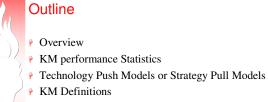
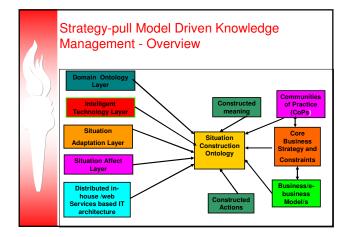
The HKU Scholars Hub The University of Hong Kong 香港大學學術庫



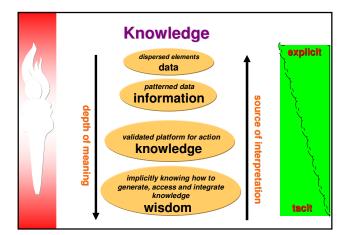
Title	CoPs-Centered Knowledge Management
Author(s)	Khosla, R
Citation	CITE Seminar: Communities of Practice (CoPs) Centered Knowledge Management, Hong Kong, China, 15 December 2006
Issued Date	2006
URL	http://hdl.handle.net/10722/43975
Rights	Creative Commons: Attribution 3.0 Hong Kong License


CoPs-Centered Knowledge Management

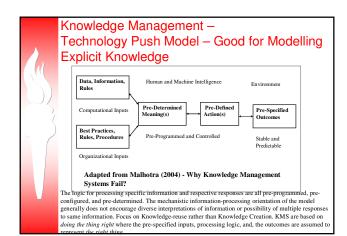
Associate Professor Rajiv Khosla Director, Business Intelligence Institute-Business Systems and Knowledge Modelling Laboratory <u>http://www.latrobe.edu.au/bskm</u> La Trobe University Bundoora, Melbourne, Victoria 3086 Australia email: r.khosla@latrobe.edu.au Tel: +613 94793064, Fax: + 613 94795971

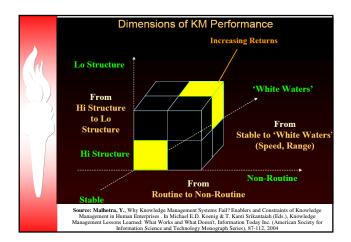
P Communites of Practice and Strategy alternatives

Knowledge Management Architecture



KM Performance Statistics


P Industry estimates have pegged the failure rate of technology implementations for business process reengineering efforts at 70 percent. Recent industry data suggest a similar failure rate of KM related technology implementations and related applications (Darrell et al., 2002, Malhotra 2005)

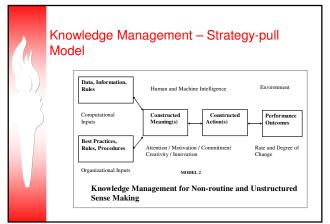

Knowledge Management Definition

Input-Driven KM Definitions

- Knowledge Management promotes an integrated approach to identifying, capturing, retrieving, sharing, and evaluating an enterprises information assets. These information assets may include databases, documents, policies, procedures, as well as the un-captured tacit expertise and experience stored in individual's heads. - Oracle Magazine, 1998
- Knowledge management systems (KMS) refer to a class of information systems applied to managing organizational knowledge. That is, they are IT-based systems developed to support and enhance the organizational processes of knowledge creation, storage/retrieval, transfer, and application'' (Alavi and Leidner, 2001)

Knowledge Management Definition

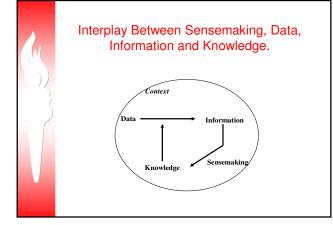
Processing-driven KM Definitions


- "KM entails helping people share and put knowledge into action by creating access, context, infrastructure, and simultaneously reducing learning cycles" (Massey et al., 2001)
- "Knowledge management is a function of the generation and dissemination of information, developing a shared understanding of the information, filtering shared understandings into degrees of potential value, and storing valuable knowledge within the confines of an accessible organizational mechanism" (CFP for Decision Sciences special issue on Knowledge Management, 2002)

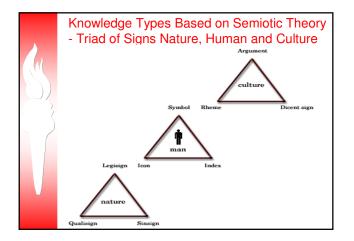
Knowledge Management Definition

P Outcomes-driven paradigm of KM

 "Knowledge Management refers to the critical issues of organizational adaptation, survival and competence against discontinuous environmental change. Essentially it embodies organizational processes that seek synergistic combination of data and information-processing capacity of information technologies, and the creative and innovative capacity of human beings" (Malhotra,1998b)

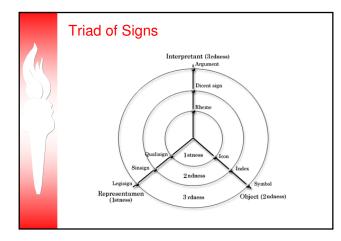

Constructing Meaning and Sensemaking

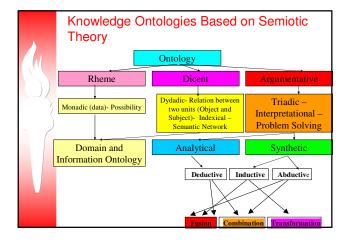
- Constructing meaning is based on individual's interpretation of a situation based upon there existing (or learnt) cognitive models, goals and tasks related to the situation; it represents the personal meaning or sense ascribed to information related to certain task or situation. This description is theoretically underpinned in the area of sensemaking and naturalistic decision making which as the name suggests is about constructing (or interpreting) meaning or making sense of a given situation
- P Knowledge acts as an interpretant to turn data into information.
- P In a given situation, we may encounter familiar as well unfamiliar or new information. The new information causes some level of dissonance prompting the question "What's the story here?". In the process of resolving this dissonance we create knowledge
- Sensemaking process takes place in a context. Data to one person is someone else's information.



