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Upper bound limit analysis of slope stability using
rigid finite elements and nonlinear programming

Jian Chen, Jian-Hua Yin, and C.F. Lee

Abstract: In this paper, the development and application of a new upper bound limit method for two- and three-
dimensional (2D and 3D) slope stability problems is presented. Rigid finite elements are used to construct a kinemati-
cally admissible velocity field. Kinematically admissible velocity discontinuities are permitted to occur at all inter-
element boundaries. The proposed method formulates the slope stability problem as an optimization problem based on
the upper bound theorem. The objective function for determination of the minimum value of the factor of safety has a
number of unknowns that are subject to a set of linear and nonlinear equality constraints as well as linear inequality
constraints. The objective function and constrain equations are derived from an energy–work balance equation, the
Mohr–Coulomb failure (yield) criterion, an associated flow rule, and a number of boundary conditions. The objective
function with constraints leads to a standard nonlinear programming problem, which can be solved by a sequential
quadratic algorithm. A computer program has been developed for finding the factor of safety of a slope, which makes
the present method simple to implement. Four typical 2D and 3D slope stability problems are selected from the litera-
ture and are analysed using the present method. The results of the present limit analysis are compared with those
produced by other approaches reported in the literature.

Key words: limit analysis, upper bound, rigid finite element, nonlinear programming, sequential quadratic algorithm,
slope stability.

Résumé : Dans cet article, on présente le développement et l’application d’une nouvelle méthode de solution à la
limite supérieure de problèmes de stabilité des talus à deux ou trois dimensions (2D et 3D). Des éléments finis rigides
sont utilisés pour construire un champ de vélocités cinématiquement admissibles. On permet que des discontinuités de
vélocités cinématiquement admissibles se produisent à toutes les frontières entre les éléments. La méthode proposée
représente le problème de stabilité de talus comme un problème d’optimisation basé sur le théorème de limite supé-
rieure. La fonction objective pour déterminer la valeur minimale du coefficient de sécurité comprend un certain nombre
d’inconnus qui dépendent d’un ensemble de contraintes linéaires et non linéaires d’égalité de même que de contraintes
linéaires d’inégalités. La fonction objective et les équations de contraintes sont dérivées d’une équation de balance
d’énergie–travail, du critère de rupture (à la limite élastique) de Mohr–Coulomb, d’une loi associée d’écoulement, et
d’un certain nombre de conditions aux frontières. La fonction objective avec les contraintes conduisent à un problème
standard de progammation non linéaire qui peut être résolu par un algorithme quadratique séquentiel. On a développé
un programme d’ordinateur qui rend la présente méthode simple à mettre en application pour trouver le coefficient de
sécurité d’un talus. On a choisi dans la littérature et analysé avec la présente méthode quatre problèmes typiques de
stabilité de talus 2D et 3D. Les résultats de la présente analyse sont comparés avec ceux obtenus par d’autres appro-
ches tels que rapportés dans la littérature.

Mots clés : analyse limite, limite supérieure, élément fini rigide, programmation non linéaire, algorithme quadratique
séquentiel, stabilité des talus.

[Traduit par la Rédaction] Chen et al. 752

Introduction

Slope stability problems are commonly encountered on
geotechnical engineering projects. The assessment of slope

stability has received wide attention across geotechnical
communities because of its practical importance. Numerous
analysis methods have been proposed. In general, these
methods can be classified into the following three types.

(1) The limit equilibrium approach: The methods based
on this approach have gained wide acceptance in practice
because of their relative simplicity and the experiences accu-
mulated to date. Most of the methods are based on
discretization into either vertical slices (e.g., Bishop 1955;
Morgenstern and Price 1965; Janbu 1973) or inclined slices
(e.g., Sarma 1979; Hoek 1987). With the limit equilibrium
method, a failure surface is generally assumed, and the soil
mass above the failure surface is then divided into a number
of slices. Global static equilibrium conditions for various
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assumed failure surfaces are examined, and the critical slip
surface corresponding to the lowest factor of safety is
sought. While the limit equilibrium methods have been sub-
ject to continuous refinement, there is an inherent limitation
with these methods in that they are based on assumptions
made on the interslice forces to make the problem statically
determinate. The methods are hence not rigorous as a result
of the use of such assumptions, and it is difficult to assess
the accuracy of the solutions.

