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Fracture spacing in layered materials and pattern transition from parallel to polygonal fractures
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We perform three-dimensional simulations of fracture growth in a three-layered plate model with an em-
bedded heterogeneous layer under horizontal biaxial stretch (representing stretch from directional to isotropic)
by the finite element approach. The fractures develop under a quasistatical, slowly increasing biaxial strain.
The material inhomogeneities are accounted for by assigning each element a failure threshold that is defined by
a given statistical distribution. A universal scale law of fracture spacing to biaxial strain in terms of principal
stress ratio is well demonstrated in a three-dimensional fashion. The numerically obtained fracture patterns
show a continuous pattern transition from parallel fractures, laddering fracture to polygonal fractures, which
depends strongly on the far-field loading conditions in terms of principal stress ratio (\=0/07), from uniaxial
(A=0), anisotropic (0<<\ <1) to isotropic stretch (\=1). We find that, except for further opening of existing
fractures after they are well-developed (saturation), new fractures may also initiate and propagate along the
interface between layers, which may serve as another mechanism to accommodate additional strain for fracture

saturated layers.
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I. INTRODUCTION

When natural and engineered systems are subjected to
shrinkage—driven by cooling or drying—the resulting
stresses may lead to formation of fractures [1-18]. Experi-
mental studies of this phenomenon and the fracture spacing
theory [10,14] show that the spacing between fractures ini-
tially decreases as extensional strain increases in the direc-
tion perpendicular to the fractures. At a certain ratio of spac-
ing to layer thickness, however, no new fractures form and
the additional strain is accommodated by the further opening
of existing fractures: the spacing then simply scales with
layer thickness, which is called fracture saturation [10,14].

In field or laboratory observations, two kinds of fracture
patterns are commonly observed—parallel fractures [Fig.
1(a)] and polygonal fractures [Fig. 1(b)]. A parallel fracture
pattern occurs in layered materials usually under a mechani-
cal layer-parallel stretching force, i.e., directional extension
or biaxial stretch with one of the principal stresses much
greater than the other. A polygonal fracture pattern is often
observed in surface layered materials under cooling or
shrinking induced isotropic stretch in all layer-parallel direc-
tions. Examples for the polygonal fracture pattern in geo-
sciences are desiccation fractures in dried-out mud flats or in
a turtle cracking rock [Fig. 1(b)], permafrost, densification-
induced shattering of the upper crust [19,20]. A keen area of
research in engineered systems is to look at the fracture pat-
terns in composite materials. When thin glass strips are ex-
posed to uniaxial tensile strain, such as that caused by ther-
mal gradient [21] or drying of thin colloidal suspensions
[22], uniformly spaced fractures form parallel to the direc-
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tion of the temperature or moisture gradient. Alternatively,
for a brittle film that is attached to a substrate subjected to
biaxial tension, the formed fractures divide the film into a
series of polygonal shaped islands in a pattern that is often
seen in drying mud [7]. The surface cooling fracturing, an
ancient technique to decorate china with surface fracture net-
work, is another classic example of this polygonal fracture
phenomenon.

In a recent experimental study, Shorlin er al. [28] ob-
served another mode of fracture pattern that they refer to as
“laddering.” In their investigation, two types of experiments
were performed: “isotropic drying,” in which the entire layer
was dried uniformly; and “directional drying,” in which the
layer was dried from one end. They observed a change in the
way in which fragmentation occurred as the drying method
in the system was varied: for isotropic drying, more uni-
formed polygons formed. For directional drying, polygons
did not formed in regular shape, but rather formed by lad-
dering. In this process, fractures propagate more or less par-
allel to each other. As the layer behind the moving fracture
tips dries further, perpendicular fractures form, joining two
of the parallel fractures like the rungs of a ladder. This pro-
cess is dominant in the directional drying case, and clearly
involves a local directionality of the drying process in an
essential way. Since the directional drying will result in a
anisotropic stretch in the tested layer, we believe that this
laddering fracture pattern should relate to another loading
condition, that is, between the isotropic stretch and the direc-
tional or uniaxial stretch. In this paper, using a fracture mod-
eling approach based on the finite element method, we could
examine these different fracture patterns in a more controlled
way. We find that the numerically obtained fracture patterns
show a continuous pattern transition from parallel fractures,
laddering fracture to polygonal fractures, which depends
strongly on the far-field loading conditions in terms of prin-
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cipal stress ratio (A=0,/0,), from uniaxial (A\=0), biaxial
(0<\<1) to isotropic stretch (A=1).

