146 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

Performance Comparison of Scheduling Algorithms
for Peer-to-Peer Collaborative File Distribution

Jonathan S. K. Chan, Student Member, IEEE, Victor O. K. Li, Fellow, IEEE, and King-Shan Lui, Member, IEEE

Abstract— Peer-to-Peer file sharing applications in the Inter-
net, such as BitTorrent, Gnutella, etc., have been immensely
popular. Prior research mainly focuses on peer and content
discovery, overlay topology formation, fairness and incentive
issues, etc. However, little attention has been paid to investigate
the data distribution problem which is also a core component of
any file sharing application. In this paper, we present the first
effort in addressing this collaborative file distribution problem
and formally define the scheduling problem in a simplified
context. We develop several algorithms to solve the problem and
study their performance. We deduce a theoretical bound on the
minimum download time experienced by users and also perform
simulations to evaluate our algorithms. Simulation results show
that our graph-based dynamically weighted maximum-flow algo-
rithm outperforms all other algorithms. Therefore, we believe
our algorithm is a promising solution to be employed as the core
scheduling module in P2P file sharing applications.

Index Terms— Peer-to-Peer, P2P, file sharing, data distribution,
scheduling algorithms.

I. INTRODUCTION

EER-TO-PEER (P2P) applications have become im-

mensely popular in the Internet. One of the most popular
applications of P2P networks is collaborative sharing of large
video/audio files and software. Traditional methods for file
sharing, such as the client/server approach (e.g. FTP, WWW),
suffer from scalability bottleneck. As the outgoing bandwidth
of the server is shared among all simultaneous clients, the
more the clients, the less bandwidth each client can have.
Hence, the performance of client/server approach deteriorates
rapidly as the number of simultaneous clients increases. P2P
file sharing solves the problem by allowing peers to act as
servers. Interestingly, in a well-designed P2P file sharing
network, more peers participating in the file sharing session
generally means better performance, as each peer could down-
load simultaneously from multiple peers. Due to the significant
performance improvements with collaborative file sharing,
there has been widespread use of P2P file sharing applications
like BitTorrent [1], Gnutella [2], Kazaa [3], Napster [4], etc.
A recent study [5] shows that BitTorrent traffic accounts for
an amazing 35% of all Internet traffic, which is more than any
other single protocol, demonstrating the increasing importance
of P2P file sharing systems among the Internet community.

Manuscript received December 14, 2005; revised July 12, 2006. This
research is supported in part by the Areas of Excellence Scheme, established
by the University Grants Committee, Hong Kong Special Administrative
Region, China, Project No. AoE 99-01.

The authors are with the Department of Electrical and Electronic Engi-
neering, University of Hong Kong, Pokfulam, Hong Kong, China. (e-mail:
skjchan@eee.hku.hk, vli@eee.hku.hk, kslui@eee.hku.hk).

Digital Object Identifier 10.1109/JSAC.2007.070115.

Experiments in [6] have shown that parallel downloading
scheme in P2P file sharing systems could result in higher
aggregate download rate and thus shorter download time. In
parallel downloading, an end user opens multiple connections
with multiple file sources to download different portions of
the file from different sources and then reassembles the file
locally. According to the analysis in [7], the service capacity
increases greatly compared with schemes that share the file as
a whole.

Prior research in P2P file sharing usually focuses on top-
ics like overlay topology formation, peer discovery, content
search, sharing fairness, incentive mechanisms, etc. One of
the core components of file sharing systems, the data distri-
bution scheduling problem, on the other hand, has received
little attention. The scheduling problem is important because
it governs how file pieces are transmitted and distributed
among peers, and has a direct effect on the performance. A
poor data distribution schedule could result in considerably
longer download time, while a good schedule could shorten
the completion time and efficiently utilize all resources like
network bandwidth. This article studies the “data distribution
scheduling problem” in P2P collaborative file sharing systems
and proposes a novel maximum flow graph model for effi-
ciently solving the scheduling problem.

Our major contributions are summarized as follows:

o We formally define the data distribution scheduling prob-
lem using matrix formulations with granularity down to
each file piece possessed by each peer. We also derive a
theoretical lower bound of the transmission time required.

« We develop several algorithms (including a novel graph-
based maximum-flow algorithm) for determining the file
piece distribution schedule, and evaluate their perfor-
mance by simulations.

o Simulation results show that our dynamically weighted
maximum-flow algorithm outperforms other algorithms.

The rest of this paper is organized as follows. Section
II briefly describes some related work. The communication
model, notations and analysis are given in Section III. Section
IV presents various algorithms for approaching the scheduling
problem, followed by an evaluation using computer simula-
tions in Section V. Some of our future research directions are
given in Section VI and we conclude the paper in Section VII.

Due to space limitations, we have removed detailed explana-
tions, figures, proofs and examples. We refer interested readers
to [17] for the full version of this paper.

