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Performance evaluation of a feature-preserving
filtering algorithm for removing additive
random noise in digital images

Nelson H. C. Yung
Andrew H. S. Lai, MEMBER SPIE
The University of Hong Kong
Department of Electrical

and Electronic Engineering
Pokfulam Road
Hong Kong
E-mail: nyung@hkueee.hku.hk

Abstract. We evaluate the performance of a feature-preserving filtering
algorithm over a range of images corrupted by typical additive random
noise against three common spatial filter algorithms: median, sigma and
averaging. The concept of the new algorithm is based on a corrupted-
pixel identification methodology over a variable subimage size. Rather
than processing every pixel indiscriminately in a digital image, this
corrupted-pixel identification algorithm interrogates the image in
variable-sized subimage regions to determine which are the corrupted
pixels and which are not. As a result, only the corrupted pixels are being
filtered, whereas the uncorrupted pixels are untouched. Extensive evalu-
ation of the algorithm over a large number of noisy images shows that
the corrupted-pixel identification algorithm exhibits three major charac-
teristics. First, its ability in removing additive random noise is better vi-
sually (subjective) and has the smallest mean-square errors (objective)
in all cases compared with the median filter, averaging filter and sigma
filter. Second, the effect of smoothing introduced by the new filter is
minimal. In other words, most edge and line sharpness is preserved.
Third, the corrupted-pixel identification algorithm is consistently faster
than the median and sigma filters in all our test cases. © 1996 Society
of Photo-Optical Instrumentation Engineers.

Subject terms: noise removal; feature preserving filtering; corrupted-pixel identi-
fication; impulse noise; Gaussian white noise; mean-square error.
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1 Introduction

1.1 Additive Random Noise Removal

Practical digital images are often degraded in some man
to some extent that requires algorithmic steps to reduce
eliminate the degradation effect. The objective of removin
this degradation effects is to determine the output ima
f̂ (x,y) such that it resembles the input imagef (x,y) as
closely as possible.1,2 To effectively achieve this objective,
image restoration algorithms must be appropriately chos
to handle the type of degradation introduced, which cou
be due to the input channels, transmission medium, sen
and/or digitizer.3

In general, image restoration algorithms are mathema
cal and complex in terms of realization. Under this ca
egory, there is a subset of algorithms that are simple a
heuristic, and has been widely employed to perform deblu
ring and noise removal in both the spatial and frequen
domains. Most of these algorithms are designed to filter t
more popular and practical types of signal-independe
noise, e.g., Gaussian white noise, impulse noise, bu
channel errors and noise with a geometric structure.4 As the
noise content in a digital image can be generally conside
as spatially uncorrelated, these algorithms have be
widely used in many applications.
Opt. Eng. 35(7) 1871–1885 (July 1996) 0091-3286/96/$6.00
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Mathematically, an image degraded by such additive
random noise can be represented by the following equation:

g~x,y!5 f ~x,y!1h~x,y!, ~1!

whereg(x,y) is a degraded image consisting of the sum-
mation of f (x,y), the input image and an additive noise
term h(x,y). From equation~1!, the process of noise re-
moval may be interpreted as giveng(x,y) and a priori
knowledge of the statistical nature ofh(x,y), an approxi-
mation, f̂ (x,y) of the input image can be determined by the
filter transformation as given by the following equation

f̂ ~x,y!5T@g~x,y!#. ~2!

If f (x,y) is also known, the difference betweenf (x,y) and
f̂ (x,y) may be optimized in terms of minimum mean-
square error~MSE! as given by equation~3! for an image
size ofM3M :

MSE5
1

M2 (
x50

M21

(
y50

M21

@ f̂ ~x,y!2 f ~x,y!#2. ~3!

An ideal noise removal filter would of course remove the
additive noise distributions exactly, restoring the original
image from the noisy image completely. In reality, no mat-
1871© 1996 Society of Photo-Optical Instrumentation Engineers



Yung and Lai: Performance evaluation of a feature-preserving filtering algorithm . . .
ter how well a noise removal filter is designed, the restor
image always exhibits a certain degree of deviation in
pixel values from the original image,f (x,y). Excessive de-
viation often renders the restored image useless. Theref
the problem of practical image restoration in the case
additive random noise is reduced to minimizing a chos
error function such that the restored image resembles
closely as possible to the original image objectively an
subjectively.

Over the years, many filtering algorithms have been d
veloped in both the spatial and frequency domains main
for removing spikelike and/or Gaussian white noise dist
butions. Typical examples in the spatial domain are t
neighborhood averaging filter, median filter, maximum fi
ter, minimum filter, sigma filter and box filter. The detail
of some of three commonly used spatial filters are pr
sented in Section 2.

1.2 Equality versus Discrimination

In summary, the filter algorithms discussed in Section 2
share one thing in common, which is every single pixel
the image is subjected to the same filtering process dis
garding the nature of the pixels. This philosophy of ‘‘pro
cessing without discrimination’’ is commonly employed in
spatial filtering and other enhancement operations and
been proven effective in removing additive random noi
but is also capable of introducing a smoothing or blurrin
effect to the restored image. The reason is that these al
rithms do not consider which high spatial frequency com
ponent is noise and which is not. All pixels are considere
equally and treated in exactly the same way. This effect
not entirely undesirable if fine details in the image are to
removed before feature extraction and segmentation,
small gaps in lines or curves are to be filled. However, su
distortion may be unacceptable as it can reduce the sha
ness of lines, edges and boundaries. Furthermore, ind
criminately processing the whole image wastes a significa
amount of computing resources and may become critica
real-time applications. Obviously, if the corrupted pixe
can be identified and only this selected subset of pixels
processed, then there would be at least two advantag
image features will not be subjected to filtering and consi
erable saving in computation would be expected given t
algorithmic overhead for identifying the selected subset
smaller than processing all the other uncorrupted pixe
Based on a similar argument, a generalized mean filter
gorithm was developed for removing impulse noise usin
the concepts of thresholding and complementation.5 This
particular algorithm was shown to perform at least as s
isfactorily as median filters and yielded better results
some cases. However, due to the nature of the algorith
which interrogates every single pixel in the image, its com
puting overhead required for identifying pixel types wa
high, and its overall delay is expected to be longer th
median filter.

