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Abstract—Tracking variations in both the latency and ampli-
tude of evoked potential (EP) is important in quantifying prop-
erties of the nervous system. Adaptive filtering is a powerful tool
for tracking such variations. In this paper, a data-reusing non-
linear adaptive filtering method, based on a radial basis function
network (RBFN), is implemented to estimate EP. The RBFN con-
sists of an input layer of source nodes, a single hidden layer of non-
linear processing units and an output layer of linear weights. It has
built-in nonlinear activation functions that allow learning of func-
tion mappings. Moreover, it produces satisfactory estimates of sig-
nals against a background noise without a priori knowledge of the
signal, provided that the signal and noise are independent. In clin-
ical situations where EP responses change rapidly, the convergence
rate of the algorithm becomes a critical factor. A carefully designed
data-reusing RBFN can accelerate the convergence rate markedly
and, thus, enhance its performance. Both theoretical analysis and
simulation results support the improved performance of our new
algorithm.

Index Terms—Convergence rate, data-reusing algorithm,
evoked potential, radial basis function network, tracking ability.

I. INTRODUCTION

EVOKED potentials (EPs) represent gross electrical
activity of the brain usually generated by sensory stim-

ulation. The amplitude of the EP signal is often lower than
the background noise [i.e., mostly ongoing electroencephalog-
raphy (EEG)]. Ensemble averaging (EA) is the most widely
used method for detecting components of the EP. EA sums the
responses to repetitive stimulus presentations in order to obtain
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EP estimates with an acceptable signal-to-noise ratio (SNR).
However, studies showed that EP signals could often be non-
stationary and, therefore, have characteristics that could vary
from trial to trial [1]–[5]. Such across-trial response variability
will be failed to be revealed using EA.

Much effort has been made to track trial-to-trial variations in
the EP to improve SNR and to speed up measurement. Woody
[6] described a procedure for computing averages from single
EP in which the latency variation of various components in the
EP was aligned by using a cross-correlation function. Aunon and
McGillem [7] introduced a method called the latency corrected
average using a minimum mean square error (MMSE) filter to
extract individual components in the EPs. Cerutti and associates
[8]alsoproposedaparametricmethodof identifyingasingle-trial
EP. All these methods improved the EP results to some extent.

Adaptive filtering has the ability to adjust its own parameter
settingsautomatically,andrequires littleornoaprioriknowledge
of the characteristics of the signal or noise. Since the EP is a
time-varying signal, adaptive filtering appears to be appropriate
for its estimation. Recently the technique of adaptive filtering has
been applied with success to enhance the EP estimates [9]–[16].

Considering the possible nonlinear nature of the system,
neural networks for both linear and nonlinear systems are
potentially useful in determining response variability. Recently,
in many areas of signal processing there has been a growing use
of neural networks with built-in nonlinear processing elements
[17], [18]. In this paper, an algorithm of data-reusing radial
basis function network (DR-RBFN) was used to improve the
convergence performance of an approach of RBFN reported
earlier [19]. During each iteration the data-reusing algorithm
reuses the current (or previous) desired response and data vector
to update the adaptive tap-weight vector multiple times [20],
[21]. Such data-reusing LMS algorithms have been reported to
show a dramatic improvement in the convergence rate over the
traditional method of LMS [20], [22]. When carefully designed,
DR-RBFN can markedly accelerate the convergence rate and,
therefore, results in better performance. Both theoretical anal-
ysis and simulation results supported improved performance
over the previous RBFN algorithm reported earlier [19].

II. METHODS

A. Basics of RBFN for EP Estimation

As shown in Fig. 1, the RBFN is a multilayer feedforward
neural network consisting of an input layer of source nodes, a
layer of nonlinear hidden units that operate as kernel nodes and
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Fig. 1. Schematic of the adaptive Gaussian RBFN used for EP estimation.

an output layer of linear weights. In response to an input vector,
, the hidden node outputs, , computed by the hidden layer

are linearly combined to form the network response that is pro-
cessed in combination with a desired response presented to the
output layer. The weights are trained in a supervised fashion
using an appropriate linear learning method.