Modeling the fracture patterns in a rock mass is generally
a three-dimensional problem (Fig. 2) and requires a fracture
analysis approach. However, most of the present studies can
only address the common, albeit particular, cases of parallel
vertical joints that are perpendicular to tabular layered rocks
exposed in a vertical section, which is almost perpendicular
to the strike of the studied joint set [1,4,5,9—11,13]. In addi-
tion, almost all numerical models of fracture spacing are
based on the stress analysis approach [13,14], and a few of
the existing models can adequately reproduce the evolution
process of fracture nucleation, propagation, infilling, and
saturation, as observed experimentally.

The remainder of this paper is organized as follows. In
Sec. II, we describe our numerical method. In Sec. III we
discuss the numerical results, first on the typical result of the
fracture pattern evolution, taking isotropic loading as a ex-
ample, and then on the fracture patterns under nine different
loading conditions representing loads from uniaxial to biax-
ial stretch. Sections IV and V contain a discussion and a brief
conclusion.

II. NUMERICAL METHOD AND THE THREE-LAYER
MODEL

Here we consider a three-layered model (Fig. 3) that fails
under a quasistatical, slowly increasing biaxial strain (in-
duced, for example, by temperature changes, desiccation, or
mechanical deformations). The model is consisting of 1.6
million elements (200 X 200 X 40). In order to limit the frac-

FIG. 2. Example of polygonal fracture pattern showing the
three-dimensional fashion.
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FIG. 1. Examples of a parallel
fracture pattern in a road surface
(a) and polygonal fracture pattern
in a turtle cracking rock taking
shape in the Sinian period of
600 million years (b).

tures that occur in the central layer, the strength of the upper
and bottom layers are set to be many times higher than the
central layer. The value at which a particular element breaks
is random, but fixed at the start of the fragmentation process
(i.e., the disorder is quenched). The probability distribution
(PD) of breakdown thresholds is a material property and is
known from the start [23,24]. We account for this local ran-
domness by assigning to each element a failure threshold
defined by the Weibull PD, in which two parameters to con-
trol the distribution characteristics are introduced: the scale
parameter u,, that relates to the average of element parameter
and the parameter m that defines the shape of the distribution
function. The parameter m defines the degree of material
homogeneity and is called the homogeneity index.

Initially, elements are considered to be elastic; their elastic
properties are defined by Young’s modulus and Poisson’s ra-
tio. The stress-strain curve of each element is considered to
be linear elastic until the given damage threshold is attained.
We choose the maximum tensile stress criterion and the
Mohr-Coulomb criterion, respectively, as the damage thresh-
olds. The tensile criterion is used primarily to determine
whether or not the element is damaged in tensile mode. If the
element is not damaged in tensile mode, then Mohr-Coulomb
criterion is used to judge whether the element damage occurs
in shear modes.

When the element is under uniaxial tension, the constitu-
tive relationship is illustrated in the left part of Fig. 4. It
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FIG. 3. FEM model with a heterogeneous central embedded
layer bonded to top and bottom layers. The model consists of 1.6
million elements (200 X 200 X 40). The horizontal plane is defined
as x-y plane and z is the vertical direction. We fix the whole bottom
boundary in the vertical z direction, and the top boundary is free to
displace as necessary. We use a constant displacement increment in
the x direction along the left and right boundary, and use another
increment in the y direction along front and back boundary. We
define \ as the loading ratio of the displacement in the x direction to
the displacement in the y direction in order to model varies of
principal stress ratio.
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FIG. 4. Constitutive law for uniaxial compressive and tensile
stress

presents an elastic-brittle damage constitutive relation with a
given specific residual strength. The stiffness of elements
degrades gradually as damage progresses, and the elastic
modulus of damaged material can be defined as follows:

E=(1-D)E,, (1)

where D represents the damage variable, and E and E, are
elastic moduli of the damaged and the undamaged material,
respectively.