In this paper, we present the concept and algorithm
details of a feature preserving filtering algorithm focuse
on how it selects a subset of pixels for filtering, which i
conceptually similar to the algorithm mentioned.5 The ma-
jor difference between the two approaches is that our alg
rithm is based on a corrupted-pixel identification~CPI!
methodology over a variable subimage size instead of ev
1872 Optical Engineering, Vol. 35 No. 7, July 1996
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pixel. This CPI algorithm interrogates the image in
variable-sized subimages to determine which are the cor-
rupted pixels and which are not. As a result, only the cor-
rupted pixels are being filtered, whereas the uncorrupted
pixels are untouched. The principle of the CPI algorithm
evolves from three observations.

• First, noise effect is best considered at a subimage
level.

• Second, each subimage region should be governed by
a set of criteria applicable to this subimage only for
differentiating the noise corrupted pixels and uncor-
rupted pixels.

• Third, the subimage size should not be fixed.

After extensive performance evaluation over more than one
hundred images, it was found that the CPI algorithm exhib-
its four major characteristics. First, its ability in removing
additive random noise is better visually~subjective! and has
the smallest MSEs~objective! in all cases compared with
the median, averaging and sigma filters. Second, the effect
of smoothing introduced by the CPI filter is minimal. In
other words, almost all edge and line sharpness is pre-
served. Third, the CPI algorithm is consistently faster in all
cases. In theory, there is no speed advantage in the worst
case comparison between the CPI filter and the median fil-
ter. In practice, the CPI algorithm is around 1.6 times faster
than the median and sigma filters. Furthermore, the CPI
algorithm can be applied iteratively to remove noise residu-
als, whereas other noise filters would end up with severe
edge/line degradation as a result of iterative application.

1.3 Organization of This Paper

This paper is organized in the following manner: Section 2
gives details of three of the common spatial filters. Section
3 overviews the concept and philosophy of the algorithm.
Section 4 depicts the assumptions, algorithmic steps and
realization of the CPI algorithm. Section 5 presents the per-
formance evaluation of the CPI algorithm in terms of re-
moving impulse noise and Gaussian white noise from
lightly to heavily degraded images. Comparison is made
with the average filter, the median filter and the sigma filter.
The effect of varying the two major parameters—maximum
intensity spread and minimum subimage size—are investi-
gated. The computing resource requirement of the CPI al-
gorithm is also studied and the effect of iteratively apply
the CPI algorithm is determined. Section 6 concludes this
paper by commenting on the performance figures and out-
lining some future research directions for the CPI algo-
rithm.

2 Some Common Spatial Filter Algorithms

2.1 Median Filter

Median filter has the reputation of being a successful and
effective technique for removing spikelike components in a
noisy image.6–8 Apart from being able to remove impulse
noise effectively, this nonlinear filter algorithm has a
known advantage of preserving most of the edge. In fact,
although noise suppression is mostly achieved, a degree of
signal distortion is still apparent.9 This manifests itself as a
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small degree of edge blurring in the restored image. As
blurring effect is rather small, it is often tolerated.

There are many forms of median filters.8,9 In general, a
2-D 2N1132N11 median filter is defined as

f̂ ~x,y!5median $g~x1 i ,y1 j !u i52N,...,21,0,1,...,N,

j52N,...,21,0,1,...,N%, ~4!

where f̂ (x,y) is the restored pixel at (x,y), which is de-
fined as the median of the pixel values enclosed in a 2
window of size 2N1132N11 centred atg(x,y). The re-
stored image is obtained by applying Eq.~4! to all image
pixels.

2.2 Averaging Filter

The principle of an averaging filter is that the gray level
a pixel in the restored image is the average of the pi
values of its neighbors within a defined window size in th
degraded image. This algorithm assumes that noise pi
are uncorrelated with the original image and have zero
erage value. Equation~5! defines the averaging filter algo
rithm for a neighborhood size of 2N1132N11

f̂ ~x,y!5
1

~2N11!2 (
j52N

N

(
i52N

N

g~x1 i ,y1 j !, ~5!

and it follows that

E@ f̂ ~x,y!#5 f ~x,y! and s
f̂ ~x,y!

2
5

1

~2N11!2
sh~x,y!
2 , ~6!

wheres
f̂ (x,y)

2
is the variance off̂ (x,y), andsh(x,y)

2 is the
variance ofh(x,y). As N increases, the variability of the
pixel values at each location (x,y) decreases. In practice,N
is taken to be 1, 2 or 3.

2.3 Sigma Filter

Based on an averaging concept, the principle of sigma
tering is to average pixels having values fall within th
two-sigma probability, which is defined as the probabili
of a random variable within a range of four times the sta
dard deviations centred at its mean.4 This probability is
0.955 in the 1-D Gaussian distribution implying that 95.5
of random samples fall within the range. For additiv
Gaussian white noise removal, any pixel value that fa
outside the two-sigma range can be assumed to come f
a different population and not considered when calculat
the average. Therefore, the pixel value at (x,y) of the re-
stored imagef̂ (x,y) is the average value calculated from
the neighborhood pixel values that are within the tw
sigma range.

The characteristic of this algorithm is that most of th
high spatial frequency components are considered to co
from a different distribution, and therefore not included
the calculation. The major drawback of this approach is t
the algorithm is unable to remove very sharp noise clust
spread over 1 or 2 pixels. This problem can be resolved
choosing the neighborhood average instead of the tw
sigma average if the total number of pixels (Q) within the
intensity range is less than a prespecified valueK. The
the
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result is of course dependent on the selection ofK. Math-
ematically, a 2-D 2N1132N11 sigma filter is defined by
the following equation

f̂ ~x,y!5
1

Q (
j52N

N

(
i52N

N

g~x1 i , y1 j !w~x1 i , y1 j !, ~7!

where

w~x1 i , y1 j !

5H 1, if g~x,y!22sh~x,y!<g~x1 i , y1 j !
<g~x,y!12sh~x,y!

0, otherwise
,

Q5H ~2N11!2, if ( w~x1 i ,y1 j !,K

( w~x1 i , y1 j !, otherwise
.

In practice, ifsh(x,y) is not known, then it will be estimated
by considering a smooth region in the image or a sub-image
window of 2N1132N11. If this is the case, the sigma
calculated will be biased as thef (x,y) distribution will be
included in the calculation. Because of this, the twosh(x,y)
condition may not be applicable, instead, a onesh(x,y) or
asymmetric condition may be more appropriate.

