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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 123, Number 2, February 1995 

A PRODUCT FORMULA FOR MINIMAL POLYNOMIALS 
AND DEGREE BOUNDS FOR INVERSES 
OF POLYNOMIAL AUTOMORPHISMS 

JIE-TAI W 

(Communicated by Wolmer V. Vasconcelos) 

ABSTRACT.By means of Galois theory, we give a product formula for the min-
imal polynomial G of {fo, fi , . . . , fn)  c K[xl , ... ,xn] which contains n 
algebraically independent elements, where K is a field of characteristic zero. 
As an application of the product formula, we give a simple proof of Gabber's 
degree bound inequality for the inverse of a polynomial automorphism. 

Let K be a field, and let {fo, . .. ,fn) c K[xl , ... , x,] contain n alge-
braically independent polynomials over K . Then there is a unique irreducible 
polynomial (up to a constant factor in K*) G(yo, ... ,y,) E K[yl , ... ,y,] 
such that G(fo, ... , fn)  = 0. We call this G the minimal polynomial of 
fo , .. . , f, over K . It can be viewed as a natural generalization of the minimal 
polynomial of an algebraic element over a field K . Minimal polynomials are 
very useful for studying polynomial automorphisms, as well as birational maps. 
See, for instance, Yu [ l l ,  121and Li and Yu [3, 41. In [3] and [12], two different 
effective algorithms for computing minimal polynomials are given, by means of 
Grobner bases and Generalized Characteristic Polynomials (GCP),respectively. 

The following theorem is well known. 

Theorem 0.1. Let a be algebraic over a field K and m,(x) be the minimal 
polynomial of a over K .  Then 

where a('), ... , acd) are all roots of the polynomial m,(x) in the algebraic 
closure of K(a)  and deg(m,(x)) = d ,  the number of roots of m,(x) . 
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One can ask a natural question: Can Theorem 0.1 be generalized to higher- 
dimension cases? 

The answer is affirmative. In this paper, by means o f  Galois theory, we give 
a product formula for the above minimal polynomial G o f  f o  , . . ., fn . 

Theorem 1.1. Let K be a field of characteristic zero, and let 

( - 6 7  f i  7 fn) C K [ x l ,  7 xnl7 

with fi , . . . , fn algebraically independent over K . Let 

4 := [ K ( x l ,  , xn) :K ( f o ,  . . fn)I  

and G(yo , ... ,y,) be the minimal polynomial of fo , .. . ,f,. Then 
( i )  

d 
( 2 )C[G(YO,.. . ,yn)iq= D J J ( Y ~- fo(aj'), ... ,an I ) ,  

i=l 

where c E K* , (a ! ' ) ,. . . , a:)) ,  i = 1 ,  . . . ,d ,  are all solutions of the system of 
equations f;:(xl , ... ,x,) = yi , i = 1 , ... , n , in the algebraic closure of thefeld 
K ( y l  , . . . ,y,) ; yl , . . . ,y, are algebraically independent transcendentals over 
K ;and D E K[y l, ... ,y,] is the unique minimal denominator (up to a constant 
factor i n  K * )  of the product 1$=1 (yo- fo(aji),... , a!)))  E K ( y l  , . . . ,yn)[yo] .  

( i i )  The partial degrees of G ,  deg,, (G)  = d i / q ,  where di is the number of 
solutions of the system of equations f j (x l  , .. . , x,) - yj , j = 0 ,  . . . , i - 1 ,  i + 
1 ,  ... ,n , in the algebraic closure of K ( y l  , . . . ,y,) . If di > 0, then 

di = [ K ( x l7 . , xn) K ( h ,  * ,A-1 3 h+l>. , f n ) I .  

(iii) The total degree of G ,  

Moreover, if for some k , deg(fk)= mini{deg(f;:)),  and f o  , .. . , fk-1,  & + I ,  
. . . , f, are algebraically independent over K and the system of equations f;+ = 
0 ,  i = 0 ,  . . . ,k - 1 ,  k + 1 ,  ... ,n ,  has only the trivial solution, where f is+ 

the highest homogeneous form of f ,  then the equality holds. 

T o  prove Theorem 1 . 1 ,  we need some lemmas. 