(2) Numerical solutions based on continuum mechanics:
With this approach, numerical solutions are obtained based
on continuum mechanics. Examples of such methods include
(a) the finite element method (e.g., Griffths and Lane 1999),
(b) the discontinuous deformation analysis (e.g.,
MacLaughlin et al. 2001), and (c) the rigid body–spring ele-
ment method (RBSM or RFEM) (Zhang et al. 2001). These
methods can be used to calculate deformations under load-
ing or the factor of safety by iteration. An appropriate con-
stitutive model for the soil mass in the slope is needed with
these methods. Using these methods, both the soil movement
and progressive failure can be modelled. This allows a better
understanding of the mechanisms of failure, especially for
the case of progress failure. However, the calculation of
the factor of safety needs an iterative or trial-and-error ap-
proach. The computing time for solving a stability problem
is much larger than that using the limit equilibrium methods.
The convergence of computation is another concern. There-
fore, these methods have not been widely used for general
slope stability analyses in practice.

(3) Limit analysis approach based on plasticity limit theo-
rems: Applications of plasticity limit theorems in soil me-
chanics were first reported in Drucker and Prager (1952) and
were further surveyed by Chen (1975). With this approach, a
limit analysis takes advantage of the lower and upper bound
theorems of classical plasticity to bracket the true solution
from a lower bound to an upper bound. These solutions are
rigorous in the sense that the stress field with a lower bound
solution is in equilibrium with the imposed loads at every
point in the soil mass, while the velocity field associated
with an upper bound solution is compatible with the im-
posed displacements. Yu et al. (1998) pointed out that an up-
per bound limit analysis solution might be regarded as a
special limit equilibrium solution but not vice versa.

In recent years, many efforts have been made in the appli-
cation of the plasticity limit theorems to limit analysis of
slope stability. Donald and Chen (1997) proposed an energy–
work balance approach (or the upper bound approach using
the associated flow rule). Wang et al. (2001) developed this
method to investigate the influence of a nonassociated flow
rule on the calculation of the factor of safety (FOS) of two-
dimensional (2D) soil slopes. Chen et al. (2001a, 2001b)
recently extended the upper bound method for three-
dimensional (3D) slope stability analysis. Sloan (1988,
1989), Sloan and Kleeman (1995), and Lyamin and Sloan
(2002) have made significant progress in developing new
methods using finite elements and linear programming (LP)
or nonlinear programming (NLP) for computing rigorous
lower and upper bounds for 2D and 3D stability (mainly
bearing capacity) problems. The numerical implementation
of the limit theorems is based on a finite element dis-
cretization of the rigid plastic continuum. This results in a

standard linear or nonlinear optimization problem with a
highly sparse set of constraints. Using these algorithms, Kim
et al. (1999) presented a formulation in terms of effective
stresses for performing lower and upper bound limit analysis
of soil slopes subjected to pore-water pressures under plain–
strain condition.

Recently, Zhang (1999) presented a lower bound limit
analysis in conjunction with the rigid finite element method
(RFEM) to assess the stability of slopes. The RFEM, which
was first proposed by Kawai (1978), has been modified by
other researchers (Zhang and Qian 1993; Qian and Zhang
1995; Zhang et al. 1997). The RFEM provides an effective
approach to the numerical simulation of the behaviour of
discontinuous media. Further studies and applications of the
RFEM are still being made, attracting the interest of many
researchers.

This paper presents a new upper bound formulation using
rigid finite elements and nonlinear programming and applies
the formulation to slope stability problems in two and three
dimensions (2D or 3D). Rigid finite elements are employed
to discretize the slope media. A velocity discontinuity may
occur at any edge or face that is shared by adjacent ele-
ments. To ensure that the computed velocity field is kine-
matically admissible, the unknowns are subject to linear and
nonlinear equality constraints as well as linear inequality
constraints that are generated by an energy–work balance
equation, the Mohr–Coulomb failure criterion, an associate
flow rule, and the boundary conditions. This leads to a stan-
dard nonlinear optimization problem. The objective function
of the problem is to find the minimum value of the factor of
safety using an optimization method. In this paper, the solu-
tion to this optimization problem is obtained by using a
sequential quadratic algorithm.