The damage variable D ranges from zero for the undam-
aged material to one for damaged material. With regard to
the constitutive law shown in Fig. 4, the parameter D can be
calculated as

O 8>8t0
D= 1_£ Eu<esgygy , (2)
E08
1 e=sgy

where f,. is the residual tensile strength, and E; is the
Young’s modulus for undamaged elements. g, is the strain at
the elastic limit, which is the so-called threshold strain for
tensile damage, while g, is the ultimate tensile strain, at
which the element would be completely damaged in tensile
mode.

Additionally, we assume that the damage of mesoscopic
element in multiaxial stress fields is also isotropic elastic.
According to the method of extending one-dimensional con-
stitutive laws under uniaxial tensile stress to complex tensile
stress conditions, which was proposed by Mazars and
Pijaudier-Cabot [25] for a constitutive law of elastic damage,
we can easily extend the constitutive law described above to
a three-dimensional stress state.

It must be emphasized that, when D=1, the damaged elas-
tic modulus is zero, which may cause the finite element
analysis to halt. Therefore, a relatively small number, i.e.,
1073 is specified for the limit elastic modulus.

The above constitutive law only considers the situation
when element is damaged in tensile failure mode. But com-
pressive or shear failure mode also occurs when the elements
subjected to high compressive or shear stresses; thereafter
shear damage at element scale level is also considered in our
study for elements under compressive or shear stresses. The
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Mohr-Coulomb criterion, as expressed in Eq. (3), is selected
to be the second damage threshold

F=0’1—m0'32fc0’ (3)

1 —sin ¢
where o and o3 are the maximum and minimum principal
stresses, respectively. f,q is the uniaxial compressive strength
and ¢ is the internal friction angle of this element.

With regard to the constitutive law in Fig. 4 when the
element is damaged in shear mode, the damage variable D
can be described as follows:

0 e < €0

D= )\8() s 4
M )

&

where €. is the strain at the peak compressive principal
stress under uniaxial compressive stress state, and A is the
coefficient of residual strength.

The mechanical behavior of quasibrittle materials under
multiaxial compression is mainly characterized by a consid-
erable increase of strength and prepeak strain at high con-
finement level. When an element is under multiaxial stress
state and its stress condition satisfies the Mohr-Coulomb cri-
terion, shear damage occurs, and we must consider the effect
of other principal stresses in this model during damage evo-
lution process.

When the Mohr-Coulomb criterion is satisfied, we can
calculate the minimum principal strain (maximum compres-
sive principal strain) g, at the peak value of maximum prin-
cipal stress (maximum compressive principal stress)

1 +sin ¢

0= |JoF .
1 —sin ¢

Ey
In this respect, we assume that the shear damage evolution is
only related to the maximum compressive principal strain &;.
So, we use the maximum compressive principal strain &; of
damaged element to substitute the uniaxial compressive
strain in Eq. (3).

From the above expression of damage variable D, which
is generally called damage evolution law in damage mechan-
ics, together with the Eq. (2), we can calculate the damaged
elastic modulus of the element at each stress or strain level.
For simplification, the Poisson’s ratio of the damaged ele-
ment is assumed to be increased by certain value but inde-
pendent of the stress states and damage evolution process.

In this model, the element may gradually damage accord-
ing to the above elastic damage constitutive law. Only ele-
ments whose ultimate tensile strain has been attained are
displayed as fractures with black color in the postprocessing
figures. Both tensile damage and shear damage leads to the
mechanical property degradation of elements, but tensile
damage is considered to be the direct cause of fracture ini-
tiation. In this respect, the initiation, propagation and inter-
action of multiple fractures is easily simulated.

We use a newly developed three-dimensional finite ele-
ment code named RFPAP-PARALLEL (rock failure process
analysis code for parallel computation) to solve the problem

03— o+ 0y) | (5)
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[27]. A parallel computer with 64-CPUs was used to fulfill
the task.

The stretching of the layered model corresponds then to a
gradual, homogeneous change of coordinates. Of interest are
the ensuing pattern of fractures and the dependence of the
pattern on the stretching in terms of principal stress ratio. We
use a constant displacement increment in the x direction
along the left and right boundaries, and use another incre-
ment in the y direction along the top and bottom boundaries.
We define A\ as the loading ratio of the displacement in the x
direction to the displacement in the y direction in order to
model various principal stress ratios. We select A=0, 0.125,
0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1 in our modeling,
representing loading from directional to isotropic conditions.