Lemma 2.1 (Mumford [6]) .  Let K be a feld of characteristic zero and 
let f i  ,.. . ,fn E K [ x l, . . . ,xn]  be algebraically independent over K .  Then 

is a finite algebraic feld extension. Let d := [ K ( x l, . . . ,x n )  : 
K ( f i  , . . . , f n ) ] .  Then the system of equations 

( f i ( x 1 ,  xn)=Yl  

-1 
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has precisely d distinct solutions in the algebraic closure of the jield 
K(y l  , ... ,y,) ,where yl , ... , y, are algebraically independent transcendentals 
over K . Moreover, if the system of equations 

has only trivial solutions in the algebraic closure of K , then d = n;=,deg(f;:). 
The next lemma is the key lemma in this paper. It has its own interests. 

Lemma 2.2. Let K be a jield of characteristic zero and let ji, .. . , fn E 

K [ x l, ... , x,] be algebraically independent over K . Let (ay), . .. ,a t ) ) ,  i = 
1 , ... ,d ,  be all solutions of the system of equations 

in the algebraic closure of K (y l, ... ,y,) , and let 

is a Galois extension and the Galois groupThen K ( Y I ,...,Y " )  

G := Gal ( K ( y l  
, ~ n )  

acts transitively on the set {(a(, ' ) ,... , a t ) )I i = 1 ,  ... ,d )  . 
Proof. First observe that 

Hence 

Define 
(i)a': ~ ( a \ l ), ... ,a;'))+ ~ ( a y ), .. . ,an ) 

as follows: ~ i ( a f ) )= a!) ,  k = 1 , ... ,d ,  and ailK is the identity map o f  
K . Then linearly extend a to ~ ( a ( , ' ), ... , ai l ) ). Obviously ai (yk)= y i ,  k = 
1 ,  ... , n . Hence ai is a K ( y l  , ... ,y,)-isomorphism. Since 

there are precise d K ( y l , ... ,y,)-isomorphisms in a fixed algebraic closure o f  
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Hence ai , i = 1 , ... ,d ,are all such dK(y l, ... ,y,)-isomorphisms. Now let 
O1 be a primitive element of ~ ( a i ' ) ,... ,ah1))over K(yl  , ... , y,) ; then 

ail), . .. ,ail))= ~ ( y l ,. .. ,yn)(Ol). 

Therefore, 
a ( l )  = 

k gk(Ol), k = 1 ,  ,n ;  E K ( Y ~ ,  ~ n ) ( x ) .  

Let Oi := ai(O1).Then 

Hence Oi is a primitive element of ~ ( a j ' ) ,. .. ,a!)) over K(yl  , . .. ,y,). Let 
m ( x )  be the minimal polynomial of O1 over K(yl  , ... ,y,) . Then m(Oi)= 
~ ( c J ~ ( O ~ ) )= ai(m(O1))= 0.  In other words, O i ,  i = 1 , ... ,d , are all con-
jugates of 81 over K(yl  , ... ,y,) . Thus m ( x )  = nfZl(x- O i )  . Hence E = 
K(O1, ... , O d )  is the splitting field of m ( x )  over K(yl  , ... ,y,) . By Galois 
theory, .(,, E,,,,n, is a Galois extension and the Galois group G acts transitively 

on (81, ... , O d }  ,hence acts transitively on { aj'), ... ,a t )  I i = 1 ,  ... ,d )  . 

Proof of Theorem 1.1. We use the same notation as in Lemma 2.2 and its proof. 
(i) Vcr E G , 

- fo(aj", ... ,a!)))  - fo(o(ai i ) ) ,... ,o(aP)) ) )  
i= 1 i=1 

i= 1 

by the transitivity of G . Hence 
d

YO - h ( aj", . .. ,a:')) E K[Yo](Y~, ... ,Y,). 
i= 1 

Denote by D its minimal denominator in K[yl, ... ,y,] . Let 

( 1 )be the unique minimal polynomial of &(ail ) ,... ,a ,  ) over K(yl  , ... ,y,) 
such that h is an irreducible polynomial in K[yo ,... ,y,] (up to a constant 
factor in K*).  Then 

Hence 
h(fo(aj'), . . . ,  a! ) ) )=O,  i = l ,  . . . ,d.  

