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Analytical Study of FFH Systems with Square-Law
Diversity Combining in the Presence of Multitone

Interference
Jiangzhou Wang, Senior Member, IEEE,and Chen Jiang

Abstract—An analytical study of the performance of fast fre-
quency-hopped (FFH), -ary orthogonal frequency-shift keyed
noncoherent modulation with linear combining of square-law
envelopes in the presence of multitone interference is presented.
The multiple equal-power interference tones are assumed to cor-
respond to some of the possible FFH/ -ary orthogonal signaling
tones. It is also assumed that channel fading characteristics of the
signal and interference tones are independent. We evaluate the
effect of the channel fading on system performance as a function
of various parameters, such as the number of hops per symbol,
the signal power to multitone interference power ratio, and the
number of interference tones. Our numerical results indicate that
by use of square-law time diversity combining, a large number
of hops per symbol make the bit-error probability of the system
more sensitive to the fading of multitone interference. Finally,
analysis has been proven valid by simulation.

Index Terms—Fading channel, frequency hopping.

I. INTRODUCTION

FREQUENCY hopping (FH) has been widely studied
for various applications [1]–[9]. As VLSI technologies

develop, frequency synthesizers for FH are becoming feasible
and cost effective. In fact, slow FH (SFH) is an option in the
GSM second-generation cellular mobile system.

In FH systems, interference and jamming models include
thermal wide-band noise, multitone jamming, partial-band
jamming and multiple-access interference. Robertsonet al.
[1] and Levitt [2] analyzed the performance degradation to
SFH/ -ary orthogonal frequency-shift keyed (MFSK) from
multitone interference for Ricean fading channels, where one
or more symbols per hop are transmitted. References [3] and
[4] overviewed the error probability performance of nonco-
herent frequency-shift keyed (FSK) -ary systems under tone
interference, where the channel fading is neglected.

The effectiveness of partial-band noise jamming as an
electronic countermeasure against fast frequency-hopping
(FFH) binary or -ary frequency shift keyed (binary FSK
or MFSK) modulation has been widely documented; see [5]
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for static channel results and [6] for Ricean fading channel
results. The partial-band noise jammer can jam a portion of the
total bandwidth of the FFH spectrum causing the bit-error rate
(BER) to be inversely proportional to the signal-to-noise ratio,
in contrast to the exponentially decreasing BER as a function
of the signal-to-noise ratio in wide-band thermal noise.

The effect of multiple-access interference on FFH/MFSK
noncoherent receivers, where one or more hops per symbol are
transmitted, has been examined both for Rayleigh and Ricean
fading channels in [7].

This paper analytically investigates the performance degra-
dation to orthogonal noncoherent FFH MFSK due to multitone
interference, where the effect of thermal wide-band noise is also
taken into account. Multiple hops per symbol (constant hop rate)
are considered with linear combining of square-law envelopes.
The multiple equal-power interference tones are assumed to cor-
respond to some of the possible FFH/MFSK orthogonal sig-
naling tones. Furthermore, the channel for each hop band is
modeled as a slowly fading Ricean process [11]. For multitone
jamming, a broad range of channel fading is possible. Therefore,
it is assumed that both the signal tone and the multiple interfer-
ence tones are independently affected by channel fading.

The paper is organized as follows. A noncoherent
FFH/MFSK system with square-law envelope detection
and channel model is presented in Section II. In Section III, the
analysis techniques used in this paper are described. Section IV
shows the detailed effect of multitone interference fading on
the system performance under various conditions. The results
are summarized in Section V.

II. M ODEL

A. FFH/MFSK System Model

We consider a communication system whose fundamental
requirement is to transmit binary source information over the
channel by means of MFSK, where one-ary symbol is rep-
resented by one of orthogonal tones. is the order
of MFSK modulation and represents the number of bits per
transmitted symbol. The binary input data have a period of.
The symbol duration is . Finally, the symbols are
mixed with FH tone of frequency for duration . In this
FFH/MFSK system, frequency hops occur for each MFSK
symbol; each symbol is partitioned into independent trans-
missions of duration . That is, the con-
stant hop rate .