Numerical formulation of upper bound
theorem based on rigid finite elements

Rigid finite element discretization
The discretization of the soil media in a slope using the

rigid finite element (RFE) is similar to that in the case of the
conventional finite element (FE) method, except that the
RFEM assumes all elements are rigid. The slope is divided
into a proper number of rigid elements mutually connected
at the interfaces. In such a discrete model, displacements (or
velocities) of any point in a rigid element can be described
as a function of the translation and rotation of the element
centroid. The deformation energy of the system is stored
only in the interfaces of all elements. The displacement of
an interface, which is the embodiment of relative displace-
ment of adjacent rigid elements, shows a discontinuous fea-
ture. It should be pointed out that, despite the discontinuous
feature at the interfaces, the studied media can still be con-
sidered to be a continuum as a whole mass body.

In our numerical implementation of the upper bound theo-
rem for slope stability analysis, the soil mass is first
discretized into a number of simple rigid finite elements,
namely, triangular elements in a 2D case or tetrahedral ele-
ments in a 3D case. Kinematically admissible velocity dis-
continuities are permitted at all interfaces shared by adjacent
elements. If D is the dimensionality of a problem (where D
is equal to 2 for a 2D or 3 for a 3D case) then each element
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is associated with D(D + 1)/2 dimensional vector Vg of
velocity variables at its centroid, i.e., Vg = {vi}

T where i =
1,�,D(D + 1)/2, and T denotes transpose.

Lyamin and Sloan (2002) used velocities at the node
points to define the displacement of an element. Our ap-
proach of using the velocity at the centroid is simpler. With
this approach, the velocity vector V(x, y, z) at any point p(x,
y, z) within an element can be completely expressed in terms
of the Vg at the corresponding centroid of the element, as
given in eq. [1]

[1] V(x, y, z) = NVg

where N is the shape function. In the 2D case

[2] N =
− −
−













1 0

0 1

( )

( )

y y

x x
g

g

and in the 3D case

[3] N =
− − −

− − −
− − −

1 0 0 0

0 1 0 0

0 0 1

( ) ( )

( ) ( )

( ) (
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g g

g g

g g) 0






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




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


The global xyz coordinate system is shown in Fig. 1. For
analysis of displacement and forces on a rigid element, it is
more convenient to use a local reference coordinate system
of n–d–s axes on one planar face of the element. In Fig. 1,
the n-axis is along the outward normal of the face; the d-axis
is the dip direction (the steepest descent on the face); and the
s-axis is the strike direction (parallel to the projected inter-
section between the xy-plane and the face). The n–d–s axes
form a right-handed coordinate system.

Figure 2 shows two tetrahedron elements (1) and (2) with
global velocities V(1) and V(2), respectively, (magnitude
denoted as v(1) and v(2)) at point P in a 3D case. As shown in
Fig. 2, point P on the interface of element (1) moves at ve-
locity Vlocal

(1) , and the same point P on the interface of element
(2) moves at velocity Vlocal

(2) . The two velocities Vlocal
(1) and

Vlocal
(2) take the same local coordinate axes at the interface on

element (1) as the reference system. The relative velocity
jump can be expressed as ∆V V Vlocal

(2 1)
local
(2)

local
(1)− = − . Using the

local n–d–s coordinate system, components of velocity Vlocal
(1)

and Vlocal
(2) in the normal, dip, and strike directions can be

respectively expressed as Vn
(1), Vd

(1), Vs
(1) for element (1) and

Vn
(2), Vd

(2), Vs
(2) for element (2). The relative velocity ∆Vlocal

(2 1)−

at point P can be decomposed into three components: normal
direction by ∆Vn

(2 1)− , dip direction by ∆Vd
(2 1)− , and the strike

direction by ∆Vs
(2 1)− , that is, ∆ ∆ ∆V V Vlocal

(2 1)
n
(2 1)

d
(2 1)− − −= [ , ,

∆Vs
(2 1) T− ] .

