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NUMERICAL RADIUS PERSERVING OPERATORS ON B(H) 

JOR-TING CHAN 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT.Let H be a Hilbert space over @ and let B(H) denote the vector 
space of all bounded linear operators on H .  We prove that a linear isomor- 
phism T : B(H) + B(H)  is numerical radius-preserving if and only if it is a 
multiply of a C*-isomorphism by a scalar of modulus one. 

Let H be a Hilbert space over @ and let B(H) denote the vector space of 
all bounded linear operators on H . For every A in B(H) , the numerical range 
and the numerical radius of T are defined respectively by 

w ( A ) =  { ( ~ x , x ) : x ~ H ,  Ilxll = 1) , 
w(A) = sup { l A  :2 E W(A)) . 

It is well known that w(.) is a norm on B(H) and that this norm is equiv- 
alent to the usual operator norm. (See [4, p. 1171.) A classical theorem of 
Kadison [4, Theorem 71 asserts that every linear isomorphism on B(H) which 
is isometric with respect to the operator norm is a C*-isomorphism followed 
by left multiplication by a fixed unitary operator. A C*-isomorphism is a lin- 
ear isomorphism of B(H) such that T(A*)= T(A)* for all A in B(H) and 
T(An)= T(A)" for all selfadjoint A in B(H) and all natural number n . A 
description of C*-isomorphisms on B(H) can be obtained. First of all we 
have from [6, Corollary 111 that a C*-isomorphism on B(H) is either a *-
isomorphism or a *-anti-isomorphism. Suppose that T is an algebra isomor- 
phism on B(H) . Then by [3, Theorem 21, there is an invertible operator V 
on H such that T(A) = VA V-' for all A in B(H) . If we also assume that 
T(A*)= T(A)* for all A in B(H) , then VA* V-' = (V-')*A* V* and hence 
(V* V)A* = A*(V* V) for all A in B(H) . It follows that V* V is a scalar mul- 
tiple of the identity operator I .  Say V* V = k l  . As V* V is always a positive 
operator and k cannot be zero, k > 0 .  Let U = L V .  Then U is unitary 

Ji;
and T(A) = UAU* for all A in B(H) . For a *-anti-isomorphism T ,  it can 
be shown (e.g., see [5, Remark 21) that there is a unitary operator U in B(H) 
such that T(A) = UA'U* for all A in B(H) ,where A' denotes the transpose 
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of A relative to a fixed orthonormal basis of H . Clearly operators of these two 
types are C*-isomorphisms. 

Let us turn to numerical range and numerical radius. Pellegrini [9, Theorem 
3.11 proved that an operator T on B(H) is a C*-isomorphism exactly when T 
preserves the "numerical range" of each element in B(H) . It should be noted 
that Pellegrini obtained his result in a general Banach algebra, and his definition 
of numerical range is different from ours. In fact, for each A in B(H) , the 
"numerical range" of A defined by Pellegrini reduces to the closure of W(A) . 
When the underlying space H is finite-dimensional, W(A) is compact and 
hence the two sets are identical. Despite the discrepancy we still have that T 
is a C*-isomorphism if and only if W(T(A))= W(A) for every A in B(H) . 
For simplicity we shall call an operator T with the latter property numerical 
range-preserving. Likewise we say that T is numerical radius-preserving if 
w(T(A))= w(A) for all A in B(H) . 

In the finite-dimensional situation, the above result was extended by Li. In [I ,  
Theorem 11 he proved that T is numerical radius-preserving if and only if T 
is a scalar multiple of a C*-isomorphismby a complex number of modulus one. 
It is immediate that if T is numerical range-preserving, then T is numerical 
radius-preserving and hence the scalar in question is one. In this note we prove 
that the conclusion of Li remains valid without the dimension constraint. 

In what follows T denotes a linear isomorphism on B(H) which is nu-
merical radius-preserving on B(H) . We shall prove that T maps the identity 
mapping I to a scalar multiple of I .  The scalar is necessarily of modulus one. 
Multiplying by the complex conjugate of the scalar, we get a numerical radius-
preserving operator Tl with an additional property that Tl( I )  = I . The result 
is concluded by showing that Tl is a C*-isomorphism. 