This means that fo(ay), ... ,a t ) ) ,  i = 1 , ... ,d ,have the same minimal poly-
nomial over K ( y1 ,  ... ,y, ) which is an irreducible polynomial in K [yo,... ,y, ] , 
namely, h(yo ,... ,y n ) .  Now let G(yo,... ,y,) be an irreducible factor of 
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D u t l(yo - fo(aii), ... , at)))in K[yo , .. . ,yn]. Then G is also irreducible 
in K(y1 , . . . ,yn)[yo] by Gauss Lemma. Hence essentially G and h are the 
same (up to a constant factor in K*). Thus 

d 
(1)c[G(Yo,. . . ,yn)Iq =D YO - fo(aii), ... an )) c E K*. 

i= 1 

To show q = [K(xl , ... ,xn): K(fo, . . . , fn)], note that 

On the other hand, since the system of equations 

has a solution ti = xi ,  i = 1 ,  ... , n , it follows that 

Therefore, G(yo , ... ,y,) is the minimal polynomial of fo , . . . ,f, . Moreover, 
G(yo,fi , .. . , fn)  is the irreducible polynomial in K(fi , ... ,fn)[yo], since 
J;:, i = 1, . . . , n ,  are transcendentals over K .  Hence G(yo, fi , ... , fn)  is 
the minimal polynomial of fo over K(fi , . . . , f,). Hence 

(ii) If di > 0 ,  then 

by Lemma 2.1. By (i), deg,, (G) = $ . 
If di = 0 ,  then fo , . . . , fn-l , fn+l  , . . . , fn are algebraically dependent over 

K by Lemma 2.2. Hence yi does not appear in the minimal polynomial G of 
fo , . . . , fn . Hence deg,, (G) = 0 = $ . 

(iii) Without loss of generality, we can assume that deg(fo) = mini{deg(J;:)). 
Let 

H(YO yn) = G(Yo,YO - a1Y0, ,Yn - anyo) 

where we choose suitable a1 , . . . , an E K so that one of the monomials of 
the highest total degree in H is ayy 'H)  , a E K* . Then H is the minimal 
polynomial of 

fo, fi + alfo, f n  +anfoe7 
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We obtain 

deg(G) = deg(H) = degyo(H) 

by Lemma 2.1. Moreover, if the system of equations J;+ = 0 ,  i = 1 ,  ... ,n , 
has only the trivial solution, then 

1 " 
deg(G) 5 degyo(G) = - n(deg(X))

4 i=l 

by (ii) and Lemma 2.1. Hence the equality holds. 

Remark 1. Our main theorem can be generalized to minimal polynomials of 
rational functions over K . 

As an application of the main theorem, we give a very simple proof of the 
following known result. 

Theorem 3.1 (Gabber, see [2]). Let K be a field and f = (fi , ... , fn)  : Kn -, 
Kn be a polynomial automorphism. Then 

des(f-') 5 (deg(f )In- '  , 
where deg(f ) := maxi{deg(f;:)). 
Remark 2. Wang [lo] first conjectured the above theorem holds. It is proved 
by Gabber (see [2]), who uses deep algebraic geometry. But here it is just an 
immediate consequence of Theorem 1.1(iii). 

Proof. Write f = (fi , ... , fn)  E (K[xl, ... ,xn])" and f-' = g = (g l ,  . .. , 
gn). By Yu [ l l ] ,  gi is the minimal polynomial of the ith face polynomials
fi (xi= 0) , ... , fn(xi= 0) and obviously 

K[xl,  ... ,xn]= K[fi(xi = O), . .. ,fn(xi= O)]. 

By Theorem 2.2(iii), 
n- 1 

deg(gi) 4 (mxax{deg(fi(xi = 0)))) s (deg(f)ln-l , v i e  

Hence deg(g) = maxi{deg(gi)) I (deg(f ))"-I . 

Remark 3. For the special case n = 1 in Theorem 1.1, Abhyankar [I] and 
McKay and Wang [5] have proved D ny=l(yo-fo(crY)))  is essentially the sylves-
ter resultant Res,, (yo- fo(xl),y1 - fi (xl)). In a forthcoming paper [9], by 
means of the sparse elimination theory in Sturrnfels [8] and Pederson and 
Sturmfels [7], we prove that for any n , 

d 
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is essentially the 'sparse resultant' of yo - fo , ... ,Yn - fn with respect to 
yl , ... ,y, . Hence we can explicitly express the minimal polynomial of fo , ... , 
f, in terms of all coefficients of fo , . . . , f,. 
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