Assume we have trials of EP signal, and each trial contains
points of data, denoted as

(1)

With as input, the output of a RBFN that has hidden
nodes will be

(2)

where

(3)

and

...
...

. . .
...

(4)

The overall objective is to minimize the error signal

(5)

Using the famous LMS algorithm the weight vector is
adapted once every trial by the steepest-descent optimization

(6)

where is the step size which regulates the speed and stability
of adaptation.

In a previous paper [19], a Gaussian function was used as the
activation function for the hidden nodes since the function is
bounded and stable in adaptive processing. The RBF produces
a localized response to the input stimulus. The response is re-
lated to the Euclidean distance between the input and the cen-
troid associated with the basis function. Each node produces an
identical output for inputs that lie at a fixed radial distance from
its center,

(7)

where is the variance. Considering EP signals having a time-
locked feature, a simple but effective method was used to design
a real-time EP tracking RBFN [19]. Assume each recorded trial
of the EP signal has data points, the input of the RBF could
be simply designed as ( ). Therefore, the
Gaussian radial basis function could be written as

(8)

where and are the center and the width of the th RBF
respectively. It has been shown [19] that the following simple
design of and is effective for tracking EP signals:

(9)

where is the number of data points in each trial and in-
dicates the number of hidden neurons. The RBF was design to
have the same width, i.e.,

(10)

where is set at 0.8. Notice that, if the center and width of
the RBFs are determined by (9) and (10), matrix becomes
a constant. A constant is of special interest since it makes
processing in real-time possible using our new algorithm.

The primary input at the th iteration is a trial of the recorded
signal denoted by the vector . Once the hidden layer is de-
signed, the next step is to develop an algorithm to adjust the
weight vector ( is the trial
number) such that the network output estimates the under-
lying EP signal . In (7), the hidden layer output matrix, ,
acts as the input for the conventional linear adaptive filter. Thus,
an adaptive LMS algorithm can be used to adjust the weight
vector.

B. Normalized Data-Reusing LMS (NDR-LMS) Algorithm

Widrow’s LMS algorithm [23] is one of the most widely
used approaches for practical applications. This algorithm is
an approximation of the steepest descent optimization strategy
using the instantaneous squared error at each iteration to esti-
mate the mean square error. It is simple and easy to implement
in real-time. However, the convergence rate of the LMS algo-
rithm might be rather slow when the input signal is colored.
Some methods are available to improve the convergence rate.
Techniques such as pseudorandom modulation [24], or Gauss-
Newton optimization [25] could be used to decorrelate the input
signal. A recursive least squares (RLS) algorithm is another
choice, which has a faster convergence rate but with additional
complexity in computation. In this paper, a simpler and effective
method, called the normalized data-reusing LMS (NDR-LMS)
algorithm is applied.

The normalized LMS algorithm could be derived by the prin-
ciple of minimal disturbance [26]. For our specific problem (for
its derivation please see Appendix ), the normalized LMS algo-
rithm is as follows:

(11)

where is the step size which regulates the speed and stability
of adaptation, and is a small positive constant used to realize
the pseudoinverse of the matrix.
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The NDR-LMS algorithm is a modification of the normalized
LMS algorithm described above, which reuses data pairs
from previous iterations to generate the new gradient estimates
that are in turn used to update the adaptive weight vector [20].
Thus, the NDR-LMS algorithm is as following:

(12)

where

(13)

In this algorithm, a number of previous trials, in addition to
the current trial, are reused to estimate the current weight vector.
Thus, we have

For each trial , the data are reused sequentially, and at each
step of the data reusing process the intermediate weight vector,
denoted by with the sub-index as the trial number, is
estimated by the normalized LMS algorithm. Then, the inter-
mediate weight vector obtained at the last data reusing step,

, is assigned as the estimate of . Here
denotes the number of trials reused, and , ,
are the reused trials for the estimation of .