0733-8716$20.00 © 2007 IEEE

CHAN et al.: PERFORMANCE COMPARISON OF SCHEDULING ALGORITHMS

II. RELATED WORK

Due to the dramatic increase of broadband user population,
there has been large-scale deployment of P2P file sharing
systems in the Internet. BitTorrent (BT) [1], [8] is perhaps
the most representative one. Tracker servers maintain a list
of participating peers. When a new peer joins, the tracker
server will send the new peer the contact information of
a few connected peers from the list. Then, this new peer
contacts these peers directly for downloading the file. A shared
file is partitioned into multiple small pieces, usually about
256Kbytes or 512Kbytes in size. Peers exchange information
on which pieces they currently possess, and request missing
pieces from others. A peer can maximize its download speed
by requesting different pieces from different peers at the same
time. A scheduling mechanism is needed for a peer to decide
which pieces to request and to whom such a request should
be made. A poor scheduling algorithm may lead to every
peer getting nearly the same set of pieces and consequently
decreases the number of file piece sources which a peer
can simultaneously download from. BT employs the Rarest
Element First (REF) algorithm, in which those pieces that
most peers do not have are downloaded first. This algorithm
is good at increasing the availability of different file pieces
in the network and is efficient in distributing all pieces from
the original source to different peers across the network.
However, our simulation results show that REF is not an
optimal scheduling algorithm.

The self-scaling properties of collaborative file distribution
architectures, where each peer has equal upload and download
rates of b, have been shown in [9]. If the file size is f, the file
is chopped into m pieces, and let 7 = % be the time needed
for transmitting the whole file, it would take Ttme = 1 +
|log; N |]f—; to serve all the IV peers organized in k£ spanning
trees. The time required increases only logarithmically with
increasing number of peers /N in collaborative distribution,
as opposed to a linear increase in the case of client-server
distribution strategies.

Two crucial factors that affect the global effectiveness of the
file distribution process are evaluated in [10]. They are “peer
selection strategies” and “file piece selection strategies,” and
they have direct impacts on the delay experienced by the peers
and the global throughput of the system. It is found that the
most missing peer selection strategy, in which the peer with
the largest number of un-received file pieces is selected for
transmission first, can minimize the download time of the last
complete peer and produce a smaller variance of the download
times of the peers. This is because the most missing peer
selection strategy ensures regular progress of all the peers by
having an even dissemination of the file pieces. On the other
hand, for file piece selection strategies, it is concluded that
the rarest piece first strategy shows significant performance
improvement over the random piece selection strategy. Some
of our algorithms presented in Section IV are basically in
the same spirit with the evaluations presented in [10] by
employing the most missing peer selection and the rarest file
piece selection strategies.

The problem of broadcasting or multicasting a single mes-
sage in heterogeneous networks has been investigated in [11],

147

[12] from the algorithmic point of view. In particular, [11]
studies the problem in a network where nodes have different
processing times and the transmission times between different
node pairs also vary. The authors evaluate the completion time
of various algorithms and show that the well-known Fastest
Node First algorithm may result in solutions which are worse
than the optimal by an unbounded factor. They subsequently
propose the Fastest Edge First and Earliest Completing Edge
First algorithms to better solve the problem. Reference [12]
studies the problem in a similar network as [11] except that all
transmission times are assumed to be the same. It proves that
the problem of minimizing the maximum completion time of
broadcasting a single message is NP-hard. It also shows the
Fastest Node First heuristic in computing broadcast schedules
can produce an 1.5 approximation schedule for the same
problem. It is worth noting that [11], [12] only analyze the
problem of distributing one single message. In P2P file sharing
systems, a file is divided into multiple file pieces instead of
one big piece. Therefore, efficient scheduling algorithms have
to be developed and this is the aim of our work. To the best of
our knowledge, this paper presents the first effort in addressing
this problem based on some simplifications.

Some measurement-based research, such as those in [13],
reveals the inherent difficulty of the peer selection problem and
recognizes the selection of peers would have profound effect
on the overall performance. They tried to use some bandwidth
probing techniques to optimize the selection of “good” peers.
On the other hand, some analytical models [7], [14] have
been proposed. In [7], a branching process and a Markov
chain model are proposed to study the transient regime and
the steady state regime of the BitTorrent system, respectively.
A fluid model is presented in [14], where the expressions of
the numbers of incomplete peers and seeds (completed peers)
could be obtained from the parameters such as the peer arrival
rate, departure rate and the upload/download rates. However,
previous models just consider the network, a particular peer
or a particular file-sharing session as a whole, while our
work is the first to model the data traffic transmission as a
matrix representation down to the granularity of each file piece
possessed by each peer. We also care about the scheduling
selection of “good” peers, as well as “good” file pieces.

We have done a preliminary study in [15] with a homoge-
neous network assumption, where all the peers have symmetric
upload and download bandwidths and the transmission times
between any node pairs are the same. In this special case, we
proposed a graph-based weighted Bipartite Matching (BPM)
algorithm, which can efficiently and optimally solve all the
cases tested. In this paper, we shall extend our results to
networks with asymmetric bandwidth allocation and develop
algorithms that can efficiently solve the problem.

III. PROBLEM DEFINITION
A. Communication Model

We assume users are situated at the edge of the network,
with logical links connecting every pair of peers (i.e. fully-
connected graph, an example network is shown in Fig. 1).

1) Synchronous Scheduling: Due to the initial complexity
we face when first studying this problem, we begin

148

File = {1,2,3,4,5,6,7,8}

T 2 piscedoycls

13 piecefcycle

Fig. 1.

2)

3)

4)

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

1 piecelcycle
12 pieceicycle

1.3}

112 pieceicycle ‘ETE

12 pisceicycle :

11 piscefoycls
[3piecefcycle
{1.4}

&

I12 pieceicycle

{1,3,6,8} {2,5,7.8}

Fully-connected network with asymmetric bandwidth allocation.

our investigation by assuming the transmission times
between any node pairs are the same. That is, the data
distribution scheduling is performed in discrete cycles
synchronously.