0090–6778/00$10.00 © 2000 IEEE
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Fig. 1. A detailed model of the frequency-dehopper and the MFSK demodulator.

The transmitted signal is given by

(1)

where stands for real part and , is transmitted
signal power, is chosen as the hop rate so that these tones
are orthogonal, , designates the possible
discrete frequency available for hopping, and is unknown
phase. It is assumed that and remain constant during a
given hop interval .

The receiver (Fig. 1) consists of a frequency dehopper, a bank
of matched filters and quadratic detectors. The output of each
filter/detector is synchronously sampled everyand random
variables are obtained. The random
variables at each branch are summed to obtain decision vari-
ables . Finally, which is
the largest will be decided.

B. Channel Model

The total bandwidth of the FFH/MFSK system can be
divided into FH bands ( ) and each FH band can be
further divided into bins. Therefore,

. It is assumed that the signal fades independently
during each hop. In making this assumption, we are implying
that the total hopping band is much wider than the coherence
bandwidth of the channel and the fading channel is character-
ized by frequency-selective fading. Thus, similar to [8], we may
wish to design the hopping pattern to satisfy that the smallest
spacing between the FH bands used by the hops of one symbol is
larger than the coherence bandwidth of the channel. In addition,
it is assumed that the instantaneous bandwidth on a single hop
is much less than the coherence bandwidth of the channel. That
is, the channel for each hop is modeled as a frequency-nonse-
lective, slowly fading Ricean process. “Slowly” means that the
fading is constant during a hop interval. As a result, the signal
amplitude can be modeled as a Ricean random variable that re-
mains constant at least for the duration of a single hop.

The signal and jamming tones may have different fading sta-
tistics because they have different transmission paths. There-
fore, it is assumed that channel fading characteristics are inde-
pendent for the signal tone and interference tone. By modeling
the channel as a Ricean fading channel, a general result is ob-
tained.

C. Interference Model

It is assumed that the channel is jammed by an intentional
multitone jammer. The jammer’s strategy is to choose the
number and the distribution of jamming tones that will cause
maximum degradation to the communicator’s performance.
It is possible to distribute the tone jamming noncontiguously
or contiguously over in [4, Fig. 2]. From the jammer’s
viewpoint, the contiguous distribution is not an effective
strategy. A more effective jamming strategy is to distribute the
jamming tones noncontiguously at random with separation that
is not smaller than the FH bandwidth over the total .
That implies that at most one of channels of the receiver is
jammed by an interference tone during one hop. Consequently,
the maximum number of interfering tones corresponds to the
total number of FH bands, and , where is the
number of interference tones. In fact, [9] has shown that this
multitone jammer distribution is related to the worst-case
multitone jamming for a static channel.

The jammer is assumed to have a total jamming power,
which is transmitted in a total ofequal power interfering tones
spread randomly over the spread spectrum bandwidth of the
FFH/MFSK system. Hence, the power of a single interfering
tone is . It is also assumed that the multiple in-
terfering tones are transmitted at frequencies corresponding ex-
actly to the FFH/MFSK signal tones. Fig. 2 shows typ-
ical signal and multitone interference spectrum. The thermal
noise is modeled as additive white Gaussian noise with two-
sided spectral density .

III. A NALYSIS

In this section, the bit-error probability for orthogonal, nonco-
herent FFH/MFSK communication systems with multitone in-
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Fig. 2. Typical signal and multitone interference spectrum. A 4-ary signal is used so that the signal will fall in one of the four signal bins shown on each line.

terference is calculated. The bit-error probability is dependent
on the signal-to-multitone power ratio , the bit energy
to thermal noise density ratio , the number of interfering
tones , the number of hops per symbol, the modulation order

, the channel fading characteristics of the information signal,
and multitone interference.

