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Maximum a posteriori spatial probability 
segmentation 

C.K. Leung 
F.K. Lam 

Indexing terms: Entropy, Image segmentation, Spatial information, Thresholding 

Abstract: An image segmentation algorithm that 
performs pixel-by-pixel segmentation on an image 
with consideration of spatial information is 
described. The spatial information is the joint 
grey level values of the pixel to be segmented and 
its neighbouring pixels. The conditional 
probability that a pixel belongs to a particular 
class under the condition that the spatial 
information has been observed is defined to be 
the a poste,riori spatial probability. A maximum a 
posteriori spatial probability (MASP) 
segmentation algorithm is proposed to segment 
an image such that each pixel is segmented into a 
particular class when the a posteriori spatial 
probability is maximum. The proposed 
segmentation algorithm is implemented in an 
iterative form. During the iteration, a series of 
intermediate segmented images are produced 
among wlhich the one that possesses the 
maximum amount of information in its spatial 
structure is chosen as the optimum segmented 
image. Results from segmenting synthetic and 
practical iimages demonstrate that the MASP 
algorithm is capable of achieving better results 
when compared with other global thresholding 
methods. 

1 Introduction 

An image is a collection of spatially ordered picture 
elements (pixels) representing a scene. The scene is usu- 
ally assumed to consist of several objects in a back- 
ground. Each of the background and object parts of 
the image generates a class of pixels to be characterised 
by its own statistical properties. An image segmenta- 
tion process classifies each pixel of an image into a par- 
ticular class. The major function of segmentation is to 
transform the raw image data to a form more suitable 
for the subsequent image processing steps such as 
image understanding, object identification, or pattern 
recognition [ 11. 
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The most common approach to image segmentation 
is thresholding [2-4]. In this approach, a pixel is seg- 
mented into one class if its grey-level value is larger 
than the threshold value; otherwise it is segmented into 
another class. Thresholding can be categorised as glo- 
bal or local. In the former case, a single global thresh- 
old value is employed to threshold the entire image. In 
the latter case, a local threshold value may be derived 
from a partial region of the image for thresholding pix- 
els in that region [5]. An important advantage of 
thresholding is that it can be very fast if the the thresh- 
old value is derived from simple statistical properties, 
such as the histogram, of the image [6]. Utilising the 
histogram, some thresholding algorithms make no 
assumption about its form [7, 81 while others may 
assume a certain functional form for it as an a priori 
information about the image to be segmented [9-111. 
There are a number of thresholding methods that 
employ the entropy concept [12] in determining the 
optimum threshold value. The entropy of the image 
histogram [13, 141, the cross entropy of the image [15, 
161, and the maximum entropy principle [17, 181 have 
been utilised in thresholding images with varying 
degrees of success. To improve thresholding perform- 
ance beyond that afforded by those histogram-based 
methods, spatial information of the image may be con- 
sidered. Some entropy-based thresholding methods 
adopt this approach and better thresholding results 
have been reported [19, 241. 

A fundamental limitation of thresholding as an 
approach to segmentation is that pixels having the 
same grey level value will always be segmented into the 
same class. As such, the thresholding result is limited 
by the degree of overlap among the probability density 
functions (PDF) of the pixels in different classes. When 
there is no overlap the thresholding results can be per- 
fect. However, when the overlap is substantial the 
thresholding results will be poor irrespective of the 
thresholding algorithms employed. Such a performance 
limitation will be more obvious by examining the ratio 
of the total number of all possible thresholded images 
to the total number of all possible segmented images 
for a particular image. For instance, this ratio is 2* to 
265,536 for an image having 65,536 pixels and 8 bit 
quantisation for its pixel grey-level values. In other 
words, the thresholding method only searches over an 
extremely small portion (= in this case) of the 
total solution space for the best segmentation result. 
From this point of view it is not surprising that the 
performance of global thresholding is limited. 