Exchange of Information: As in BitTorrent, each peer ac-
tively communicates with other actively connected peers
to announce his own set of possession information about
which file pieces he currently possesses. This possession
information is sent in the form of a bit-vector, say for
example Peer 4 will announce {1,0,1,0,0,1,0,1} to
others, meaning that he currently possesses file pieces
1, 3, 6, and 8. For a typical video file of 650Mbytes with
each file piece having a size of 512Kbytes, we will have
1300 bits (~163bytes) in the bit-vector, which is small
and will not consume too much bandwidth relative to
the actual transmission of the data file piece itself. In
the following sections in this paper, these possession
bit-vectors are assumed to be exchanged without errors
between all connected peers before the scheduling of the
next cycle.

Asymmetric Bandwidth: Each peer may have asymmet-
ric upload and download bandwidths. This is common
in the Internet where most users connect to the network
using the Asymmetric Digital Subscriber Line (ADSL)
technology. We assume the nodes can only send or
receive an integral number of file pieces for each cycle.
An example is shown in Fig. 1, where Peer 1 can send
out one file piece and receive two pieces from others
for each cycle, and Peer 2 can send one file piece and
receive three pieces for each cycle, etc.

Quasi-Static Assumption: In this paper, we assume all
the peers will not leave the file sharing session once ini-
tiated until the distribution process completes. Although
this assumption is unlikely to hold in real systems,
where peers may come and go and the peers may
switch to exchange with different sets of peers during
the distribution process, we could reasonably extend
the notion of this quasi-static assumption to represent
a particular period, say one minute, during which the
peers keep active exchanges with this particular set of
peers and we aim at transmitting the largest amount

of data during this period by employing our proposed
scheduling algorithms.

5) Notations and Definitions: Let the number of partici-
pating peers be N and the number of file pieces be
M. The shared file F' is chopped into M smaller pieces
F ={Fy, Fy,..., F} and each peer possesses a subset
of F'. We represent the file piece possession information
as an N x M matrix P, called the possession matrix.
P;; = 1if and only if node ¢ possesses file piece Fj
(1<i<N,1<j< M); otherwise P;; = 0. We use
P? to denote the possession matrix at time t. Refer to
Fig. 1 where F = {F}, F5,...,Fg} and {...} next to
a node indicates the pieces that the node possesses, the
possession matrix at the beginning (¢ = 0) is:

1 0100000
1 0010000
PP=]1 01001011
1 0100101
01000011

Due to the synchronous scheduling assumption mentioned
in Section III.A.1, the data distribution can be made in discrete
cycles synchronously. Given an initial possession matrix P,
after one cycle of file piece distribution, a new possession
matrix P! will be formed. That is, P* denotes the possession
matrix after k£ cycles.

In each cycle, Peer ¢ can send out at most p; file pieces
and receive at most g; file pieces from others. We use two
integer vectors p = {p1,p2,...,pn}and g = {q1,42, .., qn}
to denote the upload and download limits for the peers. For
example in Fig. 1, p = {1,1,2,2,2} and ¢ = {2,3,2,3,3}.
Note that it is usual to have p; smaller than ¢; in asymmetric
bandwidth allocation schemes, such as ADSL. Nonetheless,
our algorithms and analysis presented in later sections are not
restricted by whether p; is smaller or larger than g;.

We also refer to a possession matrix as a problem instance.
A problem instance P is feasible if for each file piece in

N
{F1,Fs,...,Fy}, at least one peer possesses it, i.e. »_ Pj; >

i=1
1,¥j € [1, M]. A problem instance is infeasible if it is not

feasible, meaning that there is no way for every peer to get
all file pieces since there is at least one file piece not available
in the system.

A schedule specifies how file pieces are distributed among
peers. At each cycle, for each peer, it specifies which file
pieces the peer has to send out and to whom. A possible
schedule for P° above with p = {1,1,2,2,2} and ¢ =
{2,3,2,3,3} is:

Node 1: send Piece 3 to Node 2

Node 2: send Piece 4 to Node 1

Node 3: send Piece 5 to Node 1, send Piece 5 to Node 2

Node 4: send Piece 6 to Node 2, send Piece 6 to Node 3

Node 5: send Piece 2 to Node 4, send Piece 7 to Node 4

Formally, we use an N x M matrix S to represent the
schedule in one cycle, which specifies which pieces a peer
receives and from whom. S;; = x if and only if node i
receives file piece j from node x, otherwise S;; = 0. From .S,
we can derive the piece transmission matrix 7" (also N x M),
which ignores the sender identities and only specifies which

CHAN et al.: PERFORMANCE COMPARISON OF SCHEDULING ALGORITHMS

pieces a peer receives. 1j; = 1 if and only if S;; # 0,
otherwise T;; = 0. Similar to P, we use superscripts to refer to
different cycles. That is, S¥ and T* are the schedule and piece
transmission matrix at cycle k, respectively. For the above
example schedule, we have:

00023000
001 03400
=1 0 0 0 00 400
05000050
000 0O0TUO0O0O 0
00011000
001 01100
=100 0 001 0 0
01 00 0O0OT10
000 0O0UO0GO 0O

Node 1 receives Piece 4 sent from Node 2 and Piece 5 sent
from Node 3. Therefore, S¥, = 2, SY. = 3 and T, = 1,
T = 1.