3 Overview of the Feature Preserving Filtering
Algorithm 10,11

The motivation of this research is based on the observations
mentioned in the Section 1.2 and two further hypotheses.
Our first hypothesis is that if we can identify the corrupted
pixels, then we no longer need to process every pixel in the
image. By not processing the uncorrupted pixels, useful
information will be preserved. The second hypothesis is
that if the corrupted pixels are in minority and the
algorithmic/computing overhead needed to determine the
a priori knowledge of the pixel nature is not more than the
processing time required for filtering the uncorrupted pix-
els, then we are likely to have a reduction in computing
delay.

Based on these two hypotheses, a number of strategies
were studied. Since the noise distributions we are aiming to
remove are likely to be uncorrelated with the original im-
age, the simplest method for identifying a corrupted pixel is
perhaps to threshold an image into a binary image by
choosing an appropriate global fixed threshold value.
Broadly, pixels that are white~black! are classified as cor-
rupted and pixels of the other value are classified uncor-
rupted. Of course, this method assumes the noise distribu-
tion is mostly at one end of the gray level spectrum and the
original image distribution is mostly at the other end of the
spectrum, and there is a clear distinction between the two.
In reality, noisy images seldom behave like this. In addi-
tion, if salt-and-pepper noise is considered instead of a one-
sided spectrum, global thresholding can only remove at
best half of the noise content.

After careful consideration of the preceding argument,
our algorithm is formulated broadly as a two stage process
involving a CPI stage followed by a filtering stage. Figure 1
1873Optical Engineering, Vol. 35 No. 7, July 1996
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depicts the conceptual diagram of the CPI algorithm. At i
first stage, pixels ing(x,y) would be interrogated and clas-
sified into two classes: ‘‘corrupted’’ and ‘‘uncorrupted.’’
The interrogation and classification are conducted o
groups of pixels instead of single pixel as it will save valu
able computing resources. The second stage comprises
filter that processes the pixels that are classified corrupte
At the conclusion of the second stage,f̂ (x,y)5g(x,y) for
uncorrupted pixels andf̂ (x,y)5T[g(x,y)] for corrupted
pixels.

Clearly, the performance of the algorithm relies on how
the pixel identification is performed, and how the corrupte
pixels are filtered. In the former, the identification proces
is independent of the filter operator used, and incurs a co
stant computing overhead. In the latter, the computin
overhead is proportional to the number of corrupted pixe
identified and the requirement of the type of filter operato
used.

4 Identification of Pixel Types

Assume that the corrupted pixels are in minority, let u
define the following terms:

MIS5maximum intensity spread, the maximum al
lowable intensity spread within a subimage
region

Si(m,n)5subimagei of sizem3n, where bothm and
n are integers greater than 1

I i(m,n)5intensity spread withinSi(m,n)
S(m0 ,n0)5subimage of minimum allowable subimage

size m03n0 ~This value should not be
smaller than the mask size of the filter!

Mi(m,n)5mean intensity ofSi(m,n).

The two parameters MIS andS(m0 ,n0) are chosen ini-
tially, and for a subimageSi(m,n) with origin at
(xi ,yi), I i(m,n) is given by

I i~m,n!5 max
x50
y50

y5n21

x5m21
@g~x1xi , y1yi !#

2 min
x50
y50

y5n21

x5m21
@g~x1xi ,y1yi !#. ~8!

If I i(m,n) is greater than MIS andSi(m,n) is greater than
S(m0 ,n0) then divideSi(m,n) into two equal but smaller
subimages using the following criterion: ifm>n, then
Si11(m/2,n) elseSi11(m,n/2).

Equation~8! determines the intensity spread ofSi(m,n)
to consider whether a further subdivision is necessary. T
argument is that ifI i(m,n) is larger than a chosen MIS,
such large variation in pixel values implies that the subim

Fig. 1 Conceptual diagram of the CPI algorithm.
1874 Optical Engineering, Vol. 35 No. 7, July 1996
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age consists of major features from bothh(x,y) and
f (x,y). As it is, it will not enable a correct decision of
which are the corrupted pixels to be made. On the other
hand, if I i(m,n) is smaller than or equal to MIS, then the
possibility is that the subimage consists of major features of
one distribution and similar features from the other. By
having a dominant distribution, a decision can be made
using the minority rule with regard to which pixels are
corrupted and which pixels are not. The lower bound is set
at S(m0 ,n0) such that no further subdivision to the pixel
level is allowed. The size ofS(m0 ,n0) corresponds to the
filter size in the next processing stage simply because of the
nature of the filtering operation.

From the preceding argument, ifI i(m,n) is either less
than MIS orSi(m,n) is equal toS(m0 ,n0) then the algo-
rithm proceeds to search for the corrupted pixels. This is
achieved by determining the mean intensityMi(m,n) of
Si(m,n) by equation~9!, the thresholdḡ(x1xi ,y1yi) of
Si(m,n) by equation~10! and the corrupted pixels by equa-
tion ~11!.

Mi~m,n!5 1
2 $ max

x50
y50

y5n21

x5m21
@g~x1xi , y1yi !#

1 min
x50
y50

y5n21

x5m21
@g~x1xi , y1yi !#%, ~9!

ḡ~x1xi , y1yi !

5H 1 g~x1xi , y1yi !.Mi~m,n!

0 g~x1xi , y1yi !<Mi~m,n!

for x50,...,m21 and y50,...,n21, ~10!

Corrupted pixels

55
g~x1xi , y1yi ! where ḡ~x1xi , y1yi !50

when (
y50

n21

(
x50

m21

ḡ~x1xi , y1yi !>
mn

2

g~x1xi , y1yi ! where ḡ~x1xi , y1yi !51

when (
y50

n21

(
x50

m21

ḡ~x1xi , y1yi !,
mn

2
.

~11!

The thresholding of the subimage region by equations~9!
and ~10! is a standard technique12 except that equation~9!
is not the true mean of the subimage. For convenience, the
maximum and minimum values that have been calculated
in equation~8! are being used instead. Equation~11! aims
to identify the corrupted pixels that could be black or white
determined by which type of pixel is the minority in the
subimage. For most common filters, this assumption ap-
plies. However, we have also evaluated the algorithm with
images that are so heavily corrupted that the noise pixels
are no longer in minority. The CPI algorithm performed
reasonably well even under this condition, except for some
subimage region where noise pixel concentration was high,
unwanted ‘‘bright’’ clusters appeared to remain in the re-
stored image. Note that under this extreme condition, all
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Fig. 2 Signal flow graph of the CPI algorithm.
o

e

the other filters concerned failed to remove such ‘‘bright’’
noise clusters, and the severity of these noise clusters var
from algorithm to algorithm. The signal flow of the CPI
algorithm is depicted in Figure 2.