The relative velocity jump at point P can be written as

[4] ∆V V Vlocal
(2 1)

local
(2)

local
(1)− = −( )

= − − −[( ), ( ), ( )]V V V V V Vn
(2)

n
(1)

d
(2)

d
(1)

s
(2)

s
(1) T

For convenience, we denote ∆Vlocal
(2 1)− as ∆V in the rest of

paper. The above velocity jump expressed in terms of the
velocities in the local coordinate system can be expressed by
the velocities V(1) and V(2) in the global coordinate system

[5] ∆V V V L V L V= − = −( ) ( )local
(2)

local
(1) (1) (2) (1) (1)

where L(1) is the matrix of direction cosines of the local
n−d–s axes on the interface of element (1) with respect to
the global coordinate system and is expressed by

[6] L

n x n y n z

d x d y d(1)

cos ( , ) cos ( , ) cos ( , )

cos ( , ) cos ( , ) cos (= , )

cos ( , ) cos ( , ) cos ( , )

z

s x s y s z

















Using eq. [1] for the global velocity Vg at the element
centroid, eq. [5] can be written as

[7] ∆V L N V N V= −(1) (2)
g
(2) (1)

g
(1)[ ]

Equation [7] can be given in the form

[8] ∆V = AVG

where

A L L
N

N
= −










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[ ](1) (1)
(2)

(1)

0

0

and

V
V

V
G

g

g

=







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



( )

( )

2

1

Constraints in velocity discontinuities
Soil fails when the maximum shear stress reaches its shear

strength. The shear strength can usually be described by the
Mohr–Coulomb failure (or yield) criterion

[9] τ σ φ= ′ + ′ ′c n tan

where τ and σn′ are the shear stress and the effective normal
stress at failure, respectively, and c′ and φ′ are the effective
cohesion and friction angle, respectively. It is noted that the
effective normal stress σn′ = σn – u, where σn and u are the
total normal stress and the pore-water pressure, respectively.

Velocity discontinuities are allowed to occur at any edge
or face that is shared by a pair of adjacent triangles or tetra-
hedrons. To be kinematically admissible, the velocity dis-
continuities must satisfy a plastic flow rule. According to the
Mohr–Coulomb failure (or yield) criterion and the associ-
ated flow rule, the relationship between the normal velocity
magnitude (∆vn) and tangential velocity magnitude (∆vt)
jumps across the discontinuity can be written as

[10] ∆ ∆ν ν φn t= ′tan

The existence of the absolute value sign on the right hand
side of eq. [10] makes it difficult to derive a set of flow rule
constraints that are everywhere differentiable. It is clear that
∆vt may be zero, negative, or positive. From the mathemati-
cal programming point of view, this is referred to as
an unrestricted-in-sign variable. Any unrestricted quantity
can be decomposed into the difference of two non-negative
quantities. Thus, the tangential velocity jump ∆Vt defined in
the local n–d–s coordinate system can be decomposed into
two sets of non-negative variables V+ and V–

[11] ∆Vt = V+ – V–
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where

∆Vt = {∆vd, ∆vs}T

V+ +
−

+= { , ..., }1 1
Tν νD

V− −
−

−= { , ..., }1 1
Tν νD

with the constraints
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Fig. 1. Local coordinate system defined by n (normal direction), d (dip direction), and s (strike direction).

Fig. 2. Three-dimensional velocity discontinuity.