There are several properties that a valid schedule (a sched-
ule that does not violate any assumptions) should observe:

o At least one file piece must be distributed among the
peers in each cycle (at least one entry in S and T is
non-zero)

e A node cannot send a piece that it does not possess (if
Sij =z, then P; = 1)

e Node z cannot send more than p, file pieces in a cycle
(at most p, x’s in S)

o Node z cannot receive more than g, file pieces in a cycle
(sum of row x in T is at most q,)

o Node x cannot send a piece to Node y that Node y
already has (S}; = 0 and T}, = 0 if P}, = 1 for the
same y, j at any cycle k)

Given the possession matrix P*~! and a valid schedule

Sk=1 Tk=1 at cycle k — 1, the possession matrix at cycle k
(for £ > 0 and % is an integer) is given by,

Pk = pk=t L k=1,)

Intuitively, given an initial feasible P° and a sequence of
valid schedules, after a certain, say kg, cycles, R’;" =1,Vi,j,
all peers will get all the file pieces eventually and the file
distribution can terminate. In other words, ko is the time
needed for complete distribution of the whole file to all peers.
An optimal schedule is a schedule that requires the minimum
number of cycles for completion among all possible schedules.
Our goal is to develop algorithms that aim at finding optimal
schedules.

B. Analysis

In this section, we analyze the lower bound of ky, which
is the number of cycles needed for complete distribution of
the whole file to all peers. Due to space limitations, we have
skipped the proofs for this section. Please refer to [17] for
details.

1) Across Rows: Let r; be the total number of Os across

M
row ¢ in P, i.e. r; = Y (1 — p;;), the minimum value

j=1

149

of kg is given by

ri
ko > max {{—-‘}
i€[1,N] q;

2) Along Columns: Let pyq, be the maximum value among

the upload limit vector p, i.e. prmae = n[llzn]% | {p:i}. Let
€)1,

c¢; be the total number of 1s along column j in P, i.e.

2

N
cj = > P;;j, we can find the minimum number of 1s
i=1
along all columns ¢pmin = min {¢;}. The minimum
JEM,M]
value of kg is given by

N
ko > {10g1+Pmax C—-‘ :

3) Whole Matrix: Let z be the total number of Os in P, i.e.
N M
z= % (1— Pj). Let psum be the sum of p; in p,
i=1j=1
N

i.e. Psum =) Pi, and ¢sqym be the sum of ¢; in g, i.e.
=1

3)

N
Gsum = Y ¢;. The minimum value of kg is given by
i=1

> : } |
ko B ’len {psuma QSum} (4)
4) Lower Bound: Combining (2), (3), (4), the lower bound
of the value of kg is the maximum value of the three,

as in Eq. 5 (top of next page).
From simulations, we find (5) can return the optimal number
of cycles for most cases we tested and we shall use the value
estimated by (5) for performance comparison in later sections.

IV. SCHEDULING ALGORITHMS

We now present three types of transmission scheduling
algorithms. They are Rarest Piece First (RPF), Most De-
manding Node First (MDNF), and Maximum-Flow (MaxFlow)
algorithms. All of them run in polynomial time.

A. Rarest Piece First (RPF)

The Rarest Piece First algorithm is borrowed from the
Rarest Element First algorithm used in BitTorrent. In RPF,
those file pieces that most peers do not have (rarest) are
distributed first.

Definition 1: The rarity c; of Piece j is the number of peers

N
who have Piece j. That is, ¢c; = > P;;.

RPF aims at increasing the Za:/llilability of different file
pieces in the network, to maximize the chance that peers may
still have some pieces that other peers want. In case the file
is published by a single source who may just seed (remain
available to contribute) the file for a short period of time,
RPF also tries to distribute all pieces from the original source
to different peers across the network as quickly as possible, so
that the distribution can continue even if the original source
leaves.

In RPF, each peer chooses the rarest piece (with smallest
c¢j) to send out among those pieces he currently has. There
is no preference on the choice of recipients; this piece is sent

150 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

Ty N z
ko > — 1 . 5
0 = max {1g[lla;])§] { ’VQ1-‘ } ’ ’V Og1+Pmax Cmin-‘ ’ ’len {psumv QSum}-‘ } ()

to those with lower row indices who do not have this piece,
have not been assigned to receive this piece from others and
have not exceeded their download limits. If after distributing
this piece to all possible recipients, the peer still has remaining
upload bandwidth, he will try to distribute the next rarest piece
until he has no more upload bandwidth or there are no more
possible recipients. This process is done node by node (i.e.
row by row in the possession matrix). For each cycle, the
complexity of this algorithm is O(NM (N + log M)).

1 0,14040 0 0 0 10111000
1040‘1<000 I{10111100\I
o100 pl_ = o & B
10710@ 11100FT1|
01060606 o L L
L01000011J

For example, with p = {1,1,2,2,2} and ¢ = {2, 3,2, 3, 3},
the schedule determined for P? above is (arrows are added
for ease of understanding, and the resulting problem matrix at
the next cycle, P!, is also shown with those 1s corresponding
to the pieces just transmitted underlined.):

Node 1: send Piece 3 to Node 2

Node 2: send Piece 4 to Node 1

Node 3: send Piece 5 to Node 1, send Piece 5 to Node 2

Node 4: send Piece 6 to Node 2, send Piece 6 to Node 3

Node 5: send Piece 2 to Node 4, send Piece 7 to Node 4

However, we find the performance of RPF is unsatisfactory
and it performs much worse than the following algorithms.

B. Most Demanding Node First (MDNF)

As indicated in Section III.B, the number of cycles needed
depends on two factors: how many pieces a peer needs and
how rare a file piece is. RPF only considers the second factor,
while the Most Demanding Node First algorithm takes care of
the first factor by adding one additional criterion for choosing
recipients and the performance improvement over RPF is
significant with this simple enhancement.