Comparing to (6) the algorithm has a factor
which accounts for decorrelation for the reference input. Decor-
relation will speed up the convergence. Therefore, the algorithm
benefits from the decorrelation factor.

The convergence improvement in the NDR-LMS algo-
rithm can be explained using the geometric interpretation of
Alexander [27] and Schnaufer and Jenkins [28]. In the LMS
algorithm, the instantaneous error surface is expressed as

(14)
In (14), the constant matrix , consisting of the Gaussian ker-

nels, represents the deterministic reference input of the adaptive
filter, represents the EP trials, which is the primary input
of the adaptive filter. If the EP trials are stationary, the expected
value of (14) is the true mean square error (MSE) surface. There-
fore, minimizing this equation with the steepest descent algo-
rithm is expected to converge to the Wiener solution.

Noting that only when , reaches its min-
imum value (zero). With from (5) we have

(15)

The solution set is a hyperplane on which is
minimized. Since the input vector parametrizes the hyper-
plane, this vector is perpendicular to the solution set. Defining

as the solution hyperplane at iteration , (13) can be ex-
pressed as a vector orthogonally projected onto by sub-
tracting from it the appropriate scalar multiple of . It is in-
teresting to note that will lie in , as shown in
Fig. 2(b). If the normalized LMS algorithm is applied, it only
takes one step directly toward the solution hyperplane, which
explains why the normalized LMS algorithm converges faster
than the LMS algorithm. Fig. 2(a) illustrates the geometric in-
terpretation of the normalized LMS at a single iteration.

In the NDR-LMS algorithm, since a different pair of input
is used to update the weight vector at each step of

Fig. 2. Geometric interpretation illustrating the convergence improvement in
(a) conventional normalized LMS, and (b) NDR-LMS.

the iteration in a different direction, a faster convergence is ex-
pected. Note that in the NDR-LMS algorithm in (12) and (13),
it is the new data pair that is used at the beginning of a new it-
eration for the first weight update. New data points are used be-
cause they contain new information and should, therefore, pro-
vide the best update direction [20]. Fig. 2(b) demonstrates how
the NDR-LMS converges to its Wiener solution if the input
signal is stationary. It is clear from Fig. 2(b) that each operation
for pairs of data being reused gets steps closer to

, thus, will speed up the convergence rate. Moreover, since
only previous pairs of data are reused, the algorithm can operate
in a real-time situation. For sufficiently large values of the
system will converge rapidly. However, when the signal is non-
stationary (i.e., time-varying), the optimal is no longer con-
stant over time. NDR-LMS can also be used for nonstationary
signal tracking. With careful selection of this method is par-
ticularly useful in the case of on-line EP signal estimation. Note
that the term in (12) is constant when the
center and width of the RBFs are determined by (9) and (10).
Thus, the DR-RBFN is easily approached in real-time with only

additional operations required for each iteration.
The NDR-LMS algorithm in the paper is updated blockwise,

i.e., the adaptive weight vector is updated in the form of trial.
The solution hyperplanes at iteration and can be obtained
by using (5) given , i.e.,

:

:

Although the reference input matrix is deterministic, solu-
tion hyperplanes is not parallel to . Since vector

is not parallel to vector , where is the th
EP recording trial. Thus, the block NDR-LMS can be effectively
used for EP signal estimation.
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C. Real-Time Implementation of the NDR-LMS Algorithm for
EP Estimation

For the NDR-LMS algorithm to estimate the EP in real-time,
computational efficiency is very important. The batch mode ap-
proach was used to update the weights of the RBFN. In the
batch mode approach, the weight adjustment is only performed
after all data points of each trial have been presented. EP data
recording is usually triggered by a certain stimulus. To estimate
the EP in real-time, the NDR-LMS algorithm with the last
trials can be implemented during the interval between the cur-
rent and the subsequent stimulus. For EP estimation, the selec-
tion of the value for is particularly important in the DNR-LMS
algorithm. The selection of is a twofold problem. First, the
larger the , the faster is the convergence rate (see Fig. 2). On the
other hand, the value for is limited by interstimulus interval.
Thus, in the selection of the following need to be considered,
viz., the interstimulus interval, the nature of the EP signal and
the computer hardware used. We found empirically that setting