I:\cgj\CGJ40-04\T03-032.vp
July 15, 2003 8:58:45 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



[12]
v

v
i Di

i

+

−
≥
≥

= −0

0
1 1( , ..., )

To remove the absolute value sign, and thus set the equa-
tion into a standard mathematic programming problem, we
follow the formulation derived by Sloan and Kleeman
(1995) and Lyamin and Sloan (2002). Hence ∆vt is given by

[13] ∆v v vi
i

D

it ≤ ++
=

−
−∑ ( )

1

1

Therefore, the tangential velocity jump is automatically
determined by finding the values of D–1 pairs of unknown
variables vi

+ and vi
−, without any sign restrictions. The nor-

mal velocity jump is given by

[14] ∆v v vi
i

D

in ≤ + ′+

=

−
−∑ ( ) tan

1

1

φ

Using the same simplification as that used by Sloan and
Kleeman (1995) and Lyamin and Sloan (2002), the formula-
tion in eq. [13] in this paper is taken as

[15] ∆v v vi
i

D

it = ++
=

−
−∑ ( )

1

1

Thus, in matrix notation, conditions from eqs. [11]–[15]
can be written as

[16] ∆V = BV

V
d

d ≥ 0

where

Vd
T{ , , ..., , }= + −

−
+

−
−v v v vD D1 1 1 1

in the 2D case

B =
′ ′

−










tan tanφ φ
1 1

and in the 3D case

B =
′ ′ ′ ′

−
−

















tan tan tan tanφ φ φ φ
1 1 0 0

0 0 1 1

Boundary conditions
As stated in the upper bound theorem, the velocity field

must satisfy the prescribed velocity boundary conditions.
Considering element k on a boundary where the prescribed
velocity is V, the element velocity Vg

k must satisfy the fol-
lowing equality

[17] V Vg
k =

Equivalent load
Because we set the velocities at all element centroids as

unknown variables in the RFEM, correspondingly the exter-
nal force must be first converted into an equivalent load of
the element centroid. It is possible to simplify the calcula-
tion of such an equivalent load by using the natural coordi-

nate system, which relies on the element geometry and
whose coordinates range between zero and unity within the
element. A 2D natural coordinate system is shown in Fig. 3.

We define the natural coordinates as Li = Ai /A (i = 1, 2, 3)
in a plane problem where Ai (i = 1, 2, 3) are the areas of
sub-triangles 0–2–3, 0–3–1, and 0–1–2, and A is the total
area of triangle 1–2–3.

The natural coordinates in two dimensions have the fol-
lowing features:

[18]

L

L x x

L y y

i
i

i i
i

i i
i

=

=

=

=

=

=

∑

∑

∑

1
1

3

1

3

1

3

[19] L L L x y
a b c

a b c
Aa b c

A

1 2 3
2

2d d =
+ + +∫∫ ! ! !

( )!

Mechanical loads consist of surface traction and body
force. In geotechnical applications gravity is a common form
of body force that can be applied directly to a RFEM modal,
while surface traction must be converted to an equivalent
centroid load Q.

Figure 4 shows a uniformly distributed traction in a 2D
case in the negative y direction, q = [0 – q]T. The calculation
of its equivalent load would involve the features of the 1D
natural coordinate system, such as

[20]

x L x L x

y L y L y

L L l
a b

a b
La

L

b

= +

= +

=
+ +∫∫

1 1 2 2

1 1 2 2

1 2
1

d
! !

( )!

Its equivalent load Q at the centroid of the element can be
calculated as the following:

[21]

Q N q=

=
−
−











 −








=

∫

∫

T

g

g

T
AB

AB

d

d

l

l

l

y y

x x q
l

1 0

0 1

0

[0

0 1 1 2 2

− −

= − − +

∫

∫∫

q x x q l

q l qx l q L x L x

g

l

ll

( ) ]

( )

T

g

d

d d

AB

ABAB

d
AB

T

l
l
∫













Substituting eq. [20] into eq. [21], we can get

[22] Q = − −[ AB AB g c
T0 ql ql x x( )]

where lAB is the length of the edge AB, and xc is the abscissa
at the centre of the edge AB.

Note that the equivalent centroid load of pore-water force
P can be obtained similarly according to the formulations
discussed above. The development of natural coordinates
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and the calculation of equivalent load for tetrahedron ele-
ments follow the same procedure used for the 2D case.