Definition 2: The demand d; of Node i is the number of
M

un-received pieces for Node 7. That is, d; = E (1= Py.
We attach a demand d; to every node and vf/e prefer to send
to the node with largest d;. In case several nodes have the
same demand, we just send to the node with the lowest row
index. Similar to RPF, we schedule the transmissions node
by node; while choosing recipients we prefer the one with
the highest demand d; that does not have the piece and has
not exceeded its download limit yet. Its complexity is also
O(NM(N + logM)). For example, with p = {1,1,2,2,2}
and ¢ = {2,3,2,3,3}, the schedule is determined in this
sequence:
Node 1:
Node 2:
Node 3:
Node 4:
Node 5:

send Piece 3 to Node 2
send Piece 4 to Node 1
send Piece 5 to Node 1, send Piece 5 to Node 2
send Piece 6 to Node 2, send Piece 6 to Node 5
send Piece 2 to Node 4, send Piece 7 to Node 4

10/1g0g0 00016 (10111000
10‘01@,0006 10111100
P°=(1)1(1)80?71%21P101601611
11100111

0 P00 ko D13 L01000111J

The demands for each node are written at the right of P°.
At P°, Node 1 chooses its rarest piece, Piece 3, to send out
and chooses the most demanding node, Node 2, to receive this
piece. Node 4 now sends Piece 6 to Nodes 2 and 5 (instead
of Node 3) because Node 5 is more demanding than Node 3.

MDNF performs better than RPF in most cases but is still
not the best. A common characteristic that is shared between
RPF and MDNF is that the maximum number of transmissions
for each cycle cannot be achieved. In the following simple
example, p = {2,2,1,1} and ¢ = {2,2,2,2}. Using MDNF,
only five transmissions can be scheduled (but the maximum

is six).
1/140 2
~ 1‘0&1@2
0 0)1J2

0110)2

To fix the problem, we find as many transmissions as
possible in each cycle and the algorithm is described in the
next section.

C. Maximum-Flow Algorithms (MaxFlow)

In this section, we present a novel maximum-flow graph
model for finding transmission schedules which outperforms
the above two algorithms. We transform the problem instance
to the well-known maximum-flow problem so as to find the
maximum number of transmissions in each cycle. Weights
are added to the nodes to achieve better matching. We first
describe how to transform the problem and then explain the
algorithm in detail.

1) Flow Network: A flow network graph G = (V, E) is

a directed graph in which each edge (u,v) € E has a
nonnegative capacity c(u,v) > 0. There are two special
vertices, the source s and the sink t. A flow f in G is
a real-valued function f : V x V — R that satisfies the
following three properties:

o Capacity Constraint: the flow from one vertex to another
must not exceed the given capacity, i.e. f (u,v) < c(u, V)
Yu,v e V.

o Skew Symmetry: the flow from a vertex u to a vertex v
is the negative of the flow in the reverse direction, i.e.
fu,v)=—f(v,u) Vu,v e V.

o Flow Conservation: the total flow out of a vertex other
than the source or sink is zero, ie. . f(u,v) = 0

ueV
Vv eV —{s,t}.
The value of a flow f is defined as |f| =

Zf(SV)

i.e. the total flow out of the source. In the maxlmum -flow

CHAN et al.: PERFORMANCE COMPARISON OF SCHEDULING ALGORITHMS

101 1,1
1(00111
P=%($11
o\ 17010
10 149

Fig. 2. Maximum-flow network graph and the scheduled transmissions.

problem, we wish to find a flow of maximum value. Due to
space limitation, we refer interested readers to [16] for more
formal discussions.

2) Problem Transformation: We now describe how to con-
struct the flow network graph from a problem instance
P.

Definition 3: The flow network graph from P is a directed
graph G = (V, E). The vertices V' can be separated into four
groups, i.e., V=LURUBU{s,t}. L ={Ly,Lo,...,Ln}
refers to the NN peers acting as senders in the file sharing
session and R = {R1, Ry ..., Rn} refers to the same N peers
acting as receivers. L and R have the same cardinality as the
number of peers N, i.e. |L| = |R| = N. For each node in R,
we create an un-received piece node for each un-received file
piece it demands and put these nodes into the set B, i.e. b;; €
B & P;; = 0. It has the same cardinality as the total number

N M
of Osin P,ie. |B| =) > (1 — P;). s,t are the source and
i=1;5=1

sink nodes, respectively. The edges, E = {(s, L;) |L; € L} U
{(Ri,t) |R; € R} U {(bi;, R;) |bij € B,R; € R} U H, also
consist of four sets.{(s,L;)|L; € L}, {(R;,t) |R; € R} are
the sets of edges from the source s to left-side nodes
L and right-side nodes R to the sink ¢, respectively.
{(bij, R;) |bij € B,R; € R} are the edges from the un-
received piece nodes for node ¢ to the right-side node R;. H =
{(Ly,by;)|Ly € L,b,; € B, and (P,; =1AP,; =0)} are
the edges from left-side nodes L to the un-received piece
nodes B and depend on the possession matrix P. There is
an edge from L, to b,; if Peer u has file piece j, while Peer
v does not have it, so that Peer u can send Piece j to Peer
v. The edge capacities are integer-valued, ¢ (s, L;) = p; and
¢(R;,t) = q;, where p; and ¢; are the upload and download
limits for Peer i defined by the vectors p = {p1,p2,...PN}
and ¢ = {q1,q2,-..qn}. ¢ (s, L;) dictates that Node 4 sends
at most p; pieces out. Similarly ¢ (R;,t) dictates that Node i
receives at most ¢; pieces from others. ¢ (u,v) =1V (u,v) €
E\ ({(s, L)} U{(R;,t)}) for other edges excluding those
from source s to L; and those from R; to sink ¢.