In this section, two examples are given in Figures 3 an
4 to illustrate the capability of the algorithm. Figure 3 de-
picts an image lightly degraded by impulse noise@Figure
3~b!# and Gaussian white noise@Figure 3~c!#, and the re-
sults of filtering these noisy images by the CPI algorithm
@Figures 3~d! and 3~e!#. As the degradation is not severe,
the restored images resemble the original closely. Apa
from the fact that most noise pixels are removed, the loss
spatial details such as blurring in the images is minima
However, loss of contrast is evident when comparing th
restored images with the original.

Figure 4 depicts an image heavily degraded by impuls
noise@Figure 4~b!# and Gaussian white noise@Figure 4~c!#,
and the results of filtering these noisy images by the CP
algorithm. This example demonstrates that when the SN
is reduced, the CPI algorithm performs more or less a
expected. The majority of the noise components are r
moved in the impulse case@Figure 4~d!#, and the restored
image closely resembles the original. In the case of Gaus
ian white noise@Figure 4~e!#, there are noise components
ies

d

rt
f
l.
e

e

I
R
s
-

s-

still remaining in the restored image especially in the
heavily cluttered regions. In spite of this, the restored im-
age is of good visual quality, clearly showing all the im-
portant features without much blurring.

5 Performance Evaluation

The evaluation of algorithmic performance discussed in
this section is based on measuring the MSE between the
restored image,f̂ (x,y) and the original image,f (x,y). All
the images evaluated are the image of a ‘‘Mickey mouse’’
key-ring having 256 gray levels ranged from 0~black! to
255 ~white!; and a spatial dimension of 205 by 441. The
characteristics of this image are that the key-ring itself has
sharp lines and edges, and well-defined regions against a
relatively smooth background. In essence, the evaluation is
focused on the aspects of

• filtering images that are degraded by impulse noise
and Gaussian white noise

• smoothing effect of the four filter algorithms

• varying MIS, the maximum intensity spread and
S(m0 ,n0), the minimum subimage size
1875Optical Engineering, Vol. 35 No. 7, July 1996
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1876 Optic
Fig. 3 Results using the CPI algorithm: (a) original image, (b) degraded by impulse noise (50 dB), (c)
degraded by Gaussian white noise (50 dB), (d) image (b) restored by CPI, and (e) image (c) restored
by CPI.
-

t

t

• theoretical and measured computational resource
quirement

• and applying the CPI algorithm iteratively to a noisy
image.

Comparisons are made between the CPI algorithm, medi
average and sigma filters. A window size of 535 is used in
all cases, and a 535 median filter is used as the filter core
of the CPI algorithm. For the CPI algorithm, an MIS532 is
used throughout. The reason for choosing these values w
be explained in Section 5.3.

5.1 Images Degraded by Impulse Noise
and Gaussian White Noise

5.1.1 Impulse noise

Table 1 depicts the MSEs of the impulse noise corrupte
images restored by the various filter algorithms with respe
al Engineering, Vol. 35 No. 7, July 1996
re-

an,

ill

d
ct

to the original image at different SNRs. These data are
plotted in Figure 5 with MSE versus SNR. As can be seen,
the range of SNR under investigation represents a reason
able cross-section from lightly degraded to heavily de-
graded cases. The corresponding MSE ofg(x,y) calculated
for this range are also given. Broadly, all the filtering algo-
rithms fulfill the goal of removing noise to some extent at
varying degrees.

When comparing the MSE of the four filter algorithms, a
number of observations can be made. First, all the error
functions are monotonic increasing with decreasing SNR.
Second, the averaging filter consistently scores the larges
MSE throughout the SNR range. Third, the new CPI algo-
rithm consistently scores the lowest MSE throughout the
SNR range. Fourth, the median and sigma filters perform
more or less the same at SNR above 10 dB, which is abou
twice the MSE of the CPI algorithm. Fifth, when the SNR
Fig. 4 Results using the CPI algorithm: (a) original image, (b) image degraded by impulse noise (0
dB), (c) image degraded by Gaussian white noise (0 dB), (d) image (b) restored by CPI, and (e) image
(c) restored by CPI.
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drops below 10 dB, the difference in MSE performan
between the median and sigma algorithms become m
distinct. The MSE of the median filter increases at a r
faster than the sigma filter. This result is interesting as
median filter is designed to filter impulse noise, whereas
sigma filter is designed to remove Gaussian noise, but
MSE results indicate otherwise.

Figure 6 depicts the noisy image at SNR equal to 50
and the restored images for visual inspection. In this ca
the noisy image is corrupted by sparsely populated
pulses. The fine details of the original are still visually ev
dent. In terms of the restored images, the averaged imag
slightly blurred but can still be considered as acceptable
most of the lines and edges are identifiable. The other th
images@Figures 6~c! to 6~e!# are all of good visual quality,
in which edge and line sharpness have been preserved
blurring is minimal with the exception of perhaps the ima
restored by the CPI algorithm. It is slightly sharper than t
other two.

On the other hand, Figure 7 illustrates the case where
original is heavily corrupted~at SNR5250 dB!. The noisy

Table 1 MSE results of ‘‘Mickey’’ image degraded by impulse
noise.

dB g(x,y) Averaging Median Sigma CPI

50 791.30 457.05 302.22 305.32 138.34

40 1204.37 488.05 311.16 311.59 136.16

30 1783.16 529.86 322.29 322.86 136.41

20 2485.87 588.12 342.26 334.19 134.11

10 3329.35 673.27 365.99 351.52 144.35

0 4216.14 795.42 436.90 391.44 174.02

210 4915.31 900.92 496.96 427.67 198.33

220 5504.86 997.64 613.90 508.95 261.88

230 5829.13 1053.96 722.63 582.75 334.60

240 6119.74 1119.02 879.55 688.78 434.28

250 6255.05 1145.52 939.31 727.98 470.65
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image shown in Figure 7~a! is so badly corrupted that the
line and edge sharpness in the original are partially lost and
the shape of the key-ring for example, is barely identifiable
with most of the details are no longer visually detectable.
Figures 7~b! to 7~e! present the restored images by the four
filter algorithms concerned.

In the case of the averaged image, the restored image is
severely distorted@Figure 7~b!#. Although most of the noise
components have been removed, for instance the top left-
hand region is reasonably smooth after filtering, the edge
and line sharpness is reduced at the same time to such an
extent that edges and lines in the bottom half of the image
are almost indistinguishable from its background. This re-
sult agrees with the high MSE of averaging as given in
Table 1 and Figure 5.