To overcome the performance limitation of the glo- 
bal thresholding, spatial information of the image may 
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be utilised and then each pixel classification is to be 
made individually. Depending on the spatial informa- 
tion, two pixels with the same grey-level value are not 
necessarily classified into the same class. In deciding 
which class a pixel is to be segmented into, spatial 
information related to the joint grey-level values of its 
neighbouring pixels is made use of in the present paper. 
Furthermore, the entropy concept is applied determin- 
ing the spatial information contained in the structure of 
a segmented image in to identify the optimum seg- 
mented image. With a pixel-by-pixel segmentation 
scheme incorporating these two aspects of spatial infor- 
mation of an image, the limitations inherent in the his- 
togram-based, global thresholding methods will be 
overcome and better thresholding results can be 
achieved. 

aximum a posteriori spatial probability 
segmentation 

Consider an image that is a representation of a scene 
having K-1 objects in a background. The image may be 
regarded as a collection of some spatially ordered pix- 
els each of which is denoted as X .  Associated with each 
pixel X is a class parameter x E { 1, 2, ..., K )  denoting 
which class the pixel X belongs to. Without loss of gen- 
erality, we assume that the grey-level values of the pix- 
els have been discretised to values 1, 2, ..., L and that 
the grey-level value of the pixel X is denoted as g E { 1, 
2, ..., L} .  From the view point of a general segmenta- 
tion process, which classifies X according to observa- 
tion information, g is observable while x is unknown. 
Based on the observed g values, the segmentation proc- 
ess segments each pixel X into one of the K classes. 

U 
Fig. 1 Four pixel nearest-neighbour lattice scheme 

Neglecting the pixels on the image boundary, associ- 
ated with each pixel X are M neighbouring pixels S1), 
s2), ..., s w .  The positions of the M neighbouring 
pixels usually bear a fixed relationship with that of X. 
For example, the positions of four neighbouring pixels 
relative to X defined in the ‘nearest-neighbour’ lattice 
scheme [25] is depicted in Fig. 1. We denote the joint 
class parameters of the M neighbouring pixels as the 
neighbourhood configuration N = ~ ( ~ 1 ,  ..., x(w); 
and the joint observed grey-level values of the A4 neigh- 
bouring pixels as G = (g(l1, g(2), ..., g ( q )  where dm) and 
g@) are, respectively, the class parameter and the grey- 
level value of the neighbouring pixel m E { 1, 2, ..., 
M } .  The observation data D that will be utilised by the 
segmentation algorithm for segmenting the pixel X are 
g and 6, i.e. D = (g, G). Finally, we denote the proba- 
bility density function (PDF) of the grey-level distribu- 
tion of the kth-class pixels as fk(g),  k E { 1, 2, ..., K ) ,  
i.e. 

P ( X  = glz = IC) = f k ( 9 )  (1) 
Consider the conditional probability Pk that the pixel X 
belongs to class k given the observation data D. This 
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probability can be written as 
Pk = P(z = kID) = P(z  = k I g , G ) ,  

Eqn. 2 describes a set of probabilities that are condi- 
tioned on the spatial information about pixel X and 
they may be referred to as the a posteriori spatial prob- 
abilities. If the values of P(x  = k I g, 6) are known for 
all k and (g, G), the pixel may be segmented into class 
k* where P(x  = k* I g, G) is the maximum. When an 
image is segmented in this way, the probability of seg- 
mentation error will be minimum and the segmentation 
result should be optimum when measured in terms of 
segmentation error rate. We denote this segmentation 
scheme as maximum a posteriori spatial probability 
(MASP) segmentation. 

In the most general sense, the probability of ‘x = k’ 
may depend on the entire (global) image rather than on 
the joint local observation (g ,  G) only. To justify the 
MASP approach, we model the image as a Markov 
random field, where the global dependence property is 
reduced to a local dependence [26]. Furthermore, by 
increasing or decreasing the number of pixels contained 
in G, the extent to which a pixel’s classification 
depends on its neighbourhood pixel grey-level values 
may be adjusted from nondependence (D = g,  the grey- 
level value of the pixel to be segmented) to global 
dependence (D = entire image). Hence the MASP 
approach has great flexibility in utilising spatial infor- 
mation of an image. 