During the modeling, one step of the calculation involves
the computation of the forces acting on the elements and
reduction of the mechanical properties of those elements that
fail (because their strength is smaller than the acting stress).
Iterating the procedure leads to fracture propagation.

Our method is most closely related to that of Hornig et al.
[26], in that it treats materials as heterogeneous and the frac-
tures are modeled by breaking individual lattice spring that
reaches its strength. Hornig et al. [26] modeled the coating
through an array of springs and account for its statistical
inhomogeneities by assigning each spring a breakdown
threshold taken from a given probability distribution. The
coating breaks under a quasistatical, slowly increasing strain.
In lattice model, breaking a lattice spring means removing it
from the lattice. In contrast to their work, however, we treat
the failed elements in different way. Instead, removing the
failed element from the model, we replace the element with a
very low Young’s modulus. It is important to mention that
when the compressive strain in the failed element exceeds
certain strain, the recompaction behavior occurs and the stiff-
ness of the failed element may restore to resist the continu-
ous compression.

II1. SIMULATION RESULTS

Figure 5 shows the numerically obtained images that
demonstrate the complete process of the fracture pattern evo-
lution for isotropic loading (A=1). We took a bird’s eye view
over the central cross-section cut from the embedded layer. It
can be seen from Fig. 5(a) that in the first stage of fracture
pattern development, fractures nucleate at a small number of
points. Defects (model elements with lower strength) in the
layer structure presumably serve as nucleation sites. We
found that fractures tend to nucleate at the weaker sites and
in many cases do not propagate long distances across the
layer, but rather move in small steps from one weak site to
the next, occasionally meeting another fracture moving in a
similar fashion [Figs. 5(b) and 5(c)]. After the initiation of a
few longer fractures, most new fractures start at the vicinity
of existing fractures and propagate away from their parent
fracture, approximately at right angles. Finally, successive
generations of fractures form, mostly joining older fractures
and forming a complicated array of polygons [Figs. 5(c) and
5(d)].

As predicted by fracture spacing theory [10,14], numeri-
cal simulations of the isotropic fracture system show a com-
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mon process, called fracture infilling. As shown in Fig. 5(e),
a new fracture propagates away from an existing fracture,
and eventually stops when it runs into another fracture. The
region is then fragmented into two parts. Although randomly
distributed, the size of the polygonal fractured area is found
to be approximately the same with some deviation that
should be the outcome of the heterogeneity existed in the
layer. It is very interesting to note that after reaching a cer-
tain strain, the number of polygons formed in the fractured
layer no longer increases [Fig. 5(¢)]. Instead, interface deb-
onding is found to dominate the postfailure processes [Fig.
5(f)]. This suggests that fracture saturation also exists in po-
lygonal fracture pattern. However, the role of accommoda-
tion of further strain may not only play by existing vertical
fractures as predicted in two-dimensional model, but also by
interfacing fracturing, which will be discussed later.

In order to understand the contribution of stress distribu-
tion to find the evidence for fracture saturation, we plot the
minimum principal stress distribution in the right column of
Fig. 5. It is shown that, network fractures behave as free
surfaces, and as a result the normal tensile stress in the vi-
cinity of a fracture is greatly reduced and, particularly, mini-
mum tensile stresses in the center of polygonal shaped is-
lands are found to be very small when fracture saturation is
well developed [Fig. 5(e)], and therefore the formation of
new fractures is inhabited. This zone of reduced stress, re-
ferred to as the stress reduction shadow, with the traction-
free islands, scales with layer thickness and is responsible for
the observed correlation between fracture spacing and layer
thickness [1,28].

Figure 6 shows the numerically obtained fracture patterns
well developed in the central cross section of the embedded
fractured layer for the nine models, corresponding to the
loading conditions for A=0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875, and 1 (supplementary images and movies are
placed at EPAPS electronic depository, i.e., see Ref. [29]). It
is important to note that the modeling results indicate a con-
tinuous pattern transition from parallel fractures to polygonal
fractures, depending on the loading conditions in terms of
principal stress ratio. In contrast to the results obtained from
N=1 (Fig. 5), Fig. 6(a) for model subjected to directional
loading (A=0) shows an obvious parallel fracture pattern.
Due to the effect of heterogeneity, the obtained fracture
propagations demonstrate a more realistic pathway. Most of
the fractures terminated at certain lengths because they over-
lapped other fractures propagating from the opposite edge or
interior. Even for those that appear to extend from one edge
to the other actually are composed of several closely-spaced
echelon segments. This fracture pattern resembles very well
with that observed in experiments by Wu and Pollard using a
poly(methylmethacrylate) (PMMA) sample of surface coat-
ing [10].