Fig. 2 illustrates the transformation process. For this posses-
sion matrix P, with p = {2,1,2,1,3} and ¢ = {2, 1, 3,3, 3},
the flow network is shown beside P. There are a total of

151

eleven un-received piece nodes in B, as there are eleven (s in
P. b15 corresponds to the un-received Piece 2 for Peer 1, bao
corresponds to Piece 2 for Node 2, etc. There are links from
L1 to bag, b3y, by, bss, etc., but not to bao, by, bso, etc., since
Peer 1 can send Piece 3 to Peer 2, Piece 1 to Peer 3, Piece 4 to
Peer 4, Piece 5 to Peer 5, but cannot send Piece 2 to other peers
as Peer 1 does not have Piece 2. The arguments for other links
in H are similar. The capacities for the edges from s to L;
and R; to ¢ are written on top of the corresponding edges and
follow the given upload and download limit vectors p and gq.
There are O(N?2M) edges and the complexity for constructing
the flow network graph from P is also O(N2M).

To find the maximum-flow |f*|, we adopt the well-
established Edmonds-Karp algorithm, which is a particular
implementation of the general Ford-Fulkerson method [16]. It
finds augmenting paths by using breath-first search from the
source s to the sink ¢. Nodes with smaller indices have higher
preference in expanding states in breath-first search. Its com-

N N
plexity is O (|E||f*]) = O <N2M X min { > pis Y qi}),
which is still linear in M and N, and is worthltTlle imﬁémenta-

tion effort. In fact, the small increase in scheduling complexity
would not add much to the overall transmission time as the
computation time is very small compared with the actual data
transmission time of file pieces.

For the example problem instance in Fig. 2, we will have
a maximum-flow |f*| = 9, with matched flows highlighted.
An example translation of a matched flow to a schedule is:
s — L1 — Bys — R4 — t means that Node 1 sends Piece 5
to Node 4. The transmission schedule is thus:

Node 1: send Piece 5 to Node 4, send Piece 5 to Node 5

Node 2: send Piece 1 to Node 4

Node 3: send Piece 2 to Node 1, send Piece 2 to Node 5

Node 4: send Piece 3 to Node 3

Node 5: send Piece 3 to Node 2, send Piece 1 to Node 3,
send Piece 4 to Node 4

3) MaxFlow — Weighted: Although MaxFlow always re-
turns a schedule with the maximum number of transmis-
sions for each cycle, the performance is unsatisfactory,
as it does not consider whether we can match more in
subsequent cycles. It does not take care of the rarity of
file pieces and the demands of nodes as in RPF and
MDNF. To find a better matching, we put weights on
the nodes in L and B, so as to give priorities to some
nodes during the matching process. Definitions 4 and
5 define how to measure the rarity of the file pieces a
peer possesses and the rarity of the file pieces a peer
demands, respectively.

Definition 4: The rarity possession index ~; of Peer i
is the sum of number of Os in other peers for those

N M

pieces that Peer ¢ has. That is, v, = > > (Aas (7))
a=1b=1

where Ag is an N x M matrix and Ag (i) =

1 if (a# i) A(Pp=1)A(Pa =0)

0 if otherwise ’

Definition 5: The rarity demand index 0;; for file piece j
that Peer ¢ demands is the sum of number of Os across Row
¢ and Column j. That is,

152 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

0

Fig. 3. MaxFlow — Weighted graph and its scheduled transmissions.

Il
M=

N
(1- Pig) + > (11— Phj) —1.
g=1 h=1

Consider an example in Fig. 3, with p = {2,1,2,1,3} and

g =1{2,1,3,3,3}. The numbers beside the nodes in L are the
rarity possession indices vy;, and those beside the un-received
piece nodes B are the rarity demand indices d;;. For example,
L3 has 73 =44 1+ 2 = 7 because there are a total of seven
Os along Columns 2, 4, and 5. Bys has d40 = 7 because there
are a total of seven Os across Row 4 and along Column 2.
By preferring paths with the largest +; first, those peers who
have rare pieces can send first; while by preferring paths with
largest d;; first, those nodes with higher demand are selected
to receive a rare piece first.

Simulation results show that MaxFlow — Weighted performs
better than MDNF and RPF. However, there are still a few
cases that it cannot achieve the optimal. The major reason
is that the weights are kept constant for the whole duration
of each cycle and will not be changed even if some partial
assignments have been made. Thus, when choosing recipients
those peers who have been assigned to receive something may
still be further assigned to receive more as their static weights
remain as the highest, resulting in unfair resource allocation.

4) MaxFlow — Dynamically-Weighted: Due to the above
problem, we further enhance MaxFlow — Weighted
by allowing the weights on nodes to be dynamically
varied within each scheduling cycle. Whenever Peer i
is temporarily assigned to receive Piece j during the
scheduling process, the rarity possession indices v; and
rarity demand indices §;; will be changed and hence
the weights on nodes will also be changed. Then the
scheduling process continues using the new weights.

From simulations, MaxFlow — Dynamically-Weighted per-
forms the best among all algorithms presented and it can
achieve the optimal for most cases tested. It is the best
algorithm we have developed so far.