In the case of the image restored by the median filter
@Figure 7~c!#, the restored image is almost acceptable ex-
cept that a large number of noise clusters remains in the
image. These noise clusters correspond spatially to the high
concentration of noise pixels in the noisy image. Such re-
sult can be explained as when the median filter calculates
the median pixel value of a 535 window, the resultant
median of the local window is a noise pixel. This could be
due to two reasons: first, unevenly high local concentration

Fig. 5 MSE results of ‘‘Mickey’’ image degraded by impulse noise.
Fig. 6 Lightly degraded ‘‘Mickey’’ image restored by different filters: (a) image degraded by impulse
noise at SNR550 dB, (b) restored by the averaging filter, (c) restored by the median filter, (d) restored
by the sigma filter, and (e) restored by the CPI filter.
1877Optical Engineering, Vol. 35 No. 7, July 1996
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1878 Opt
Fig. 7 Heavily degraded ‘‘Mickey’’ image restored by different filters: (a) image degraded by impulse
noise at SNR550 dB, (b) restored by the averaging filter, (c) restored by the median filter, (d) restored
by the sigma filter, and (e) restored by the CPI filter.
of noise pixels, and second, the overall noise pixel is
majority. Although the noise pixels are normally distrib
uted, it is more likely that the former is the case. The
noise clusters are also believed to be responsible for
high MSE shown in Table 1 and Figure 5.

For the image restored by the sigma filter@Figure 7~d!#,
the overall visual appearance is acceptable except th
number of noise clusters again remains in the image. Ho
ever, when this is compared with the median filter case
Figure 7~c!, the degree is not as severe. The ability of t
sigma filter to remove clustered noise components proba
accounts for the reason why the sigma filter has a low
MSE than the median filter. Apart from that, both the m
dian and sigma filters caused a small degree of edge/
distortion.

In the case of the CPI filter, an even smaller number
noise clusters remains. In addition, the edge/line distort
is the smallest, which can be detected visually on clo
comparison with the original in Figure 3~a!. This corre-
sponds to the fact that the CPI algorithm gives the small
MSE.

Table 2 MSE results of ‘‘Mickey’’ image degraded by Gaussian
noise.

dB g(x,y) Averaging Median Sigma CPI

50 695.18 488.31 302.39 302.43 142.92

40 1148.57 548.25 321.92 321.87 149.04

30 1655.70 619.55 338.45 329.56 156.12

20 2374.66 713.95 366.92 344.84 163.56

10 3180.66 854.10 454.08 399.13 216.67

0 3938.94 979.59 583.48 468.95 288.86

210 4680.28 1109.74 789.97 613.32 420.44

220 5152.10 1211.51 1107.57 796.08 628.67

230 5581.58 1314.06 1510.47 1003.42 923.63

240 5852.77 1370.45 1788.80 1159.46 1119.18

250 6062.83 1417.04 1989.91 1367.38 1237.19
ical Engineering, Vol. 35 No. 7, July 1996
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5.1.2 Gaussian white noise

Table 2 depicts the MSEs of the images corrupted by
Gaussian white noise and the images restored by the filter
algorithms concerned with respect to the original image at
an SNR range between 50 dB and250 dB, and these data
are plotted in Figure 8. As in Table 1, the corresponding
MSE of g(x,y) calculated for this range are also given. In
general, this set of data shows that all four filter algorithms
fulfill the goal of noise removal to some extent at varying
degrees.

When making detailed comparisons, a number of obser-
vations can be made. First, all the error functions are still
monotonic increasing with decreasing SNR. Second, the
CPI algorithm still has the lowest MSE among the four
algorithms. However, the difference in MSE between the
averaging filter, sigma filter and the CPI algorithm becomes
less obvious when the SNR is below230 dB. Third, both
the median and sigma filters have similar performance at
SNRs above 20 dB. Their difference begins to show below
this point and the gap widens as the SNR decreases. This
seems to agree with the expectation that the sigma filter is
more suited to remove Gaussian noise than the median fil-
ter. Fourth, the MSE of the median filter deteriorates rap-

Fig. 8 MSE results of ‘‘Mickey’’ image degraded by Gaussian white
noise.
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Fig. 9 Lightly degraded ‘‘Mickey’’ image restored by different filters: (a) image degraded by Gaussian
white noise at SNR550 dB, (b) restored by the averaging filter, (c) restored by the median filter, (d)
restored by the sigma filter, and (e) restored by the CPI filter.
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idly below220 dB and becomes worse than the averagin
filter below 230 dB. Figure 8 clearly identifies these
trends.

When comparing the two graphs given in Figures 5 an
8, note that the two graphs are very similar at an SNR rang
between 0 and 50 dB, with the Gaussian case having larg
MSE figures than the impulse case. As SNR falls below
dB, the MSE figures for the Gaussian case are a lot larg
than the impulse case.

For the purpose of subjective measurement, Figures
and 10 display the images restored from the lightly~50 dB!
and heavily~250 dB! corrupted noisy images. In Figure 9,
the restored images are all considered visually acceptab
On close inspection, the averaged image@Figure 9~b!#
looks more grainy than the other three restored image
@Figures 9~c! to 9~e!#, especially over the smooth regions.
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Edge and line distortion in the averaged image is also ev
dent, whereas the rest have minimal distortion and mo
details are preserved.

Figure 10 depicts the worst scenario among all our test
The original image is severely corrupted and none of th
restored images can be considered as acceptable. In
case of averaging@Figure 10~b!# the image quality is so
poor that edges and lines are completely distorted an
blurred, and the grainy effect is extensive. The quality o
the images restored by the median filter, the sigma filte
and the CPI algorithm are all rather poor as well. Of the
three algorithms, the number of noise clusters that remain
in the image is worst in the median case, which reflects th
high MSE given in Table 2 and Figure 8. Both the sigma
and CPI algorithms have a similar number of noise cluster
left in the restored images. A small difference perhaps i
Fig. 10 Heavily degraded ‘‘Mickey’’ image restored by different filters: (a) image degraded by Gauss-
ian white noise at SNR550 dB, (b) restored by the averaging filter, (c) restored by the median filter, (d)
restored by the sigma filter, and (e) restored by the CPI filter.
1879Optical Engineering, Vol. 35 No. 7, July 1996
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that the sigma filter introduces larger distortion on th
edges and lines than the CPI algorithm. The small diffe
ence in the MSEs seems to agree with this reasonably.