In the biaxial loading with principal stress ratio A ranging
from 0.125 to 0.5, another dominated mode of pattern for-
mation is observed, shown in Figs. 6(c)-6(e), particularly for
N=0.375; Shorlin et al. [28] refer this process as laddering in
their experiments of shrinkage fracture modeling when a thin
layer of alumina/water slurry dries. Figure 6(d) shows that,
during the fracture forming process, fractures which were
perpendicular to the parallel fractures were formed and they
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are like the rungs of a ladder. The ordering seen in Figs.
6(c)-6(e) is not so regular as ladders, as observed in experi-
ments made by Shorlin er al. [28]. This is presumably be-
cause of the stress being built up homogenously across the
whole sample at once.

Our modeling technique provides a valuable insight con-
cerning fracture processes that are difficult, if not impossible,
to observe in nature and difficult to consider using stress
analysis approaches. Particularly the three-dimensional mod-
eling with the fracture approach has shed considerable light
on fracture pattern development in layered materials. As
mentioned above, most theoretical models in the literature
that explain fracture spacing are from the plane-strain per-
spective of a vertical, bedding-perpendicular cross section,
where the fracture length is assumed to be infinite, and the
only variable fracture dimensions are layer height and frac-
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FIG. 5. RFPA modeling results
of fracture evolution (left column)
and induced stress redistribution
(right column) for model with
principal stress ratio A=1. The
cross sections are taken from the
central plane in the embedded
layer. The stress is expressed in
minimum principal stress. (a)—(f)
represent the different characteris-
tic stages of the fracture process.
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ture opening [1,5,14,29-31]. The modeling approach de-
scribed here reveals that the formation of fracture patterns is
strongly influenced by loading conditions and the fracture
spacing under plane-strain conditions can only have limited
role on the understanding to the problem.

Fractures develop in the embedded layer when the stretch
of the layers induces sufficient stress that the layer fractures.
Our modeling indicates that, under isotropic stretch condi-
tions, isolated fractures initially appear by nucleation at a
few points. Triplet junctions, at which three fractures meet
with junction angles of 120°, are formed by such nucleation
in the early stages of pattern development. At later times,
however, fractures meet predominately at 90° junctions. As
explained by Shorlin et al. [28], this is due to the fact that
fractures propagate in the direction which most efficiently
relieves the stress. Since the stress near a given fracture is
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parallel to its surface, other fractures will tend to approach
and meet it at right angles [28]. However, the abovemen-
tioned situation is only observed in the model under isotropic
stretch or with principal stress ratio, N, close to 1. From the
numerical simulations of the models with different principal
stress ratio, A, we also observed a transition in the distribu-
tion of junction angles as the ratio, N\, was decreased: for A
less than 0.5, we observed a marked increase in the number
of junctions larger than 120° or less than 60°. In the extreme
situation, that is, directional stretch, the junction angle be-
comes 180° or zero, and the parallel fractures dominate.
Interface debonding is found to be dominating the fracture
development upon reaching the fracture saturation stage. Be-
fore that, mechanically the fractures arrest at the layer
boundary during sequential infilling. Only after the fracture
saturation is reached, the interface debonding dominates
fracture occurrence. As an example, Fig. 7(a) show the mod-
eling results of interface debonding for model under isotro-
pic loading (A=1). During the fracture infilling process [as
shown in Figs. 5(a)-5(e)], polygonal fracture network forms
gradually until the fracture saturation is reached [Fig. 5(f)].
After that, as shown in Fig. 7(a), the interface debonding
starts from the fracture network, which forms many “islands”
(the areas bonded to the top layer) and “lake” (the area of
interface debonding) surrounding them. When external loads
continue to increase, debonding area increases. Conse-
quently, the islands become smaller and smaller, whereas the
lake around the islands become larger and larger. The previ-
ous theory about fracture spacing using two-dimensional and
plane-strain models suggests that further strain after the frac-
ture saturation will be accommodated by the opening of the
existing fractures. Here, our three-dimensional modeling
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FIG. 6. RFPA modeling results
for models with different principal
stress ratio. Left: fracture patterns;
Right: fracture locations. (a)—(i)
corresponding to the principal
stress ratio A=0, 0.125, 0.25,
0.375, 0.5, 0.625, 0.75, 0.875 and
1, representing far-field loading
conditions from directional load-
ing to isotropic loading (see Ref.