is adequate for real-time EP tracking in most sit-
uations we had tested. Note that the term
in (11) is a constant matrix when the center and width of the
RBFs are determined by (9) and (10). Thus, only a fixed array
is needed to save this constant matrix. Implementation of the
NDR-LMS algorithm requires additional memory to save the
last trials of the EP recordings. With powerful digital signal
processing (DSP) chips or computer systems currently avail-
able, the DR-RBFN is easily approached in real-time with only

additional operations required for each epoch.

III. SIMULATIONS AND RESULTS

A simulated brainstem auditory evoked potential (BAEP)
signal is shown in Fig. 3(a). It was obtained by averaging 1000
trials of surface recorded EP data from a human subject, and
mixed with an ongoing EEG signal simulated by the following
autoregressive model [12]:

(16)

where is a driven white noise process with a Gaussian
distribution, and the simulated EEGs were uncorrelated across
trials. Fig. 3(b) shows one trial of the stimulated ongoing EEG.

The performance of the RBFN depends primarily on the
number of RBFs used. A Large will increase the approxima-
tion capability of the RBFN but could also decrease the ability
to track signal variations. A tradeoff must be made to select a
proper number of RBFs. Fung and associates [19] found that it
was suitable to set for BAEP signal estimation using
the RBFN.

Theoretical analysis of the tracking performance of an adap-
tive algorithm is very complicated if not impossible. This kind
of analysis is beyond the scope of this paper. However, some re-
lated simulations can be done to check the tracking performance
of our new algorithm. Concerning of the influence of noise, two
simulations were conducted in which both noise levels’ ampli-
tude and latency variations are taken into account.

A. Tracking Performance Simulation 1 (Gradual Variations)

To compare the performance of the previous RBFN [19] and
the data-reusing algorithms for nonstationary signals, a total of

Fig. 3. Simulated data: (a) BAEP signal; (b) one trial of the ongoing EEG
signal. The various peak latencies in the simulated BAEP are marked I to V
according to convention.

400 trials of a simulated EP response were generated by adding
the simulated EP signal with both latency and amplitude varia-
tions to the simulated EEG at a SNR of . Each trial con-
tains 90 data points. To simulate the variations in amplitude,
the signal amplitudes of three selected sections from the 400
trials were amplified. The latency of the simulated EP signal
shifted progressively in a sinusoidal manner over a range of 1
ms (compared with a EP response duration of 6 ms). Fig. 4(a)
shows the simulated EP signal with latency and amplitude vari-
ations, while Fig. 4(b) is the simulated raw EP recordings with

.
Given that EP signals can be nonstationary, it is important to

speed up the algorithm’s convergence rate. The performance of
a normalized data-reusing LMS algorithm for the RBFN was
studied in this simulation. Three different numbers of previous
trials ( and ) were used to update the weight ma-
trix according to (9) and (10). Fig. 5 shows the MSE curves
of the NDR-LMS algorithm using three different values of .
It is evident from Fig. 5 that NDR-LMS markedly improves
tracking performance, in comparison with conventional normal-
ized LMS ( ). The NDR-LMS algorithm with a larger
could yield more precise estimates of stationary signals [20].
However, for nonstationary signals this may not always be true
since the signal changes over time, the solution hyperplane of
the weights might also change. Thus, a large may introduce
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Fig. 4. Simulated BAEP signal with artificially introduced latency and
amplitude variations (a), and raw EP data at SNR = �5 dB.

Fig. 5. MSE curves of DR-LMS with shown at three different settings of L.
Note the conventional normalized LMS method is represented by L = 0.

additional distortion because a large requires the use of more
previous data. The old data will cause delays in tracking changes
in the current signal. In fact, Fig. 5 shows that the tracking ca-
pacity of NDR-LMS with does not surpass that for

. Moreover, a large results in lengthy computation and
may depress the signal-tracking capacity for nonstationary sig-
nals. In this simulation, a choice of produced an adequate
estimate of the nonstationary EP signal.