5.2 Smoothing Effect

This evaluation aims to identify how much distortion o
smoothing a filter algorithm will introduce when undertak
ing the noise filtering process. The image used for th
evaluation purpose is the original ‘‘Mickey mouse’’ key-
ring image without noise degradation. The absolute an
relative MSEs for the filter algorithms used are given i
Table 3 and the resultant images are depicted in Figure 1

From Table 3, we can observe that all the filter algo
rithms evaluated introduce a certain degree of smoothing
the original image. When the smoothing effect of each filte
algorithm is evaluated objectively, the new filter scores th
lowest MSE. This indicates the smoothing effect of the CP
algorithm is the least. The small difference between th
median and sigma filters ranks them equal in this cas
Their actual MSEs are twice that of the CPI algorithm a
given by the relative figures, whereas the MSE of the a
eraging filter is almost three times higher than the CPI a
gorithm.

Subjective evaluation of the smoothing effect seems
agree with the preceding results. From Figure 11, th
smoothing effect is rather obvious in the averaging cas
The edge and line sharpness is mostly degraded, but ot
areas appear to be smoother than before. However, try
to differentiate the smoothing effect caused by the oth
three algorithms is a slightly more difficult task. The
smoothing effect of the median and sigma filters is mino

Table 3 Mean-square errors of filtering the original ‘‘Mickey’’ image
by different filters.

Averaging Median Sigma CPI

406.62 291.45 293.49 144.03

1 0.71 0.72 0.35
1880 Optical Engineering, Vol. 35 No. 7, July 1996
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but detectable. Both filtered images show a small degree of
smoothing, but it is not severe. In the case of the CPI algo-
rithm, the visual difference between the original image and
the filtered image is minor. The difference in edge sharp-
ness can only be detected on close inspection. This is ap-
parent in features such as Mickey’s face and hands. Such a
result can be easily explained by the inherent nature of the
algorithm of which only corrupted pixels are processed,
and as such, a majority of the pixels are not filtered and
therefore major features preserved.

5.3 Varying S(m0 ,n0) and MIS

This evaluation aims to determine the effect of varying the
minimum subimage sizeS(m0 ,n0) and the MIS on the re-
stored image using the CPI algorithm. The image used is
the ‘‘Mickey mouse’’ key-ring image degraded by Gauss-
ian white noise at 0 dB SNR. The MSEs are tabulated in
Table 4 at variousS(m0 ,n0) and MIS.

From Table 4, a number of points can be observed. First,
MSE in general increases with increasing minimum subim-
age size. For example, atS(m0 ,n0)53, most MSEs are
around 300, whereas atS(m0 ,n0)550, all MSEs are close
to 500. Second, the variation of MIS indicates that it can be
optimized. Taking the case ofS(m0 ,n0)53, the minimum
is at MIS5192. The same applies in the other cases of
S(m0 ,n0). Third, when combining the two parameters, it is
noted that there are minima atS(m0 ,n0)53 and MIS5192
andS(m0 ,n0)55 and MIS54, 8, 16, 32, 64, 128 and 160.
As the difference between these minima is small, it can be
deduced that if these values ofS(m0 ,n0) and MIS are cho-
sen, the CPI algorithm would be optimum or near optimum
in the MSE sense. In our previous evaluation, we chose
S(m0 ,n0)55 and MIS532, which correspond to a near op-
timum MSE.

5.4 Computing Resource Evaluation

For a conventional spatial filter, the total number of com-
putations is proportional to the size of the image disregard-
ing the nature and degree of noise degradation. For an
M3M image, this can be written as
Fig. 11 Smoothing effect of different filters: (a) original image, (b) processed by the averaging filter, (c)
processed by the median filter, (d) processed by the sigma filter, and (e) processed by the CPI filter.
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Cfilter~M ,M !5M2$Cfilter@~2N11!,~2N11!#%, ~12!

whereCfilter(M ,M ) is the number of computations required
to completely process the M3M image and
Cfilter[(2N11),(2N11)] is the number of computations
required to filter a single pixel, assuming the window siz
is 2N1132N11. For the median filter,Cfilter[(2N11),
(2N11)] is the average number of comparisons require
using quick sort and is equal to (2N11)ln[(2N11)].
Therefore, equation~12! could be written for the median
case as

Cmedian~M ,M !5M2@~2N11!ln~2N11!#. ~13!

From Eqs.~12! and ~13!, it is obvious that the computing
time required by these filters is determined byM2 and a
function of ~2N11!, depending on which filtering algo-
rithm is selected.

In the case of the CPI algorithm, the number of compu
tations is determined by the SNR and the overall size of th
image. A lightly degraded image would have less nois
pixels overall, and hence less number of corrupted pixe
identified and processed. A heavily degraded image, on t
other hand, would have a larger number of corrupted pixe
for processing. In addition, it has been assumed that t
noise pixels are in minority. In the worst case, this numbe
can only be as large as 1/2M2.

However, the CPI algorithm has a computing overhea
in the identification of pixel types. If this computing time is
less than 1/2M2$Cfilter[(2N11),(2N11)]%, the algorithm
will have a computing advantage over the other commo
filter algorithms, otherwise, the performance gain will b
offset by the slower identification time.

In considering the CPI algorithm, there are at least tw
methods for calculatingI i(m,n), the intensity spread for
the i ’th subimage. The first is to calculate the correspond
ing I i(m,n) each time when a subimage is divided. If it is
smaller than MIS, no further subdivision is needed. How

Table 4 Effect of varying S(m0 ,n0) and MIS.

S(m0 ,n0) MIS MSE S(m0 ,n0) MIS MSE

3 32 314.70 10 2 399.09

3 64 312.87 10 16 399.09

3 128 299.15 10 32 399.09

3 192 287.38 10 64 399.09

3 254 481.01 10 128 399.11

5 2 306.86 10 192 399.70

5 4 288.85 10 254 485.51

5 8 288.85 20 32 463.12

5 16 288.85 20 64 463.12

5 32 288.86 20 128 463.12

5 64 288.87 20 192 463.12

5 128 288.45 20 254 487.81

5 160 291.72 50 32 485.57

5 192 301.62 50 64 485.57

5 224 325.63 50 128 485.57

5 254 482.16 50 192 485.57

50 254 493.78
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ever, calculatingI i(m,n) at this level involves the sorting
of mn pixels at an average of 2m ln(m)12 comparisons if
n.m. This could be as large asM ln~M /2!12 if the first
subdivision satisfies the preceding condition. The second
method is to divide the subimage untilSi(m,n) equals
S(m0 ,n0). This involves sorting~2N11!2 pixels at an av-
erage of~2N11!ln~2N11! comparisons per subimage, and
2k subimages at thek’th level of subdivision. Maximum
and minimum pixel values of larger subimages are deter-
mined by comparing the pixel maxima and minima of two
identical smaller subimages. These maxima and minima
can also be used for calculatingMi(m,n) at a later stage.