V. SIMULATION RESULTS

We randomly generate the problem instances (with each
individual matrix element independently generated) and em-
ploy various algorithms presented above to find transmission
schedules. We simulated 1000 cases for each setting. We note
the average number of cycles needed for complete distribution

a0

@ RPF

| MDHF

29 A OMaxFlow - Dynamically-Weightead
O Lower Bound

b
p

Average number of rycles
E
,

3 g 1 0 a0 30

o 20 3l
Feer size (File size = 1000
Fig. 4. Performance comparison of representative scheduling algorithms with
varying peer sizes (file size = 100, p; = 2, ¢; = 3, equal probability for 1s
and 0s).

300

ERFF

B LDHE

O MaxFlow - Dynarmdcally-Weight ed|
230 JOLower Bound

%)
=1
=1

=
=]
o

Aoverage number of cycles
g

[
=1

0 —mﬁrﬁlr‘l—rl‘l‘l—rl_ﬂ:—l_l_E

10 20 3n a0 a0 100 200 300 1000
File size (P eet size = 10

Fig. 5. Performance comparison of representative scheduling algorithms with
varying file sizes (peer size = 10, p; = 2, g; = 3, equal probability for 1s and
0s).

by using that algorithm and compare it with the lower bound

(5).

A. Equal Probability of 1s and Os in P, p; =2, q¢; =3

For each matrix element in P, the probability of generating
a 1 or O is the same, i.e. 0.5. All peers have the same upload
and download limits of p; = 2 and ¢; = 3 for each cycle.

Fig. 4 and Fig. 5 show the performance comparison of the
three representative algorithms with varying peer sizes and file
sizes respectively. In all cases, the average number of cycles
used by MaxFlow — Dynamically-Weighted is smaller than that
by MDNF, which is in turn smaller than that by RPF. Also,
MaxFlow — Dynamically-Weighted can achieve the same value
as the lower bound in all cases, which implies that it already
achieves the optimum for all cases tested in these graphs. For
varying peer sizes as shown in Fig. 4, the average number of
cycles used remains more or less constant with increasing peer
size. This illustrates the good scalability of P2P file sharing
approach; though more peers are requesting the same file,
they also contribute their outgoing bandwidth for sharing.
For varying file sizes as shown in Fig. 5, the performance
improvement of MaxFlow — Dynamically-Weighted over RPF
and MDNF actually increases with increasing file size (though
this cannot be easily seen due to the graph scale). In exist-
ing P2P file sharing networks, such as BT, the number of
simultaneously connected peers is kept at about 10~30, while
the number of file pieces is about 2000~4000 for a typical

CHAN et al.: PERFORMANCE COMPARISON OF SCHEDULING ALGORITHMS

file of 500MBytes~1GByte with file piece size of 256KBytes.
The performance improvement of MaxFlow — Dynamically-
Weighted over other algorithms becomes more significant with
this large number of file pieces.

B. Equal Probability of 1s and Os in P, p; =3, ¢; =7

We try different values of p; and g; to see if there is any
significant effect on the performance. We try p; = 3 and ¢; =
7, which is closer to the actual bandwidth allocation in ADSL.
The results are similar to Fig. 4 and 5, demonstrating that
variations in p; and ¢; will not have significant effects on the
performance.

C. Probability of 1s :0s=1:2,p; =2, ¢; =3

We try to have different probabilities for generating a 1 and
a 0 for each matrix element in P, with the ratio of 1 : 0 to
be 1: 2, meaning that the network has fewer file pieces at the
beginning, corresponding to an earlier stage of the file sharing
session. Due to space limitation, please refer to the original
graphs in [17].

When the network has fewer file pieces at the beginning,
the performance improvement of MaxFlow — Dynamically-
Weighted over RPF is greater than that when the network has
more available file pieces. In this setting, when the peer size
is 50 and the file size is 100, the percentage improvement of
MaxFlow — Dynamically-Weighted over RPF is 21.28%. For
the same problem size in Fig. 4, the percentage improvement
is only 13.56%.

VI. DISCUSSION AND FUTURE WORK

In this paper, we have investigated the simplified problem
of P2P file distribution scheduling with asymmetric bandwidth
allocation and synchronous scheduling assumptions. This sce-
nario may appear in some private networks of a large company
where some critical content has to be quickly replicated on a
large number of machines. All the peers are known beforehand
and they have similar connectivity and bandwidth capacities
and the distribution process stops once the content has been
fully replicated. Obviously, such static and synchronous sce-
narios are rare in real-world systems, but this preliminary
study provides insights on the peer selection and file piece
selection strategies, and evaluates their performance.

In our future research, we shall study the case of asyn-
chronous scheduling in heterogeneous networks, in which the
transmission time for sending a message between different
pairs of nodes is different. We shall also study the case when
the network is dynamic, in which the peers may come and go
at will and they may shift to communicate with different sets
of peers during the file distribution process.

VII. CONCLUSION

Peer-to-Peer file-sharing applications have become im-
mensely popular in the Internet, but previous research seldom
investigates the data distribution problem which should be
the core of any file sharing applications. We formally define
the collaborative file distribution problem with the possession
and transmission matrix formulation and deduce a theoretical

153

bound for the minimum distribution time required. We develop
several types of algorithms (RPF, MDNF and MaxFlow) for
solving the scheduling problem of deciding who to send
which file pieces, and to whom. In particular, our novel
dynamically weighted maximum-flow algorithm outperforms
other algorithms and can return the optimal solution for most
cases as shown by simulations. Therefore, we conclude that
the MaxFlow — Dynamically-Weighted algorithm is a promis-
ing algorithm for practical deployment in P2P file sharing
applications.