Fig. 6 shows three-dimensional (3-D) views of EP signal
tracking using previous RBFN [19] and the new DR-RBFN

Fig. 6. Three-dimensional view of EP signal estimated respectively by (a)
DR-RBFN, and (b) the previous RBFN algorithm.

algorithm. As expected the DR-RBFN produces better tracking
of nonstationary signals. The data-reusing RBFN algorithm
is especially suitable for estimating EP signals from data sets
where a long recording time is not permitted, or for some
applications such as the effects of drugs, where conditions are
changing and long data sets may not be useful.

In EP measurement, both amplitude and latency estimations
are equally important. The MSE values shown in Fig. 5 can only
give a sketchy view of the performance of RBFN for EP esti-
mation. The comparisons of the performance of algorithm on
both amplitude and latency are given in Fig. 7. The simulated
BAEP recordings are the same as described above. Fig. 7(a)
shows latency tracking performance, and Fig. 7(b) presents am-
plitude tracking performance by both DR-RBFN and the pre-
vious RBFN. The bold lines in Fig. 7 are simulated latency shift
and amplitude variation. The thin and dotted lines present es-
timated latency and amplitude by DR-RBFN and the previous
RBFN, respectively. It is clear that the tracking performance
of new DR-RBFN markedly surpasses the previous RBFN, on
tracking both latency shift and amplitude variations. It can also
be seen that there are on tracking large am-
plitude variations even using new DR-RBFN.

From this simulation we have observed that the algorithm can
track both latency and amplitude variation very well if variations
are kind of “typical,” i.e., change gradually across trials. It can be
reasonably expected that if latency or amplitude is varied in other
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Fig. 7. Comparison of tracking performance on gradual variations of latency
and amplitude of the two RBFN algorithms: (a) tracking curves on latency; (b)
tracking curves on amplitude.

nonsinusoidal fashions (e.g., linear pattern), the algorithm tracks
the signal variation well if the variation is gradual across trials.

B. Performance Comparison at Different Noise Levels

The simulated signal and EEG noise are the same as described
above. Different SNRs for the simulated EP recordings were
created to compare the filter performance for different noise
levels. The SNR was varied from to 0 dB in increments
of 5 dB. In this example, the EP signal was deterministic across
trials. The number of trials was 1000. The previous RBFN [19]
and the present DR-RBFN algorithms were used to process the
simulated recordings. The mean MSE across trials was calcu-
lated for each algorithm at different noise levels (Fig. 8). It is
clear that the new DR-RBFN algorithm is better than the pre-
vious RBFN at all SNR levels. At the poorest SNR the new al-
gorithm outperforms the old one by as much as 10 dB.

C. Tracking Performance Simulation 2 (Abrupt Changes)

A total of 400 EP signals were simulated using the same
EP signal and noise of the Simulation 1. Two abrupt changes
were introduced in 400 trials of simulated EP recording. The
first abrupt change appeared from trial 51 to 100, when the
signal amplitude was set to zero in order to simulate the dis-
appearance of EP in a realistic situation. The second abrupt
change occurred between trial 150 and 151, when the response

Fig. 8. Comparison of performance of the two RBFN algorithms at different
noise levels. The SNR varied from�40 dB to 0 dB in increments of 5 dB. The
number of trials was 1000 and the EP signal was deterministic across trials. The
MSE values were calculated trial by trial and then were averaged to produce the
plot.

latency was abruptly delayed by 2.5 ms. In addition, two gradual
changes were also included in this simulation: from trial 181 to
300 a linear latency shift was inserted, and from trial 220 to
231 the signal amplitude was amplified. The 400 trials of sim-
ulated BAEP signal with abrupt change are shown in Fig. 9(a).
Fig. 9(b)–(c) represents EP signal estimates by the DR-DRBF
and the previous RBFN respectively. It is clear that DR-RBFN
outperforms the previous RBFN in both latency and amplitude
estimations.