To obtain the symbol-error probability , we need to av-
erage the conditional symbol-error probability over all of pos-
sible multitone jamming pattern combinations. Letdenote
the number of hops which are not jammed by any interference
tone during the observed symbol interval and letdenote the
number of hops during which the channel containing the signal
is jammed. In addition, for the other channels (i.e., chan-
nels not containing the signaling tone), is defined as the
number of channels, which are not jammed over allhops and

are defined as the number of channels, which
have one hop, two hops, , hops, respectively, jammed. Each
hop is jammed at most by one interference tone. Hence

(2a)

and

(2b)

where all of , , and are positive integers. It is assumed
the vector

(2c)

satisfies the relation (2a) and (2b). Therefore, any possible jam-
ming pattern in the channels over hops can be described
by a corresponding vector . Each vector results in a dif-
ferent conditional error probability and we average the con-
ditional symbol-error probability over all the possible combi-
nations to obtain the unconditional symbol-error probability,
which is given by

(3)

where is the probability of the jamming pattern, and
is the symbol-error probability conditioned on the jam-

ming pattern . and will be presented in the fol-
lowing.

A. Probability of the Jamming Pattern

Since the FFH/MFSK receiver observes the output of the
receiver channels over hops for the symbol decision process,

all possible two dimensional assignments of the jamming pat-
terns in the channels over hops must be considered.

Note that there are

ways to form vector over the channels and

ways to form vector over the hops. In addition, the prob-
ability that all of channels are not jammed by interference
tone during one hop is , and the probability that the spe-
cific one of channels during one hop is jammed is .
Therefore, is given by

(4)

B. Symbol-Error Probability, Conditioned on the Jamming
Pattern

As shown in Fig. 1, is the set of
decision random variables, where means the th receiver
channel. The symbol-error probability conditioned on the jam-
ming pattern can be obtained by assuming that the desired
signal is present in channel 1 of the receiver and the channel,

, is jammed by the in-
terference tone overout of hops during the observed symbol
interval. For convenience in the analysis we have numbered the
nondesired-signal channels in groups having a common number
of jammed hops. For example, if and then the
three channels with one hop jammed are numbered 2, 3, and 4.
Thus, can be rewritten as

(5a)
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and

(5b)

Note that , does not contain the desired signal.
Therefore, the symbol-error probability conditioned on the jam-
ming pattern is given by

(6)

where represents “or” and represents “and.”
It is assumed that are the probability density

functions of the random variables . Since the outputs of
each channel of the FFH/MFSK receiver are assumed to be in-
dependent and since each

, is assumed to be identical, (6) can be rewritten as

(7)

where is defined as

(8)

Since most often, , can be simplified, using
the following inequality:

(9)

Therefore, the upper bound of is given by

(10)

C. Probability Density Functions and

As shown from Fig. 1, the random variable that repre-
sents the output of the channel after diversity combining is given
as

(11)

where , , is the th channel output of the re-
ceiver from hop of a symbol. This channel either contains the
signal or not and either is jammed or not by an interference tone
during the hop. The former case will be considered first. When
the channel containing the signal is jammed by a interference
tone during the hop , it will be assumed that the frequencies
of the signal tone and interference tone are identical and their
phase difference is a random variable, uniformly distributed in

. Thus, the sum of the signal tone and interference tone
can be expressed as a single composite sine wave. The power of
the composite signal at the channel output has the value

(12)

where and are the powers of the signal and interference
tone, respectively, at the output of the detector andis the phase
difference between the signal tone and interference tone. Since
the random variable is the sum of composite signal and the
receiver background thermal noise (modeled by a zero-mean,
Gaussian process) at the channel output for hopof a symbol,

has the probability density function of the square of the
envelope of a sine wave with random phase plus a narrowband
Gaussian process. The result is a special case of the noncentral
chi-squared distribution. For a value of composite signal ampli-
tude , the probability density function, conditioned on, is
given by

hop jammed

(13)

where is the modified Bessel function of the first kind
and zero order, and is the thermal noise
power. The conditional characteristic function, conditioned on
, corresponding to this pdf is

hop jammed

(14)

In order to obtain the unconditional characteristic function for
, (14) is averaged over, given by (12). Averaging (14) over

implies averaging it over and , respectively. Thus,

hop jammed

hop jammed (15)
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Since the Ricean fading is assumed for both signal and multitone
interference, the amplitude probability density functions of the
signal tone and the interference tones are given by

(16)