We begin with a lemma which describes scalar multiples of I in terms of 
numerical radius. Let A = {A E C : 121 = 1 ) . 
Lemma 1. An operator A E B(H) is a scalar multiple of I ifand only if for 
every B E B(H), there is a A E A such that w(A +AB) = w (A) + w (B) . 
Proof. It is clear that if A is a scalar multiple of I ,  then A satisfies the condi-
tion. For the converse we borrow the idea from Li and Tsing [2, p. 401. We first 
show that elements in W(A) are of constant modulus; it follows then from the 
convexity of W(A) ([4, p. 1131) that the set is a singleton. Hence A is a scalar 
multiple of the identity I .  Now assume that there is an x in H , llxll = 1, and 
I(Ax, x)l < w(A) . Let B be the orthogonal projection onto the linear span of 
x . Then w(B) = 1 . Fix any r such that I(Ax, x)l < r < w(A) . We can find 
an E > O  suchthat I(Ay, y)l < r  whenever Ily-xll < E .  Infact I(Ay, y)l < r  
if there is a A E A such that lly -Ax11 < t . Suppose that y E H ,  llyll = 1 , and 
Ily -Ax11 2 t for every A E A .  Then 

t2< (y -AX,y - AX) = 2 - 2Re(y, Ax) for every A E A . 
It follows that (y , x )  I 1 - i t 2 .  Let k = min{r + 1 ,  w(A) + 1 - i t 2 ) .  Then 
for every A E A and y E H with llyll = 1 , we have 

I((A +Amy,  Y I  I ~ ( A Y ,Y ) I  + I(Y,x)I I k . 
Hence w (A +AB) < w (A)+ w (B) . 
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By the above lemma T ( I )= AI . Clearly we have 2 E A .  Let Tl = >T . Then 
Tl( I )= I .  We need the following definitions. By a state on B ( H )  we mean as 
usual a bounded linear functional p on B ( H )  such that p(I)  = llpll = 1 . The 
set S of all states is called the state space of B ( H ). A bounded linear operator 
T : B ( H )  + B ( H )  is said to be state-preserving if its adjoint T' satisfies 
T f ( S )  S . By [ 9 ,  Theorem 2.3 and Theorem 3.11, T is a C*-isomorphism 
if and only if it is state-preserving. Let x be a unit vector in H .  The linear 
functional px given by 

p, ( A )= (Ax, x )  for every A E B ( H )  
is a state of B ( H ). States of this form are called vector states. 

Lemma 2. The operator Tl is state-preserving. 
Proof. Let w' denote the norm in B(H)' dual to the numerical radius. Then 
w l ( p )2 llpll for every p in B(H)' . As Tl is numerical radius-preserving, 
wl (T i (p ) )= w f ( p )for every p in B(H)' . If p, is avector state, then wl (px )= 

1 andhence IIT;(p,)ll L wf(T,'(p,))= 1 .  But Ti(p,)(I) = px(Tl(I))= PX(I)= 
1 . It follows that Ti(p,) is a state of B ( H ). By [4, Corollary 4.3.101 the state 
space is the closed convex hull of the vector states in the weak *-topology. This 
together with the fact that Ti is continuous in the weak *-topology entail that 
Tl is state-preserving. 

By Lemma 1 and Lemma 2, we have proved 

Theorem. A linear isomorphism T on B ( H )  is numerical radius-preserving if 
and only if T is a multiple of a C*-isomorphismby a scalar of modulus one. 

In [1] Li also studied a numerical radius-preserving real-linear operator on 
the selfadjoint elements in B ( H ). He proved ([I, Theorem 21) that such an 
operator is the restriction of a C*-isomorphism on B ( H )  multiplied by f1 . 
Let us remark that as the numerical radius and the operator norm coincide on 
selfadjoint operators, this result can alternatively be deduced from [7, Theorem 
21. 
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