As the second method covers all the possibilities in the
manipulation of subimages, the following discussion is
based on this particular method. From the preceding argu-
ment, the number of iterations (k) is determined by the
inequality given in equation~14!. The number of compari-
sons (Ck) required to determine that is given by Eq.~15!.

M2

2k
<~2N11!2, ~14!

Ck52(
i51

k

2i52~2k1122!. ~15!

Using the boundary condition of equation~14!, the number
of comparisons (C2N11) required to determineI i(m,n) for
all the 2k regions is

C2N1152k@~2N11!ln~2N11!#. ~16!

To compute Eq.~11! we needmn additions for each sub-
imageSi(m,n) and a total ofM2 additions for the whole
image. Since comparisons are usually slower than addi-
tions, let us assume theseM2 additions can be completed
within the time taken to performM2 comparisons. There-
fore the total number of comparisons (Ct) required to cal-
culateI i(m,n),Mi(m,n), and identify the corrupted pixels
in the worst case is

Ct5Ck1C2N111M2

52~2k1122!12k@~2N11!ln~2N11!#1M2. ~17!

For the CPI algorithm to perform faster than the median
filter, we must haveCt<1/2M2@~2N11!ln~2N11!#, or

2~2k1122!12k@~2N11!ln~2N11!#1M2

< 1
2 M

2@~2N11!ln~2N11!#. ~18!

Equation~18! can be expressed as

f ~2N11!5M2$ 1
2 @~2N11!ln~2N11!#21%

22k11$ 1
2 @~2N11!ln~2N11!#12%14>0.

~19!

By differentiating f (2N11) with respect to~2N11!, we
have
1881Optical Engineering, Vol. 35 No. 7, July 1996
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d@ f ~2N11!#

d~2N11!
5
M2

2
@11 ln~2N11!#2

12 ln~2N11!

~2N11!2
,

~20!

which is always positive, implyingf (2N11) is monotonic
increasing for all 2N11>1. Considering equation~19! and
using the boundary condition ofM 252k(2N11)2, we can
rewrite the equation as

f ~2N11!5~M222k11!$ 1
2 @~2N11!ln~2N11!#21%

23.2k1114

52k~$ 1
2 @~2N11!ln~2N11!#21%@~2N11!2

22#26!14. ~21!

Note that Eq.~21! is always positive, as long as~2N11! is
larger than 3, implying the worst case computing requir
ment of the CPI algorithm in theory is always better tha
the median filter for~2N11!.3.

In our performance evaluation, the computing time fo
each SNR case and for each filtering algorithm is record
and an average is taken for each algorithm for comparis
These data are tabulated in Tables 5 and 6. The hardw
platform for this test is a 486 DX2/66 and the measureme
is in seconds. From Table 5, we can observe that, first,
computing requirement for the averaging, median a
sigma filters is independent of the SNR of the image. Se
ond, median and sigma filters have very similar perfo
mance. Third, the computing requirement for the CPI alg
rithm is not monotonic. There is a minimum at around 1
dB, at which the computing time is shortest. For the case
smaller SNR, this can be explained as the number of c
rupted pixels identified is more, therefore the time require
to identify and process them is longer. On the other hand
is also found that the number of corrupted pixels identifie
by the algorithm for the larger SNR cases increases w
increasing SNR beyond 10 dB. According to our measur
ment, there is a difference of around 6000 pixels betwe
50 dB ~29,705! and 10 dB~24,090!. This can be explained

Table 5 Computing speed of the four filter algorithms on Impulse
noise corrupted images.

dB Averaging Median Sigma CPI

50 6 27 27 17

40 7 27 27 15

30 6 27 28 15

20 6 28 27 15

10 6 28 27 14

0 6 28 28 15

210 7 28 27 15

220 7 28 27 15

230 7 27 27 16

240 7 27 27 17

250 6 28 27 17

Average 6.45 27.55 27.18 15.55

Relative 1 4.27 4.21 2.41
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as some of the uncorrupted pixels are being identified as
corrupted because of the condition for the decision is based
on smaller than or equal to the MIS value, as explained in
Section 4. This is undesirable in terms of noise identifica-
tion, but the results do not significantly vary the MSE or the
appearance of the image. Fourth, averaging is the fastest
among the four algorithms, with the CPI algorithm 2.41
times slower, and the median and sigma filters 4.27 and
4.21 times slower, respectively, in the case of impulse noise
removal. The results are almost identical for the Gaussian
white case. From these measured data, it can be deduced
that equation~21! is a reasonable representation of the ac-
tual computing requirement.

5.5 Iterative Application of the CPI Algorithm

In practice, conventional filter algorithms are seldom used
iteratively in processing a noisy image even when the result
of the restored image is far from satisfactory. This is not
unexpected as these filters remove noisy components as
well as distort the line and edge information contained in
the image. If these filter algorithms are applied to a noisy
image iteratively, the resultant distortion may become more
intolerable.

Because the CPI algorithm exhibits the desirable prop-
erty of feature preservation, it is likely that even if the
algorithm is applied iteratively to a noisy image, the result-
ant line and edge distortion will be kept to a minimum.
Therefore, it is the purpose of this section to study the
effect of applying the CPI and other filtering algorithms
iteratively and to identify the optimal number of iterations,
if one exists, with respect to noise removal and feature
preservation.

Table 7 depicts the MSE of iteratively processing the
‘‘Mickey’’ image degraded by Gaussian noise at 0 and
250 dB using the four algorithms, and these data are plot-
ted in Figures 12~a! and 12~b!. From Table 7 and Figure 12,
a number of points can be observed. First, at both moderate
~0 dB! and severe~250 dB! degradation, the application of
averaging filter iteratively to the image resulted in an in-
crease in MSE. This result shows that the averaging filter is
unable to remove noise components effectively, even if it is

Table 6 Computing speed of the four filter algorithms on Gaussian
white noise corrupted images.

dB Averaging Median Sigma CPI

50 6 27 28 17

40 6 26 28 17

30 7 27 27 17

20 6 28 27 16

10 6 27 27 16

0 7 28 27 16

210 7 27 27 17

220 7 28 27 17

230 6 28 27 18

240 6 28 27 17

250 7 28 27 17

Average 6.45 27.45 27.18 16.82
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applied again, and will introduce more distortion to the
image after each iteration.