Energy–work balance equation
According to the virtual work principle, the total internal

power dissipation is equal to the total work done by external
forces

[23] σ ε σ εij ij′ + ′∫ ∫ ′� �* * * *
* *Ω Γ ΓΓ

Ω Γ∗d d

= + +W V QV PV* * *

Equation [23] is an energy–work balance equation. The
first term on the left-hand side of eq. [23] is the rate of work
done by the effective stress σij′ over the virtual strain rates
�*ε ij , dissipated within Ω*. The second left-hand side term is
the internal energy dissipation along the slip surface and dis-
continuities Γ*. The right-hand side terms in eq. [23] repre-
sent the rate of external work done by the weight of the
sliding mass W, the surface equivalent loads Q, and the
equivalent pore-water force P over the virtual plastic veloc-
ity V*.

According to the rigid assumption for the elements, there
is no energy dissipation within elements. Thus, the first term
on the left-hand side of eq. [23] equals zero, that is,
σ εij ij′ =∫ �* *

*Ω
Ωd 0. The power is dissipated only along the

failure surface and the interfaces between the elements. The
energy dissipated along the failure surface and the interfaces
by normal and tangential stresses can be expressed by the
following equation:

[24] σ ε τ σ′′ = + ′∫ ∫Γ ΓΓ
∗ Γ ∆ ∆� )* *

*
d ( dt n n

d

v v S
S

Using the Mohr–Coulomb failure (or yield) criterion in
eq. [9] and the associate flow rule in eq. [10], the right-hand
side in eq. [24] can be written as

[25] ( d dt n n t

d d

τ σ∆ ∆ ∆v v S c v S
S S
∫ ∫+ ′ = ′)

= ′ +










∫ ∑ + −

=
c v v S

S

i i
i

D

d

-1

d( )
1

Note that eq. [25] does not include any stress. As a result,
eq. [24] has no stress involvement in the calculation of the
energy dissipation.

Using eq. [25], we can get

[26] ′ +












= + +∫ ∑ + −

=
c v v S

S

i i
i

D

d

-1

d( ) * * *

1

W V Q V P Vg g g

Since all external forces W, Q, and P have been trans-
ferred to the centroid of the rigid element, the virtual veloc-
ity at the centroid Vg* shall be used. Assuming that the
effective cohesion c′ is identical at the discontinuity, eq. [26]
can be written in the following general matrix form:

[27] CVd = DVg

where C = {c′ili}
T for i = l,�, nD; D = W + Q + P; li is the

length (in the 2D case) or the area (in the 3D case) of dis-
continuity i shared by two adjacent elements; and nD is the
total number of discontinuities.

Objective function
The stability of a slope is generally assessed by determin-

ing the factor of safety, F, by which the available shear
strength parameters c′ and φ′ need to be reduced to bring the
slope to a limit state of equilibrium. This definition of F is
exactly the same as that used in limit equilibrium methods.
The reduced parameters ce′ and φe′ can therefore be defined
by

[28]
c

c
F

F

e

e

′ = ′

′ = ′
tan

tanφ φ

It thus renders a nonlinear programming problem while
taking the reduced parameters ce′ and φe′ into constraints
given by the flow rule and the virtual work equation.

The classical upper bound theorem of limit analysis states
that the loads determined by equating the external rate of
work to the internal rate of plastic energy dissipation of a ki-
nematically admissible velocity field are not less than the ac-
tual collapse load. For slope stability analysis, the factor of
safety determined by the virtual work equation is greater
than or equal to the true solution. Thus, according to nonlin-
ear programming, the upper bound limit analysis for slope
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Fig. 3. Natural coordinates. Fig. 4. Uniformly distributed load on a triangle edge.
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stability can be reduced to a minimization problem and the
objective function is the minimization of the factor of safety.

Assembly of constraint equations
All of the steps that are necessary to formulate the upper

bound theorem as an optimization problem have now been
covered. Note here that the reduced parameters have been
taken into account in the constraints, i.e., the nonlinear form
of the unknown variable F would appear in the constraints.