[29)).

provides a second mechanism for this strain accommodation,
that is, the fractures propagation along the layer interface.
Looking at the fracture induced stress redistribution in the
interface area after fracture saturation helps to illustrate the
interface debonding mechanism. As sown in Fig. 7(b), com-
paring with other areas, the tensile stresses in the islands may
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FIG. 7. RFPA modeling results of interface fracturing. induced
stress redistribution for model with principal stress ratio A=1. The
cross sections are taken from the interface plane: (a) the interface
debonding; (b) stress redistribution. The stress is expressed in mini-
mum principal stress.
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be high enough to cause further debonding of the interface,
and, therefore, the fractures propagating horizontally in the
layer interfaces dominate the fracture pattern development.

IV. DISCUSSIONS

In our numerical investigations, three types of numerical
tests were performed: “isotropic stretch,” in which the entire
layer was stretched uniformly with principal stress ratio A
=1; “anisotropic stretch,” in which the layer was stretched
biaxially with principal stress ratio 0 <A <1 and “directional
stretch,” in which the layer was loaded from two ends, that
is, uniaxially with principal stress ratio A=0. We observed a
change in the way in which fracture occurred as the loading
method in the system was varied: for isotropic stretch, more
regular shaped polygons formed. For anisotropic loading,
polygons did not formed in regular shape, but rather formed
by laddering. In this process, fractures propagate more or
less parallel to each other. As the stretch strain increased
further, perpendicular fractures form, joining two of the par-
allel fractures like the rungs of a ladder. The uniaxial stretch
produces the pattern of parallel fractures.

The modeling results that fracture set reaches saturation
with respect to principal stress ratio has important implica-
tions for the interpretation of fracture spacing data. It is gen-
erally recognized from fracture spacing theory [10,14] that
fractures in an embedded layer under uniaxial stretch usually
tend to distribute approximately uniformly when fracture set
is well developed (saturation), and it has been used as a basic
assumption in both empirical and analytical models of frac-
ture spacing. It is also said that a low deviation of fracture
spacing represents a high degree of fracture saturation. Our
modeling shows that this principle is no longer valid for
situations that three-dimensional effects and multiaxial load-
ing conditions have to be considered. It is well known from
empirical facts that, in some cases, highly scattered fracture
spacing is observed but no satisfactory explanation has been
put forward as to why this scatter exists. Some investigators
believed heterogeneity may serve as a possible reason, but
the fracture pattern transition from parallel to polygonal im-
plies that heterogeneity is not the only reason, particularly in
the case for isotropic loading conditions. We use Fig. 8 to
illustrate this point. The common method for measuring frac-
ture spacing is the line (or scanline) method [10] (Fig. 8).
Traverses are taken perpendicular to the average strike of the
fracture set either along cross sections of a layer or along the
surface of a layer to estimate the distance, L, between two
neighboring fractures. The fracture spacing theory [10,14]
indicates a consistent measure of L for a well-developed
fracture pattern (saturated). However, this is true only when
the layer is loaded uniaxially, in which parallel fractures
forms. For fractured layer under biaxial loading conditions,
the line spacing can be widely scattered even for a well-
developed fracture pattern (Fig. 6). As shown in Fig. 8, even
for isotropic loading (A\=1), due to the island fracture net-
work developed in x-y plane, the spacing observed in two
scanlines perpendicular to each other across the central point
shows very different fracture distributions. When we plotted
the spacing L versus the principal stress ratio N\ for data
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Elastic Modulus

FIG. 8. (Color online) Measurement of fracture spacing using
scanlines (red) across the central point of the numerical model and
parallel to two principal stress directions, respectively. The points in
the lines indicate the intersect point of line with fractures. The dis-
tance L between two neighboring points represents its fracture
spacing.

