in Al-Mg, ~0.2%
in Cu, ~0.3% in Nb, ~0.5% in Zn, and ~0.7% in Al. It
is interesting to note that these characteristic strain
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amplitudes again correspond to the motion of a few doz-
ens of dislocations across the strained volume. In other
words, it makes sense to attribute the loss of the SOC be-
havior in the nanoindentation situation to the micrometer-
sized strained volume.

As discussed above, there are valid reasons why bursts
can occur in the crystalline metals and alloys, and the
metallic glass samples studied in this work. On the other
hand, the rather generic observation of the exponential
distribution of strain bursts from such a wide variety of
materials with different structures indicates that the strain
burst distribution is not strongly tied to the details of the
deformation mechanism, which is very different among
the different materials studied in this work. We believe
that the exponential distribution of bursts is simply a
consequence of balance between noise,” and the regu-
lating factor imposed by the necessity to satisfy the char-
acteristic burst size. We note that the exponential distri-
bution corresponds to maximum entropy, or likelihood,
at a given mean burst size. The situation is analogous to
the statistical thermodynamics of an ideal gas, in which
the Maxwell-Boltzmann energy distribution, which is
also exponential, corresponds to maximum entropy for a
given mean energy. Mathematically, the logarithm of the
number of microscopically indistinguishable ways of ar-
ranging a sequence of bursts {¥,, ¥,, W5, ...} exhibit-
ing an overall statistical distribution P(\W)is given by the
Shannon entropy function®®

S=- f :P(\If)ln[P(‘I/)]d\lf . (5)

The distribution with maximum likelihood, under a given
mean burst size, is then obtainable by maximizing the
entropy functional in Eq. (5) subject to the constraint
(V) = [ WF(W)dW¥ = constant. Using standard varia-
tional calculus procedures, the result is the exponen-
tial distribution in Eq. (3), with the exponent given by
k = 1K), as we noted above. We therefore conjecture
that the exponential distribution is observed in a wide
range of materials in the present work because this is the
most likely distribution to meet a certain mean burst size.

Finally, the case of the Al-Mg alloy with the Portevin—
Le Chételier effect needs further consideration. This al-
loy system is associated with a negative strain rate sen-
sitivity that favors instabilities with large local strain
rates. This is achieved through motion of relatively large
density dislocation groups, enhancing the mutual elastic
coupling between moving dislocations, and bringing the
system closer to SOC conditions. As shown in Fig. 7, the
observed burst amplitudes are in this case about 4 times
larger than the pure metal cases in Fig. 9, i.e., 4 times as
many dislocations are involved in the bursts. This is
probably the reason why the large-magnitude data devi-
ate from the exponential fit on the right of Fig. 7(c). Data
are indeed better fitted in this case by a power law as in

Fig. 7(b). For the same reason, the plateau evidenced on
the log—log plot in Fig. 7(b) at small amplitudes is prob-
ably related to the fact that these extremely small events
do not involve enough dislocations for SOC conditions to
be fulfilled. The plateau region in fact corresponds to
burst amplitudes of the order of those that can be fitted
well by the exponential form in Figs. 8 and 9, i.e., in-
volving only a few dozens of dislocations.

V. CONCLUSIONS

The nanoindentation technique was applied to inves-
tigate the scaling behavior of strain bursts during plastic
flow in a range of materials, including a metallic glass,
amorphous selenium, NizAl, Al, Cu, Zn, Nb, and an Al-
5%Mg alloy. The load-displacement data during con-
stant-rate loading were analyzed to produce statistical
information about the continuous strain bursts during de-
formation. Amorphous selenium during deformation at
room temperature exhibited no detectable strain bursts.
All the other materials studied exhibited random bursts
of the nanometer scale. The probability distribution of
the sizes of the strain bursts in NizAl, Al, Cu, Zn, Nb, and
Al-Mg is found to be better described by an exponential
law rather than a power law as in self-organized critical-
ity. In the metallic glass sample, the range of the burst
sizes encountered does not enable definite conclusion on
whether the power-law or the exponential-law behavior
is obeyed. The absence of the self-organized critical be-
havior is likely a result of the small size of the strained
volume in the nanoindentation situation, which gives rise
to the constraint of a characteristic strain. Within the
concept of Shannon’s entropy, the exponential distribu-
tion is the most likely distribution at a given mean burst
size, and this is thought to be the reason why a wide
range of materials with very different internal structures
can exhibit the same exponential distribution.
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