Applying Bayes’ rule to eqn. 2, Pk can be written as: 

k E {1,2 , .  . . , K }  
(2) 

When comparing the magnitudes among all the PI, val- 
ues to determine the maximum, there is no need to 
consider the denominator in eqn. 3 since it is independ- 
ent of k. Only the values of P(g, G I x = k )  and P ( x  = 
k)  need to be computed. The terms P ( x  = k)  may be 
estimated from a particular segmented version of the 
image, as will be described in the following Section. On 
account of the extremely large dimension of the joint 
grey-level probability distribution, the estimation of 
P(g, G I x = k)  presents a problem since there will not 
be a sufficient number of samples. For instance, with a 
four-pixel neighbourhood and 8 bits of grey-level quan- 
tisation, the dimension of P(g, G I x = k)  will amount 
to 240. With an image having only 65,536 pixels, the 
number of samples is insufficient for confident esti- 
mates of the probabilities P(g, G 1 x = k)  to be made. 
Such a dimensionality problem and the associated com- 
putational challenge are commonly experienced by seg- 
mentation algorithms incorporating spatial information 
of an image. A possible approach is to express the 
interdependence of image grey-level values in terms of 
a model like the autoregressive moving average 
(ARMA) model [27] or the autobinomial model [28], 
and the model parameters are estimated by standard 
estimation methods [29]. Possible solutions include sim- 
ulated annealing, segmentation by iterated conditional 
modes (ICM) or maximiser of posterior marginals 
(MPM) [26]. To render the problem computationally 
tractable without modelling the image explicitly, we 
propose to retain only the class interdependence among 
pixels while neglecting their grey-level interdependence. 
Consequently, the following two assumptions about the 
image are made: 
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(i) given an image pixel X ,  the probability that its 
neighbourhood assumes a particular neighbourhood 
configuration N depends on which class the pixel X 
belongs to; 
(ii) given an image pixel X ,  the probability that it has a 
certain grey-level value depends only on which class it 
belongs to, but does not depend on the grey-level val- 
ues of its neighbourhood pixels. 
Assumption (3 is concerned with geometric features of 
the scene, and hence will be valid for a single image, or 
for multiple images of a scene provided the latter 
remains stationary during the time over which the 
images are acquired. The second assumption may not 
be valid for thlose images exhibiting pixel grey-level val- 
ues interdependence. Employing assumption (ii) will 
mean the loss of a certain amount of image informa- 
tion but such a disadvantage may be more than offset 
by the advantage of having a computationally tractable 
solution when assumption (ii) is applied. 

If it is known that a pixel X belongs to class k,  then 
all the possible neighbourhood configurations N are 
mutually exclusive events and applying the total proba- 
bility theorem [30], P(g, G I x = k)  in eqn. 3 is written 
as 

P(g,GIx = k )  = P(N1x = 5 )  x P(g,Glz = k , N )  
all N 

(4) 
Making use of assumptions (i) and (ii) discussed, eqn. 4 
can be written as 
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P(g,  Glz = I C )  = P(Nlz = k )  x h(9) n f d - 1  (d")) 
all N m=l  

(5) 
A similar expansion for the term P(x = kl D) has been 
proposed by Kittler and Hancock [31] and is known as 
an 'evidence combining' formula. Since we are going to 
employ a maximum a posteriori probability approach 
to determine the optimum segmentation results, we 
shall concentrate on the expansion of the term P(g, G I 
x = k)  as shown in eqn. 5. 

The dimension of P(N I x = k)  is KM, which is usu- 
ally a relatively small number for most practical 
images. For instance, if binary segmentation is to be 
performed with four-pixel neighbourhood, the dimen- 
sion of P(N I .'c = k), which is KM, is only 24 = 16. The 
values of P(N I x = k)  can now be confidently esti- 
mated from a segmented version of the image, which is 
known as a provisional estimate of the true scene [28]. 
After the PDFsfj(g) of the classes of pixels have been 
estimated in a similar way, the product P(g, G I x = k)  
x P(x = k)  in eqn. 3 can be computed for each k and 
then the MAS P segmentation process can be performed 
by segmenting X into class k* where the product P(g, G 
I x = k*) x P(x = k") is the maximum. With all image 
pixels having been classified, the provisional estimate 
can be replaced by the new segmentation result and 
then the MASP segmentation cycle can be repeated. 
Finally, an iterative segmentation algorithm results. 
This 'estimate and then segment' approach is similar to 
the iterated conditional modes (ICM) method proposed 
by Besag [28]. 

As a special case, consider an image where there is 
no spatial regularity for the true scene, and there is no 
interdependence among the grey-level values of the 
image pixels. All the P(N I x = k )  values in eqn. 5 are 
identical and the MASP segmentation process will seg- 
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ment a pixel into class k* if &(g) x P(x = k*) is maxi- 
mum. This is just the result of a histogram-based 
maximum-likelihood global thresholding method [ 181 
where no spatial information about the image has been 
taken into account. 