(17)

where and are the powers of the direct and diffuse
component of the signal, respectively. and are the
powers of the direct and diffuse component of the interference
tone, respectively. The total average power of signal is

and the total average power of one interference tone
is . Both of the average powers are
assumed to remain constant from hop to hop. Therefore, from
the above, (15) becomes

hop jammed

(18)

where is the zeroth order Bessel function, given by

(19)

Substituting (17) into (18), we have

hop jammed

(20)

According to [12, eq. (6.633.4)], the following result is quoted:

(21)

Letting

(22a)

(22b)

and

(22c)

(20) is simplified by means of (21)

hop jammed

(23)

Similarly, Substituting (16) into (23) and integrating, we have

hop jammed

(24)

When the channel containing the signal is not jammed by
interference tone during hop, substituting into
(24), one obtains

hop not jammed

(25)

Since the interference tone and noise are assumed independent
from hop to hop, the random variables are independent from
hop to hop. Therefore, when the channel containing the signal
is jammed over hops and is not jammed over hops
during the observed symbol interval, the conditional character-
istic function of the random variable , defined by (11) is

(26)
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Similarly, using the above result, the conditional character-
istic function of the random variable , can be ob-
tained. Since , does not contain the signal and is
jammed over hops during the observed symbol interval, sub-
stituting and with in (26), the conditional
characteristic function of the random variable is given by

(27)

Finally, the conditional symbol-error probability in (10), con-
ditioned on the jamming pattern , can be obtained by means
of the convolution function

(28)

Substituting (28) into (10), is given by

(29)

By means of the following equation in the table of [12, eq.
(17.23)]

(30)

where represents the conventional delta function, we have

(31)

Substituting (31) into (3), the symbol-error probability is given
by

(32)

For numerical computation of (32), the following two points
should be considered.

1) Since the imaginary component of the integrated function
in (32) is an odd function, the integration of its imaginary
component is zero.

2) is a removable singular point of the integrated
function, since

can be shown to be a limited value.

Fig. 3. Probability of bit error versus the ratio of the number of interference
tones to the total FH bands (q=N ) for L = 4,M = 4 andE =N = 16 when
the desired signal experiences Ricean fading.

Therefore, can be further simplified by

(33)

where stands for an extremely small positive value. In the
numerical integration of (33), should be set as small as pos-
sible, for example, .

Once the symbol-error probability after hard decision
has been obtained, assuming symbol errors are random when
interleaving is used, the corresponding BER, , after hard
decision is given by

(34)

IV. NUMERICAL RESULTS

The effect of the fading of multitone interference on
FFH/MFSK system performance is numerically investigated
for various jamming tone power levels and numbers. The effec-
tive signal power to multitone interference power ratio
is defined as .
With this artifice, the numerical results will be shown without
using a particular number of hopping bandsor a particular
number of interference tones.

Firstly, the performance of FFH/MFSK system with multi-
tone interference as a function of the ratio of the number
of the interference tones to the total FH bands is shown in Fig. 3
for various values of the effective signal power to multitone in-
terference power ratio ( and 20 dB), re-
spectively. The number of hops per symbol , the modula-
tion order and dB. The signal experiences
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Fig. 4. Probability of bit error versus the number of hops/symbol under
conditions of worst-case multitone interference forSJR = 20 dB,
E =N = 16 dB andM = 4.

Ricean fading with dB. The multitone interfer-
ence experiences either nearly no fading with dB,
or Ricean fading with dB, or nearly Rayleigh
fading with dB. It is shown from this figure
that for a given there is a worst-case value ( )
of , which maximizes the bit-error probability.
is a function of and specifically, it is about 0.1, 0.03,
0.01, and 0.003 for and dB, respec-
tively, which shows that is inversely proportional to

. It can also be seen that the worst case performance
( ) of the FFH/MFSK receiver is very sim-
ilar whatever fading the interference tones experience. However,
when , the performance of FFH/MFSK re-
ceiver is much better with no fading of interference tones than
with Rayleigh fading of interference tones.