The details of tracing performance of two algorithms are pre-
sented in Fig. 10. Although there are some delays both algo-
rithms could briefly follow abrupt and gradual changes well.
Fig. 10 shows that DR-RBFN can track latency and amplitude
variations faster and more accurately. Fig. 11 displays the out-
puts of two algorithms. The abrupt latency shift took place at
trial 151 where the latency sharply shifted up 2.5 ms. It is clear
in the figure that at and 152 both algorithms failed to
respond fast enough to follow such an abrupt change because
of the inertia of the weight which was converged to trial 150.
At the next two trials ( , 154), DR-RBFN adjusted its
weights effectively to track the abrupt change on both latency
and amplitude, while the previous RBFN could only follow the
latency change.

The simulations showed the limitations of the algorithms.
Even the response of DR-RBFN has in delay to the
real change. If the abrupt changes occur quickly, it is hard for
the algorithm to track change within one or two trials because
of the inertia of weight. Whereas for gradual changes there is a
long enough stable state after the start of change, the tracking
of DR-RBFN becomes satisfactory.

IV. DATA ACQUISITION AND PROCESSING

In this section, the DR-RBFN algorithm described above is
used to estimate human BAEP and intraoperative somatosen-
sory evoked potential (SEP).

A. BAEP

A total of 2000 BAEP records were recorded from a subject,
age 25. The stimulus used to evoke BAEP was a click, 0.1 ms
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Fig. 9. Results on tracking latency and amplitude of artificially introduced
abrupt changes in 3-D views: (a) simulated EP signals across 400 trials; (b)
EP signals estimated by DR-RNBF; (c) EP signals estimated by the previous
RBFN.

in duration, delivered at a rate of 10/s, with 100-dB peak sound
pressure level. The response was recorded from the scalp surface
with conventional electrode placement at the vertex and mastoid
using a clinical EP machine (Nicolet) at a sampling rate of 10
kHz. Conventional EP procedures such as electrical and acoustic
shielding were used to reduce interference and noise. Only the
first 9 ms of poststimulus data (corresponding to 90 data points
at a sampling rate of 10 kHz) in each trial was processed for
the early auditory response or BAEP. The DR-RBFN algorithm

Fig. 10. Comparisons of tracking performance on abrupt changes using the
two RBFN algorithms. Details of tracking curves on latency shift (a), amplitude
variations (b).

Fig. 11. Close looks on tracking of abrupt changes in EP using two RBFN
algorithms. Note the DR-RBFN outperforms the previous RBFN on tracking
both latency and amplitude variations.

(with ) was used to estimate the BAEP signal in real-time.
Fig. 12 shows an isometric view of the BAEP across trials. It is
clear that the BAEP signal varies in both amplitude and latency
across trials.

B. Intraoperative SEP

SEPis theresponseofcentralnervoussystemtoexternalstimu-
lation. SEP has been routinely used for intraoperative monitoring
toalarmsurgeonsofpossible spinalcordcompressionandinitiate
interventions during neurosurgery. However, the inadequacy of
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Fig. 12. Isometric view of the human BAEP single trial signals extracted by
DR-RBFN.

SEP for reliable monitoring of spinal cord functional has already
been documented [29]–[32]. SEP relies on an averaging tech-
nique, which requires a period of 10–40 s or in worse cases 30
min for updating. Therefore, a reliable intraoperative spinal cord
monitoring system with a fast SEP signal detection algorithm is
most desirable for obvious reasons.