To segment one pixel by the MASP method, K x KM 
x M multiplications, K x (KM - 1) additions and K - 1 
comparisons are required. For a single run of binary 
segmentation ( K  = 2) with a four-pixel neighbourhood 
scheme ( M  = 4), approximately 8.4 million multiplica- 
tions are required for an image having 65,536 pixels, 
where the relatively fast addition and comparison oper- 
ations are neglected. Hence it may be noted that seg- 
mentation by the MASP method still requires quite 
substantial computation. 

3 Segmented scene spatial entropy 

In Section 2 it is seen that the MASP segmentation 
method is suitable for implementation in an iterative 
form. Such an iterative method will produce a series of 
intermediate segmented images before it terminates. 
For any practical segmentation algorithm implement- 
ing the MASP method there must be some way to 
select the best segmented image from these intermediate 
segmented images. For this purpose, the segmented- 
scene spatial entropy (SSE) [32] is employed as a selec- 
tion criterion. 

Given a segmented image, denote the segmented 
pixel as Y. Associated with Y is a segmented class 
parameter y that denotes which class Y belongs to. 
Similar to notations employed in Section 2, there will 
be a neighbourhood configuration NE, i E (1, 2, ..., 
KM},  associated with each segmented pixel. If the seg- 
mented pixels are treated as random variables without 
regard to their spatial relationship, the uncertainty 
about which segmented class the segmented pixels 
belong to is given by 

K 

H(J = - P ( y  = k )  logP(y = k )  (6) 
k=l 

If the neighbourhood configuration of the pixel Y is 
observed to be N,, the probability that the segmented 
pixel Y belongs to segmented class k is given by the 
conditional probability PO, = k I NJ. The uncertainty 
about which segmented class the segmented pixel Y 
belongs to is given by 

H ( Y I N t )  = - P(Y 1 klNz) logP(y = klNt)  (7) 

The uncertainty averaged over all possible neighbour- 
hood configurations is 

K 

k = l  

K M  

H(YIN) = P(N,)H(YIN,) ( 8 )  
z = 1  

In general, H(Y I N) will not be greater than No since 
additional information has been provided for in deter- 
mining which segmented class a segmented pixel 
belongs to. The difference 

measures the information contained in the spatial 
structure of the segmented scene and is referred to as 
the segmented scene spatial entropy (SSE). A large 
value of SSE implies that the segmented scene exhibits 
strong spatial structure, and hence is compatible with 
the feature that the original scene is composed of K-1 

H i  =z Ho - H(Y1N) (9) 
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objects in a background. The SSE value H I  will be 
taken as a criterion for selecting the optimum seg- 
mented image, A practical iterative segmentation algo- 
rithm is proposed in Section 4. 

ASP segmentation algorithm 

We propose an iterative MASP segmentation algorithm 
in the following: 
Step 1 threshold the image with a suitably chosen glo- 
bal threshold value, resulting in an initial segmented 
image (the provisional estimate of the true scene) 
Step 2 based on the segmented image obtained in the 
previous step, make the following estimations: 

pfc: sample mean of the grey-level values of all pixels 
segmented into class k 
ok: sample standard deviation of the grey-level val- 
ues of all pixels segmented into class k 
fk (g) :  1/(okd2x) exp -(g - ~ ~ ) ~ / 2 0 , 2  
P(x = k): the ratio of the number of pixels seg- 
mented into class k to the total number of pixels in 
the image 
P(N I x = k): the ratio of the number of pixels which 
have been segmented into class k and have neigh- 
bourhood configuration N to the total number of 
pixels segmented into class k.  

Step 3 based on the estimations made in step 2, per- 
form MASP segmentation for every pixel as described 
in Section 2; a new segmented image is obtained; calcu- 
late and record the SSE Hl for this new segmented 
image 
Step 4 if the new segmented image is different from the 
segmented image produced in the previous step, goto 
step 2; otherwise goto step 5 
Step 5 Among the several segmented images produced, 
the segmented image with the maximum H I  is taken to 
be the final segmentation result 

esults and discussion 

To assess the performance of the MASP algorithm pro- 
posed in the previous Section, a simulation study is car- 
ried out in which synthetic images are segmented. The 
advantage of employing synthetic images for investiga- 
tion of segmentation algorithms is that the image char- 
acteristics may be adjusted easily. Furthermore, since 
the true scene is known, an objective and quantitative 
assessment of segmentation results by measuring the 
segmentation error rate, which is defined as ratio of the 
number of erroneously-segmented pixels to the total 
number of  image pixels, is possible. 