Second, for the rest of the algorithms including the CPI
the MSEs decrease initially and increase after a number
iterations, in the case of moderate degradation. This min
mum is at the second iteration for all three algorithms, with
the CPI algorithm having the smallest MSE, followed by
the sigma filter and then the median filter. The MSE of th
sigma and median algorithms are very similar while the
MSE of the CPI algorithm is consistently substantially
smaller. This can be explained as when the filter algorithm
are only applied once, the effect of removing the nois
components dominates the effect of image distortion. O
the other hand, after the second iteration, the reverse is tru
The optimum is to apply the algorithms twice in this cir-
cumstance.

Third, in the case of severe degradation, the effect o
iteratively applying the three filter algorithms is more no-
ticeable as the MSEs are reduced almost by half in th
cases of the median and sigma algorithms, and three tim
in the case of the CPI algorithm after the second iteration
Further reduction in MSE can also be seen with media
filtering, whereas both the sigma and CPI algorithms ex
hibit a minimum at the third iteration. This can be ex-
plained as for the median filter, the effect of removing the
noise components and residuals dominates the effect of im
age distortion up to five iterations. It would not be unrea
sonable to expect a minimum MSE for the median filter a
a higher number of iterations. For the sigma and CPI algo
rithms, the reduction in MSE after the first iteration is more
substantial, and as a result, their respective minimums co
respond to the third iteration.

Figure 13 depicts the filtered images of an original im
age at SNR5250 dB for subjective evaluation. It is clear
that the averaged images are not acceptable visual
whereas in both the median and sigma cases, more no
residuals are removed as a result of iterative filtering. Un
fortunately, the line and edge distortion has also worsene
visually. For the CPI algorithm, the visual appearance o
the processed images is most acceptable with the lea
amount of noise residuals and distortion.

Table 7 MSE errors of iteratively processing the ‘‘Mickey’’ image
degraded by Gaussian noise at 0 dB and 250 dB using the three
filter algorithms and the CPI algorithm.

Iteration Averaging Median Sigma CPI

SNR50 dB

1 979.59 583.48 468.95 288.86

2 1021.11 513.74 448.61 236.76

3 1135.51 549.92 497.83 257.15

4 1233.61 585.21 539.14 279.56

5 1328.45 613.39 575.41 294.95

SNR5250 dB

1 1417.04 1989.91 1367.38 1237.19

2 1420.34 1154.84 707.07 405.06

3 1526.24 925.46 668.65 327.22

4 1631.73 848.39 677.76 331.10

5 1732.16 819.95 696.07 343.65
,
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In terms of computational requirement, the average, me-
dian and sigma filters require the same amount of compu-
tation in each iteration, therefore ifL is the number of
iterations performed, the total number of computations re-
quired is LCfilter(M ,M ), whereCfilter(M ,M ) is given by
Eq. ~12!. This is also true for the CPI algorithm, as ex-
plained in Section 5.4.

6 Conclusion

From the evaluation given in Section 5, the CPI algorithm
is the best performing filter algorithm among all those con-
sidered in this paper. In general, we can conclude that the
CPI algorithm is more capable of removing impulse noise
and Gaussian white noise than the averaging, median and
sigma algorithms. The CPI algorithm consistently scores
the lowest MSE among the group of algorithms concerned.
Subjective evaluation also shows that the CPI algorithm has
a better visual appearance than the others due to the fact
that noise pixels are more effectively removed, and most
image features are preserved. In terms of computing re-
source requirement, the computing speed of the CPI algo-
rithm is determined by the SNR rather than just the overall
image size. In theory, the total computing resource required
for identifying pixel types and filtering the corrupted pixels
is always less than that of median filter for~2N11!.3.

Fig. 12 MSE results of ‘‘Mickey’’ image filtered iteratively at SNRs
of (a) 0 dB and (b) 250 dB.
1883Optical Engineering, Vol. 35 No. 7, July 1996



Yung and Lai: Performance evaluation of a feature-preserving filtering algorithm . . .

1884 Optical Eng
Fig. 13 Iteratively processed heavily degraded image at SNR5250 dB (a) twice, (b) three times, and
(c) five times.
ineering, Vol. 35 No. 7, July 1996
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This is under the condition that the filtering core in the C
algorithm is also a median filter. Extensive evaluation
digital images at different SNR values shows that in t
worst case, the CPI algorithm is about 1.6 times faster t
the median filter. Although the averaging algorithm is t
fastest in all cases, its poor filtering accuracy exclude
from being useful practically. Furthermore, the CPI alg
rithm has a unique characteristic of being able to prese
edge and line sharpness while the others are unable t
so. This is due to the inherent selective property of the C
algorithm. As uncorrupted pixels are not processed at
the CPI algorithm gives the least distorted restored ima
in all our evaluation cases. Unfortunately, when the ima
is heavily corrupted, or no longer in minority, the CPI a
gorithm fails to produce good enough results. But it mu
be stressed that the same applies to all the other fil
evaluated here. However, if the restored image is be
filtered by the same algorithm iteratively, the image r
stored by the CPI algorithm through a number of iteratio
will be visually better than the restored images produced
the other filter algorithms. This is chiefly due to the fa
that the edge and line sharpness of the image is prese
by the CPI algorithm, whereas this is not so in other cas
In the moderately degraded case, the optimum numbe
iterations for the CPI algorithm is two, and in the heav
degraded case, the optimum number of iterations for
CPI algorithm is three. In other words, if computing r
source permits, an optimum number of iterations based
the CPI algorithm can be applied to a noisy image for t
best result.

Regarding future directions, research effort will be spe
on investigating the effect of varying the decision proce
described by Eqs.~9!, ~10! and ~11!, and employing a dif-
ferent decision function altogether. A detailed study of t
number of corrupted pixels identified and whether they c
respond to actual noise pixels has been conducted. The
fectiveness of the algorithm against other types of no
distributions will also be investigated. At present, the C
algorithm together with the other filter algorithms co
cerned are being implemented in a multiprocessing en
ronment, to study the ease of implementing such a selec
algorithm compared with the more traditional algorithms
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