We applied DR-RBFN algorithm to measure SEP during
orthopaedic surgery to treat scoliosis. Eight scoliosis patients
(age 15 to 23) took part in this study. All patients received
general anaesthesia (thiopental at 0.4 mg/kg, or fentanyl at
1–2 and maintained with isoflurane at 0.8% and nitrous
oxide/oxygen: 60%/40%). To elicit SEP, a pair of stimulating
electrodes was applied over the posterior tibial nerve be-
hind the medial malleoli, with constant current stimulation
( ). Single pulse stimulation with a frequency
between 5.1 and 5.7 Hz and duration of 300 was applied.
SEP signals were collected over Cz’ (2 cm posterior to Cz,
10–20 international system for EEG electrode placement)
versus the Fz of the 10–20 system. The signal was amplified
100 000 times with an isolated amplifier (SCXI-1120, National
Instruments Co., Austin, TX), and bandpass filtered between
20 and 3000 Hz. All the SEP signals were acquired with a data
acquisition card (DAQcard-1200, National Instruments Co.,
Austin, TX) at a 12-bit resolution and a sampling rate of 5 kHz.
A DR-RBFN algorithm with and was used to
monitor the SEP trial by trial.

Fig. 13 shows the continuously recorded 200 trials of the SEP
recordings from one of patients, while Fig. 14(a) demonstrates
an example of the real-time SEP raw signal from this case. The
raw data [Fig. 14(a)] looks like noise and it is difficult to iden-
tify the evoked response waveform [compared with the aver-
aged SEP, Fig. 14(b)]. The DR-RBFN algorithm was used to
extract the SEP from the same 200 raw recordings shown in
Fig. 13. The result displayed in Fig. 15 shows the SEP signal
extracted by DR-RBFN, in which the peak latency and ampli-
tude can be readily measured. The result is quiet consistent with
the EA waveform.

The validation of DR-RBFN SEP extraction was evaluated
by the comparison between DR-RBFN results and conventional
EA SEP. For the purposes of comparison, the SEP measure-
ments were made at five different stages of surgery defined
below [31].

Fig. 13. Raw SEP recordings (n = 200 trials) during scoliosis surgery in a
human.

Fig. 14. (a) SEP signals showing an example of a single-trial raw SEP signal,
and (b) the result of EA (n = 200 trials).

Fig. 15. SEP signals extracted by DR-RBFN algorithm.

Stage 1) (Preoperation) When the patient had been anaes-
thetized and positioned on the operating table.

Stage 2) (Spine exposure) When the muscle and soft tissues
were stripped and the surgical field exposed.

Stage 3) (Instrumentation application) When the instrumen-
tation, such as hooks, wires or screws were inserted.
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TABLE I
COMPARISON OF THE SEP MEASUREMENTS BETWEEN EA SEP AND DR-RBFN SEP

Fig. 16. (a) SEP in one patient obtained by EA during different surgical stages,
in comparison with (b) SEP extracted by the DR-RBFN algorithm.

Stage 4) (Deformity correction) When the deformity was
corrected by rod rotation, and compression or dis-
traction.

Stage 5) (Wound closure) When the wound was closed.
At each stage we used 200 response trials to generate the con-

ventional EA, and 30 trials to generate the DR-RBFN estimate
of SEP. Thus, for each patient, there are two kinds of SEP es-
timates, one from EA (includes five EA SEP estimates, using a
total 1000 trials), and another from DR-RBFN (including five
DR-RBFN SEP estimates, using a total of 150 trials). Student’s
t-test was performed to assess statistical differences between the
DR-RBFN and EA measurements. Fig. 16(a) shows an example

of EA SEP in five surgical stages, while Fig. 16(b) shows the
DR-RBFN SEP. In this case, the amplitude in different stages
was measured in EA SEP, while was measured

in DR-RBFN SEP. The latency in different
stages was measured in EA SEP, while was mea-
sured in DR-RBFN SEP. In the other seven cases,
similar comparison was performed.