The task of finding a kinematically admissible velocity
field that minimizes the factor of safety may be stated as

Minimize F subject to

[29]

∆
∆

V AV

V BV

CV DV

V V

V

=
=
=
=
≥




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

G

d

d g

g
k

d 0

where

B =
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


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
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





tan tan tan tanφ φ φ φe e e e

1 1 0 0

0 0 1 1

C = ′ ={ }c l i ,...,nie i D
T 1

In two dimensions, each triangular element has three un-
known velocities, and each velocity discontinuity has two
unknown non-negative variables. In the 3D case, each tetra-
hedral element has six unknown velocities, and each planar
interelement discontinuity has four unknowns. After impos-
ing the flow rule conditions in the discontinuities, the veloc-
ity boundary conditions, and virtual work equation
constraint, the unknowns must satisfy a set of equalities and
inequalities. The objective function and the inequality con-
straints are linear, while because of the appearance of the
nonlinear form of the unknown variable F, the equality con-
straints could be separated into linear and nonlinear equali-
ties.

Optimization

The numerical formulation of the upper bound theorem
presented in the previous sections results in an optimization
problem that belongs to the class of nonlinear programming.
The standard optimization theory (Jorge and Stephen 1999)
indicates that the sequential quadratic programming (SQP)
approach is one of the most effective methods for solving
such a problem. In this study, we utilize the optimization
toolbox in MATLAB (e.g., Penny 2000) to implement the
SQP algorithm to find the minimum factor of safety of
slopes.

Test examples

Based on the method discussed above, a computer pro-
gram UBRFEM has been coded for 2D and 3D slope stabil-
ity analyses. Four typical test problems that have been

documented in the literature are analysed to investigate the
feasibility of the present method.

Strip pressure loading on the crest of a 2D slope —
example 1

We first consider an example in two dimensions that has
been documented in Sokolovski’s (1960) book. As shown in
Fig. 5, a vertical surface load is applied on a uniform,
weightless slope with the following shear strength parame-
ters: cohesion c equal to 98 kPa, friction angle φ equal to
30°, and the inclination of the slope χ equal to 45°. For this
example, results are presented for three different meshes that
are classified as coarse, medium, and fine, as illustrated in
Fig. 6. The resultant factors of safety are listed in Table 1.

The slip-line analysis results in a closed-form solution
with the ultimate load q equal to 111.44 kPa. Associated
with this load, Chen (1999) used the upper bound theorem,
which is based on the energy–work balance equation, and
thus obtained a failure mode that gave the minimum value of
F = 1.006. For the coarsest mesh shown in Fig. 6a, we ob-
tain F = 1.034, while for the medium mesh illustrated in
Fig. 6b, we obtain a value of F = 1.012. The best result is
obtained using the fine mesh shown in Fig. 6c, that is, F =
1.003, which is very close to the theoretical solution, and is
better than the solution obtained by Chen (1999).

The results for the three different meshes demonstrate that
the solutions based on the proposed method are dependent
on the mesh size. The finer the mesh, the better the results.
However, it should be pointed out that the solution time and
cost could dramatically increase with mesh refinement.

A symmetrical wedge — example 2
Figure 7 shows a 3D example of a specific symmetrical

wedge with geometric values and strength parameters listed
in Table 2. The mesh used to analyse this problem is shown
in Fig. 8. For a given value of cohesion (varies from 5 to
20 kPa), the friction angle varies from 15 to 30°, and the
factors of safety determined by the general limit equilibrium
method (GLE) for a dilation angle equal to the friction angle
(ψ = φ), an upper bound method (Wang 2001), and the pres-
ent approach are tabulated in Table 3. It shall be noted that
the upper bound method (Wang 2001) uses the inclined
slices and gives an upper bound value for the factor of
safety. It has been shown that the GLE with ψ = φ (full dila-
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Fig. 5. A weightless slope with a vertical surface load
(Sokolovski 1960) — example 1.
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tion) gives an F value close to the upper bound value. From
the comparison in Table 3, the results of the present method
are close to those obtained by using the GLE method (Wang
and Yin 2002) and the upper bound method (Wang 2001). It
is also seen in Table 3 that the factor of safety increases
with an increase in the friction angle for a given value of co-

hesion, or increases with the cohesion for a given friction
angle. The comparison in Table 3 shows that the present
method gives reasonable upper bound values of the factor of
safety for the wedge problem studied.