REFERENCES

[1] The official BitTorrent website, http://www.bittorrent.com/

[2] The official Gnutella website, http://www.gnutella.com/

[3] The official Kazaa website, http://www.kazaa.com/

[4] The official Napster website, http://www.napster.com/

[5] A. Parker, “The true picture of peer-to-peer file-sharing,” CacheLogic
Presentation, July 2004.

[6] P.Rodriguez and E. W. Biersack, “Dynamic parallel access to replicated
content in the Internet,”IEEE/ACM Trans. Networking, vol. 10, no. 4,
pp. 455-465, Aug. 2002.

[7] X. Yang and G. de Veciana, “Service capacity of peer to peer networks,”
in Proc. IEEE INFOCOM, Mar. 2004.

[8] B. Cohen, “Incentive build robustness in BitTorrent,” May 2003. [On-
line] Available: http://www.bittorrent.com/bittorrentecon.pdf

[9]1 E. W. Biersack, P. Rodriguez, and P. Felber, “Performance analysis of

peer-to-peer networks for file distribution,” in Proc. 5th Int'l| Workshop

on Quality of Future Internet Services, Sep. 2004, pp. 1-10.

P. Felber and E. W. Biersack, “Cooperative content distribution: Scala-

bility through self-organization,” Self-star Properties in Complex Infor-

mation Systems, O. Babaoglu et al., pp. 343-357. Berlin, Heidelberg:

Springer-Verlag, 2005

P. B. Bhat, C. S. Raghavendra, and V. K. Prasanna, “Efficient collective

communication in distributed heterogeneous systems,” in Proc. Int’l

Conf. on Distributed Computing Systems, June 1999, pp. 15-24.

S. Khuller and Y. A. Kim, “On broadcasting in heterogeneous networks,”

in Proc. ACM-SIAM Symposium on Discrete Algorithms, Jan. 2004

T. S. E. Ng, Y. H. Chu, S. G. Rao, K. Sripanidkulchai, and H. Zhang,

“Measurement-based optimization techniques for bandwidth-demanding

peer-to-peer systems,” in Proc. IEEE INFOCOM, Apr. 2003.

D. Qiu and R. Srikant, “Modeling and performance analysis of

BitTorrent-like peer-to-peer networks,” in Proc. ACM SIGCOMM, Aug.

2004.

J. S. K. Chan, V. O. K. Li, and K. S. Lui, “Scheduling algorithms

for peer-to-peer collaborative file distribution,” in Proc. Int’l Conf. on

Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), Dec. 2005.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed. Cambridge, MA: MIT Press, 2001

J. S. K. Chan, V. O. K. Li, and K. S. Lui, “Performance comparison

of scheduling algorithms for peer-to-peer collaborative file distribution,”

Technical Report TR-2006-001, Department of Electrical and Electronic

Engineering, University of Hong Kong, July 2006.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Jonathan S. K. Chan received the BEng degree
(first class honour) in computer engineering from
the University of Hong Kong (HKU), Pokfulam,
Hong Kong in 2004. He is now working towards the
MPhil degree in electrical and electronic engineering
at HKU.

His research interests include peer-to-peer net-
working, wireless and mobile computing, internet
protocols and applications.

154

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 1, JANUARY 2007

Victor O. K. Li received SB, SM, EE and ScD de-
grees in electrical engineering and computer science
from the Massachusetts Institute of Technology,
Cambridge, Massachusetts, in 1977, 1979, 1980, and
1981, respectively. He was elected an IEEE Fellow
in 1992. He is also a Fellow of the HKIE and the
IAE.

He joined the University of Southern California
(USC), Los Angeles, CA, USA in February 1981,
and became Professor of Electrical Engineering and
Director of the USC Communication Sciences Insti-

tute. Since September 1997 he has been with the University of Hong Kong,
where he is Chair Professor of Information Engineering at the Department of
Electrical and Electronic Engineering. He has also been appointed Changjiang
Chair Professor at Tsinghua University, Beijing, China. His research interests
include all-optical networks, wireless networks, Internet technologies and

applications.

Prof. Li has received numerous awards, including the UK Royal Academy

of Engineering Senior Visiting Fellowship in Communications, the Croucher
Foundation Senior Research Fellowship, and the Bronze Bauhinia Star,
Government of the Hong Kong Special Administrative Region, China.

King-Shan Lui received the BEng (first class honor)
and MPhil degrees in computer science from the
Hong Kong University of Science and Technology,
Hong Kong. She then received her PhD degree, also
in computer science, from the University of Illinois
at Urbana-Champaign in 2002.

She joined the Electrical and Electronic Engineer-
ing Department at the University of Hong Kong,
Pokfulam, Hong Kong as an assistant professor in
August 2002. Her research interests include network
quality of service issues, topology aggregation, net-
work protocol design and routing algorithm design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.50000
 0.50000
 0.50000
 0.50000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.12500
 0.12500
 0.12500
 0.12500
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF004300610064006d007500730020004d00650064006900610057006f0072006b0073002000730065007400740069006e00670073002000760065007200730069006f006e00200043004d0057005f0041006300720036005f00560032002e002000200041006c006c002000730065007400740069006e0067007300200070006f00730074006500640020006f006e0020007700770077002e006300610064006d00750073006d00650064006900610077006f0072006b0073002e0063006f006d002e00200020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 783.000]
>> setpagedevice