Peak latencies and amplitudes were measured on each EA
SEP and DR-RBFN SEP in different surgical stages. The results
of five surgical stages in each case were statistically compared.
Table I shows the amplitude/latency measurements by both EA
SEP and DR-RBFN SEP. No significant difference was found
between EA SEP and DR-RBFN SEP measurements ( ,
Student’s t-test). The SEP’s recorded before any surgical pro-
cedures were treated as baselines which represented neurolog-
ical normal condition. Percentage difference between the la-
tency and amplitude of the baseline and later stages EA SEP
as well as DR-RBFN SEP were calculated to show the vari-
ability. The criteria of abnormal SEP have not been established
in consensus to define neural functional losses occurred during
surgery [31], [32], [36]. The most commonly used criterion is
either a reduction of control SEP peak amplitude of or a
delay of peak latency of [31]–[35]. In this study, both EA
SEP and DR-RBFN SEP showed similar results of variability,
without significant difference in the comparison of percentage
variability of both amplitude and latency ( , Student’s
t-test). In both EA SEP and DR-RBFN SEP, the percentage vari-
ability of latency is and

, which are clinically considered subthreshold to neural
function deficit.

DR-RBFN SEP may also provide trial to trial variability esti-
mation, which need further study to investigate its clinical value
in intraoperative spinal cord monitoring. Using DR-RBFN, SEP
signal can be extracted from noisy background in less than 10
s using just a regular Pentium III PC, and can be faster with a
better computer system or a specific DSP chip.

V. CONCLUSION

Adaptive algorithms are considered as suitable methods to es-
timate nonstationary signals. It is well recognized that the con-
vergence rate is a very important criterion for these algorithms.
In this paper, we have presented a data-reusing RBFN model
for estimating EP signals in real-time. As a nonlinear system
RBFN could provide a universal function approximation capa-
bility, which is more suitable for estimating nonstationary sig-
nals. The LMS algorithm is a simple and effective algorithm
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for real-time implementation of the RBFN. Moreover, Soni et
al. [22] proved that the algorithms which jointly used NLMS
and data reusing can achieve a fast convergence approximate
to recursive least square techniques. The effectiveness of the
DR-RBFN on EP extraction has been successfully demonstrated
in this paper.

To accelerate the rate of convergence and, thus, enhance
the tracking ability of nonstationary signals, a normalized
data-reusing LMS algorithm was studied. The NDR-LMS
algorithm reuses data pairs from previous iterations to generate
the new gradient estimates that are in turn used to update the
adaptive weight vector. This algorithm operates in real-time
and has a fast convergence rate and can, thus, track EP signal
variations across trials. In some situations, the EP signal must
be estimated from only a few tens or 100 trials. The date-reusing
RBFN is, thus, especially useful in the extraction of useful
information from each trial. Comparison with either the tradi-
tional ensemble average or the previous RBFN [19] shows that
the present method is more powerful in tracking EP variations.
The relatively simple structure, powerful mapping capability
and fast convergence features makes our new DR-RBFN algo-
rithm a potentially valuable tool for estimating EP signals in
both clinical and physiological research environments.

The RBF network used in this paper is a highly degenerated
one, for it has only one fixed input and its kernels are predefined.
The resulted structure is equivalent to a typical adaptivefilter with
a deterministic and periodic reference input. The qualitative anal-
ysis has been given in previous sections. In Section III, it has been
shown that the algorithm can track relatively slow change of EP
signal very well even at poor SNR. For abrupt change of the EP
signal, it may take three to four trials to completely catch up with
the variation. The convergence rate is the key for the successfully
tracking the signal variation. Optimal design of RBFN, not just
using a fixed simple Gaussian kernel, may improve the perfor-
mance. Other promising algorithms such as affine projection al-
gorithm could be our future work on EP signal extraction.

APPENDIX

The normalized LMS algorithm could be derived by the prin-
ciple of minimal disturbance [26, pp. 321]. The problem is to
minimize the squared Euclidean norm of the change

(A1)

subject to the constraint

(A2)

Using the method of Lagrange multipliers, the problem can
be solved by minimizing

(A3)

Let

(A4)

we have

(A5)

From (A2) and (A5) we have

(A6)

Then, from (5) and (A6) we get

(A7)

Then, we get the solution of the constrained optimization
problem as follows:

(A8)

Consequently the normalized LMS algorithm

(A9)

where is a positive real scaling factor to exercise control over
the change in the weight vector, and is a small positive constant
helping to realize the pseudoinverse of the matrix.
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