A nonsymmetrical wedge — example 3
The third example is a nonsymmetrical wedge that is fre-

quently quoted in the literature (Hoek and Bray 1977), as
shown in Fig. 9. The discretization pattern of this wedge is
similar to that in example 2. The geometric and material
properties of the wedge are listed in Table 4. The resulting
factors of safety are presented in Table 5. For this example,
the F value for the conventional limit equilibrium method
(TLE) (e.g., Hoek and Bray 1977; Wang 2001) is 1.846, and
the same result of 1.929 is obtained by both the GLE
method for ψ = φ (full dilation) and the upper bound method
(Wang 2001).

It shall be pointed out that the TLE method assumes that
the two shear resistance forces on the two discontinuous
planes of the wedges are parallel to the direction of the in-
tersection of the two discontinuous planes, and this implies
zero dilation of the two discontinuous planes (or joints). The
GLE method with ψ = φand the upper bound method (Wang
2001) assume full dilation of the two discontinuous planes.
The present method also assumes full dilation. Therefore, it
is more meaningful to compare the present method with the
GLE method and the upper bound method (Wang 2001).
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Fig. 6. The RFEM meshes of example 1 — (a) coarse mesh,
(b) medium mesh, and (c) fine mesh.

Theory
Upper bound
(Chen 1999)

Present method
(coarse mesh)

Present method
(medium mesh)

Present method
(fine mesh)

1.000 1.006 1.034 1.012 1.003

Table 1. Results of factor of safety — example 1.

Dip direction (°) Dip (°)

Left discontinuity surface 120 65
Right discontinuity surface 240 65
Top surface 180 0
Slope surface 180 90

Note: γ = 26.46 kN/m3, H = 10.2 m.

Table 2. Geometry and unit weight for a symmetrical
wedge — example 2.

Fig. 7. A symmetrical wedge in geometry — example 2.
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Using the present approach, the factor of safety minimized
by using a sequential quadratic algorithm is 1.937. The rela-
tive difference between the present solution and the two so-
lutions obtained by the GLE method and the upper bound
method is only 0.4%.

A spherical purely cohesive slope — example 4
Figure 10 shows a simple 3D problem of a uniform purely

cohesive soil slope with a spherical slip surface (Lam and
Fredlund 1993). The plan view of its discretization pattern is
illustrated in Fig. 11. The present method gives a solution of
F = 1.436, which is a little higher than the so-called “closed-
form” solution of F = 1.402, reported by Lam and Fredlund
(1993). The relative difference is 2.4%.

Conclusions

A new upper bound method for the analysis of two- and
three-dimensional slope stability problems is presented in
this paper. Based on the rigid finite elements, the stability
problem is formulated as a nonlinear programming optimi-
zation problem. The factor of safety of a slope is optimized
(minimized) using a sequential quadratic programming algo-
rithm.

The validation of the proposed method and the associated
program has been demonstrated through four typical exam-
ples. Results obtained using the present method are in agree-
ment with those obtained using other commonly used
methods. The proposed method is simpler than a similar
method employing linear finite elements used by Sloan
(1988, 1989), Sloan and Kleeman (1995), and Lyamin and
Sloan (2002). The proposed method is superior to the upper
bound method by Donald and Chen (1997) in modelling
nonhomogenous soil conditions and complicated boundary
conditions.
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c (kPa) Method φ = 15 φ = 30

5 GLE (Wang and Yin 2002) (ψ = φ) 0.675 1.279
Upper bound (Wang 2001) 0.675 1.278
Present method 0.668 1.272

15 GLE (Wang and Yin 2002) (ψ = φ) 0.835 1.430
Upper bound (Wang 2001) 0.835 1.430
Present method 0.845 1.433

20 GLE (Wang and Yin 2002) (ψ = φ) 1.173 1.749
Upper bound (Wang 2001) 1.173 1.749
Present method 1.173 1.755

Table 3. Results of the factor of safety for a symmetrical wedge
— example 2.

Fig. 8. The RFEM discretization — example 2.

Fig. 9. A nonsymmetrical wedge (Hoke and Bray 1977) —
example 3.
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