The neighbourhood scheme adopted is the nearest 
four-neighbourhood scheme as depicted in Fig. 1. For 
the synthetic image, the true scene is a circular object 
in a background. Image size is 256 x 256 and the grey- 
level value ranges from 0 to 255 inclusive. The grey- 
level values of the object pixels and background pixels 
are generated randomly following a normal distribution 
PDF [33], where the mean value and the standard devi- 
ation of the grey-level values of the object and back- 
ground pixels are denoted as &, oo, pl and q, 
respectively. The object size relative to the entire image 
size is denoted as a, 1 > a > 0. The MASP algorithm is 
initialised by thresholding the image with a suitably 
chosen threshold value. Related research results show 
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that the final MASP segmentation result is not very 
sensitive to the choice of the initial threshold value; in 
the present work we employ a maximum segmented- 
image entropy thresholding algorithm [Note 11 to 
threshold the image. 

For the purpose of performance comparison, two 
other segmentation methods are implemented. The first 
method is the ideal minimum error (IMINE) global 
thresholding of the image. This method requires that 
the object and background PDFs as well as the value 
of a are known, and a threshold value that results in 
the minimum segmentation error rate is searched for 
over the entire grey-level values range. The second 
method filters the image by a median filter [27] and 
then thresholds the filtered image by OTSU’s method 
[8]. This method will be abbreviated as MFOT method. 
The median filter mask is the four-neighbourhood 
scheme as shown in Fig. 1, plus the pixel to be seg- 
mented. When compared to the MASP method, the 
MFOT method utilises information of the same neigh- 
bourhood pixels but in a different way, and hence the 
performance of the two methods should be different. 

Consider the segmentation results for a synthesised 
image with image parameters a = 0.2, po = 100, 00 = 
20, pl = 140, ol = 20. The grey-scale image, its histo- 
gram, the IMINE-, MFOT- and the MASP-segmented 
images are shown in Figs. 2u-2e7 respectively. For the 
MASP algorithm, it takes 11 iterations to terminate 
and the segmented image generated in the 7th iteration 
has the maximum SSE, so this is identified as the opti- 
mum segmented image. The segmentation error rates 
achieved by the IMINE, the MFOT and the MASP 
methods are, respectively, 11.47, 11.36 and 1.31%. 
From these results, it is seen that the MFOT is slightly 
better than the IMINE thresholding method. This is 
reasonable since a certain amount of spatial informa- 
tion of the image has been utilised. However, the 
MASP algorithm gives far better results in that an 
almost 9: 1 improvement in segmentation error rate 
over the IMINE method has been achieved. 

The second synthetic image to be segmented has the 
same true scene as the previous one, but the grey-level 
values of the object and background pixels are gener- 
ated randomly according to an exponential distribution 
[33]. The relative size of the object is 0.25. The sample 
mean and standard deviation of the grey-level values of 
the object pixels are, respectively, 100 and 20. The sam- 
ple mean and standard deviation of the grey-level val- 
ues of the background pixels are, respectively, 120 and 
20. For the MASP algorithm, it takes 25 iterations to 
terminate and the optimum segmented image is gener- 
ated in the 4th iteration where the SSE is maximum. 
The grey-scale image, its histogram, the IMINE-, 
MFOT- and the MASP-segmented images are shown in 
Figs. 3a-3e7 respectively. The segmentation error rates 
of the IMINE-, MFOT- and MASP-segmented images 
are, respectively, 21.35, 45.74 and 13.08%. For this 
case, the MFOT result is not as good as the IMINE 
result, but the MASP result is still better than the two 
results. 