obtained using such scanline method [Fig. 9(a)], we found
that the fracture spacing measured from lines with different
directions show a different scale law of fracture spacing to
principal stress ratio. When the ratio increases from 0O to 1,
the spacing Ly measured in the scanline parallel to the mini-
mum principal stress decreases, whereas the spacing Lx mea-
sured in the scanline parallel to the maximum principal stress
shows a very little increase. In both situations, big scatter is
founded. Bearing this in mind, it is reasonable to raise doubts
about the usefulness of field data taken along scanlines on
cross sections of a layer. If we are correct, the suitability of
the widely used scanline method for measuring fracture spac-
ing [10] should be carefully reconsidered. Although an alter-
native area method was suggested by Wu and Pollard [10],
their method seems not suitable for fracture patterns such as
the polygonlike fracture network. Further work on a more
general method for measuring fracture spacing, which is use-
ful for outcrop studies, is worthwhile to pursue. Since the
polygonal area statistically shows a uniform distribution
when the fractured layer is well developed, a scale for frac-
ture network area spacing with layer thickness may provide
an alternative measure for fracture spacing investigation. Al-
though further field evidence is needed to support our obser-
vation, we strongly believe that, this fact, along with the
errors introduced by the spacing measurement method, could
explain more reasonably the considerable scatter in some
field data reported in the literature. This conclusion also sup-
ports the point made by Wu and Pollard [10] that one of the
items to consider when gathering spacing data is how well
the fracture set is developed. Measuring fracture spacing us-
ing the scanline method from fracture sets without any infor-
mation about their loading conditions is unlikely to lead to
meaningful insights about the fracture spacing, because spac-
ing is so sensitive to the applied principal stress ratios.

V. CONCLUSIONS

Three major results are relevant to the study of fracture
spacing.

First, numerical results of a continuous transition from
parallel to polygonal fracture patterns with principal stress
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ratio provides the clear convincing theoretical explanation
for fracture spacing. In our numerical investigations, three
types of numerical tests were performed: isotropic stretch,
anisotropic stretch, and directional stretch. We observed a
change in the way in which fracture occurred as the loading

PHYSICAL REVIEW E 73, 056120 (2006)

method in the system was varied: for isotropic stretch, more
regular shaped polygons formed. For anisotropic loading,
polygons did not formed in regular shape, but rather formed
by laddering. The uniaxial stretch produces the pattern of
parallel fractures. If we define fracture spacing in a more
general way, such as area spacing instead of line spacing,
then, the fracture spacing law founded in the two-
dimensional plane strain model is also valid for the three-
dimensional model under biaxial loading conditions. That is,
for any combination of layer-parallel principal stresses, frac-
ture spacing decreases rapidly with strain in the early stages
of loading and then decreases less rapidly, finally reaching a
nearly constant value, beyond which a greater applied strain
will not change the spacing significantly.

Second, the modeling shows how subcritical fracture ini-
tiation, growth, and coalescence can be used to predict clus-
ter formation, a phenomena representing an exception to the
widely accepted fracture spacing theory [10,14] based on
models assumed to be homogeneous, in which the patterns
are formed by fractures that propagate in straight lines and
interact to form an array of polygons. Our models with het-
erogeneity being taken into account show that the fractures
tended to propagate shorter distances, and the polygons are
formed by the coalescence of fractures.

Third, interface debonding is found to be dominating the
fracture development upon reaching the fracture saturation
stage. Before that, mechanically the fractures arrest at the
layer boundary during sequential infilling. Only after the
fracture saturation is reached, the interface debonding domi-
nates fractures occurrence. The previous theory about frac-
ture spacing using two-dimensional and plane-strain models
suggests that further strain after the fracture saturation will
be accommodated by the opening of the existing fractures.
Our three-dimensional modeling provides a second mecha-
nism for this strain accommodation, that is, the fractures
propagation along the layer interface.

In summary, we have performed an extensive numerical
modeling study of fracture pattern formation in cases from
the directional to isotropic stretch. Our results provide reality
modeling of the experimentally observed phenomena, which
helps the understanding of the complexity of the pattern for-
mation process in this system.
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