The effects of channel fading on the system performance as
a function of the number of hops per symbolare illustrated in
Fig. 4 for dB under the conditions of worst-case
multitone interference ( ) and in Fig. 5 for

dB and a fixed value of ( ), respectively. It can
be seen from Fig. 4 that under the conditions of worst-case mul-
titone interference, a largerimproves the system performance
when the desired signal experiences Rayleigh fading. This is
because is large when is small (i.e., ap-
proaches one when ). In this case, there are a large number
of multitones with small power each. A largeris helpful in
reducing the fluctuation of the desired signal at the outputs of
the square law summers and makes decrease signif-
icantly. Thus, the performance is improved withincreasing.
However, when the desired signal experiences Ricean fading,
a higher diversity is not helpful. Even when the multitone is
not fading, the performance becomes slightly worse within-
creasing. The reason is that is very small whatever

is (i.e., shown in Fig. 3). For given total

Fig. 5. Probability of bit error versus the number of hops/symbol for
SJR = 10 dB,E =N = 16 dB andM = 4 whenq=N = 0:1:

jamming power, it means that the power of each tone is slightly
larger than that of the desired signal. In this case, the fluctuation
of the desired signal is helpful to reduce the probability of error
when the signal is hit by an interference tone without fading.
Since a larger reduces the fluctuation of the desired signal, the
BER’s increases slightly when increases. It is also seen from
Fig. 4 that a larger does not affect the worst case performance
when the desired signal is no fading. It is shown from Fig. 5 that
for a fixed value of ( ), a larger value always im-
proves performance no matter what fading the desired signal ex-
periences. Furthermore, when the interference tones experience
channel fading, the improvement in system performance due to
larger value of is reduced significantly. This trend is more pro-
nounced with no fading of the signal than with Rayleigh fading
of the signal.

The FFH/MFSK system performance as a function of the di-
rect-to-diffuse component power ratio ( ) of the
interference tone is shown in Fig. 6 when the desired signal ex-
periences Ricean fading ( dB). It can be seen that
when is less than 0 dB or larger than 20 dB, the system per-
formance is smooth for given values of . However, when

dB dB, the performance is sensitive to the fading
of interference tones. In addition, the reduction of probability
of error due to larger value of is more significant for larger

than for small .
In Fig. 7, is plotted versus for and

0.01, respectively, when both of the signal and interference tone
experience Ricean fading ( dB). For
comparison, computer simulation results are provided with the
same parameters. It is seen that when is small, there
is no difference between simulation and numerical results and
the upper bound (10) is very tight. However, when

dB, numerical results are slightly larger than simulation re-
sults. Therefore, our analytical results are quite accurate. On
the other hand, since analytical results are involved with only
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Fig. 6. Probability of bit error versus the direct-to-diffuse component power
ratio of the interference tone with Ricean fading of the signal.

Fig. 7. Probability of bit error versus the effective signal power to multitone
interference power ratio.

one level of integration in (33), numerical computation is much
faster than simulation. For example, to get error probability of
10 , roughly 10 data symbols (or simulations) should be in-
volved, which takes at least 100 times longer than numerical
calculation.

V. CONCLUSIONS

In this paper, the performance of the multiple hops per symbol
FFH MFSK noncoherent receiver with square-law envelope de-
tection in the presence of multitone interference over a wide
range of channel conditions has analytically been studied. The
following conclusions have been drawn.

1) The worst case performance ( ) of the
FFH/MFSK receiver is very similar whatever fading
the interference tones experience. However, when

, the performance of FFH/MFSK
receiver is much better with no fading of interference
tones than with Rayleigh fading of interference tones.

2) Under the conditions of worst-case multitone interfer-
ence, a larger value of improves the system perfor-
mance when the desired signal experiences Rayleigh
fading but is not helpful when the desired signal ex-
periences Ricean fading or no fading. However, for a
fixed value of and , a large always
improves performance no matter what fading the desired
signal experiences. Furthermore, when the interference
tones experience channel fading, the improvement in
system performance due to larger value ofis reduced
significantly.

3) When the direct-to-diffuse component power ratio
of the interference tone is larger than 0 dB and

less than 20 dB, the FFH/MFSK system performance is
sensitive to the fading of interference tones. In addition,
the reduction of probability of error due to larger value of

is more significant for larger than for small
.

4) Numerical computation of BER is much faster than simu-
lation, since analytical results are involved only one level
of integration.
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