To compare the performance of the three methods 
systematically, a series of images are synthesised with 
these parameters: a = 0.25; mean of  the object pixel 
grey-level values = 100; standard deviation of the 
Note 1: hung, C.K. and Lam, F.K.: ’ M a x i ”  segmented-image 
entropy thresholding’, submitted to Comput. Vis. Graph. Image Process. 1 

Graph. Models Image Process. 
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a 

e 
Fig. 2 
1 byte per pixel, 256 x 256 pixels 
Image parameters: a = 0.2, 
a Grey-scale image 
b Histogram of a 
c IMINE-thresholded image, segmentation error = 11.47% 
d MFOT-segmented image, segmentation error = 11.36% 
e MASP-segmented image, segmentation error = 1.31 YO 

Segmentation results of synthesised image 

= 100, U ,  = 20, jq = 140, U, = 20, gaussian PDFs 

d e 

255 grey level 
b 

c 
Fia. 3 Semnentution results o f  svnthesised imure 

d e 

1 byte per p&el, 2568 x 256 pixelsd ' 
Image parameters; (ii = 0.25, objert pixels; mean of grey-level values = 100, standard deviation = 20, baskgruund pixels; mean or grey-level values 
= 120, standard deviation of grey-level values = 20; exponential PDFs 

v 

_ .  
a Grey-scale image 
b Histogram of a 
c IMINE-thresholded image, segmentation error = 21.35% 
d MFOT-segmented image, segmentation error = 45.74% 
e MASP-segmented image, segmentation error = 13.08% 
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object pixel grey-level values = standard deviation of 
the background pixel grey-level values = 20. The mean 
of the background pixel grey-level values takes values 

-_ 
----. --- 

mean grey-level value of background 
pixels 

Fig. 4 Segmentation errors against mean grey-level value of background 
pixels 
1 byte per pixel, 256 x 256 pixels 
Image parameters: n = 0.25; object pixels: mean of grey-level values = 100, 
standard deviation = 20; background pixels: standard deviation of grey-level 
values = 20 
(i) MFOT gaussian PDF 
(ii) MFOT exponential PDF 
(iii) IMINE gaussian PDF 
(iv) IMINE exponential PDF 
(v) MASP exponential PDF 
(vi) MASP gaussian PDF 

from 120 to 160 in steps of 2. Both gaussian and expo- 
nential PDFs are used in synthesising the images. The 
segmentation error rates achieved by the IMINE, 
MFOT and MASP methods are plotted against the 
mean of the background pixel grey-level values in 
Fig. 4. From these results the performance of the 
MASP algorithm is seen to be better than IMINE and 
MFOT. 

Finally, we apply the MASP algorithm to segment a 
practical image. Since the true scene is unknown and 
no IMINE thresholding result is obtainable, the image 
is thresholded by OTSU and the MFOT methods for 
performance comparison. For the MASP algorithm, it 
takes nine iterations to terminate and the segmented 
image generated in the 8th iteration has the maximum 
SSE. The grey-scale image, its histogram, the OTSU-, 
MFOT- and MASP-segmented images are shown in 
Figs. 5aP5e, respectively. It can be seen that the MASP 
algorithm makes the ‘pills’ in the image more conspicu- 
ous as a result of reducing the effects of image noise. 

All these investigations have been carried out in an 
IBM personal computer with a Pentium CPU running 
at 75MHz clock speed. The programming language 
used is Microsoft’s Quick-Basic compiler version 4.2. 
With this set-up, it is observed that one pass of the 
MASP algorithm takes two minutes. The total execu- 
tion time for a particular image depends on the number 
of passes required to reach termination. 

6 Conclusions 

An image segmentation algorithm known as maximum 
a posteriori spatial probability (MASP) algorithm has 
been described. The MASP algorithm performs pixel- 
by-pixel segmentation by maximising both the a poste- 

C 
Fig. 5 
1 byte per pixel, 256 x 256 pixels 
a Grey-scale image 

Segmentation results of a practical image 

b Histogram of (G) 
c OTSU-thresholded image 
d MFOT-segmented image 
e MASP-segmented image 
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viori spatial pirobability and the segmented scene spatial 
entropy. Spatial information in the form of joint occur- 
rence of neighbourhood pixels’ grey levels is made use 
of in the proposed method. The grey-level interdepend- 
ence between pixels is neglected while the class interde- 
pendence is retained to make the algorithm 
computationally feasible. As far as the segmentation 
results for synthetic images are concerned, it is shown 
that the MASP algorithm is able to perfom better 
than an ideal minimum error global thresholding 
method and a simple segmentation method utilising 
spatial inforrnation of an image. As illustrated in 
Fig. 4, the improvement in performance over the ideal 
minimum error global thresholding method is found to 
be very substantial when the PDFs of the different 
classes of pixels have a separation of more than 1.5 
standard deviation of the grey-level values. Where com- 
putation time is not a major concern, this algorithm is 
worthy of consideration for segmenting images to 
achieve better segmentation result. 
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