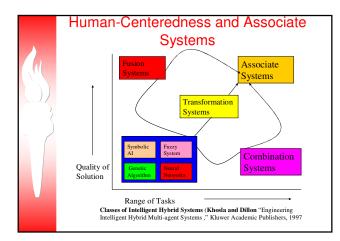
Constructing Meaning and Sensemaking

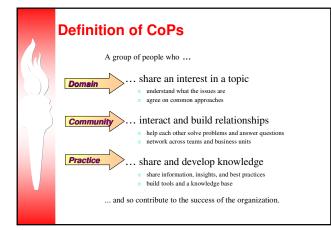
For purpose of interpreting, constructing meaning and resolving the dissonance, people engage in organised sensemaking which involves use of cognitive constructs for labeling and categorizing to stabilize the streaming of experience. The process of labeling and categorisation involves connecting abstract and impersonal concepts with concrete and personal concepts which are amenable to functional deployment. For example, functional deployment may involve diagnostic labels in medicine that suggest a plausible action or treatment



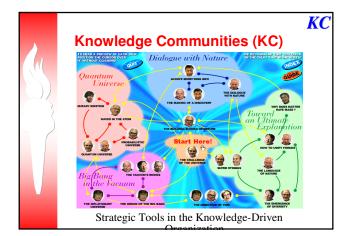


	(1989) - S	Signs of Na	of Signs (S ature, Signs of Culture	
S)	A sign is: (Signs of Nature)	a "mere quality" QUALISIGN (e.g., red color)	an "actual existent" SINSIGN (e.g., red cloth)	a "general law" (or perceptual habit) LEGISIGN
	A sign relates to its object in having: (Signs of Humans)	"some character in itself" (e.g. metaphor, picture of Eiffel tower)) ICON	-some existential relation to that object" (e.g. symptom to a disease) INDEX	"some relation to the interpretant" SYMBOL (e.g. influenza, cat)
	A sign's interpretant represents it (sign) as a sign of: (Signs of Culture)	"possibility" RHEME (e.g., nouns can be referred as possible objects) – Domain concepts	"fact" DICENT (e.g., Whole Sentences) Information Ontology – Semantic Network	"reason" ARGUMENT

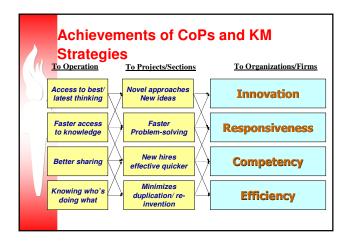





Communities of Practice (CoPs) -Knowledge Communities (KC)



KC is always adopted to implement organizational transformation, and have a critical role.

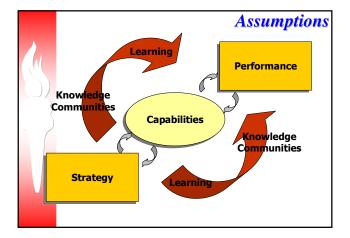


Strategy Alternatives

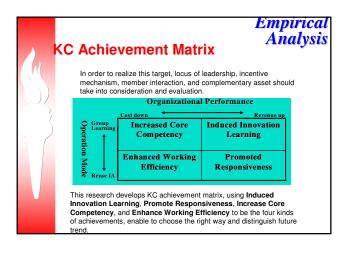
- P The first strategy alternative is Induced Innovation. This features cross-domain sharing to facilitate innovation according to common interests. CoPs using such a strategy also provide a safe, or low-cost, infrastructure for trial and error attempts.
- strategy also provide a sale, or low-cost, intrastructure or irrat and error autempts. • The second strategy alternative is **Promoted Responsiveness**. This stresses the importance of collecting and classifying knowledge to provide pre-warning signals or issue-oriented solutions to members to speed up their reactions to particular events and issues.
- and issues. P The third strategy alternative is Increased Core Competency. Members in the CoPs share their experiences with others and access domain experts easily. CoPs enable the spreading of knowledge between senior and junior members and disseminate the organization's commonalities and norms effectively.
- The fourth strategy alternative is Enhanced Working Efficiency. CoPs reuse existing intellectual property, share related documents and authors' information, and enhance productivity with easy to study practical knowledge

I	Charactor Strategy		Comparison Itive	of each	n CoP	S
())	Dimension alternatives	Connection	Interface	Entity	Performan ce	Key point
	Induced Innovation	Support new ideas and creativity	Establish safe infrastructure for new thinking	Common Interest	Profit Up	Group Leaning
	Promoted Responsivenes s	Find people with similar experience	Willing to respond to problems	Common Language	Profit Up	Reuse IA
	Increased Core Competency	Find experts	Coach of new knowledge	Regulation	Cost Down	Group Learning
	Enhanced working Efficiency	Find developed practice	Positive Recognition	Know How	Cost Down	Reuse IA

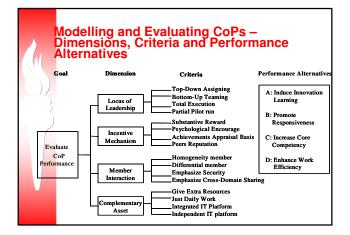
Assumptions


Relationship to Strategy

- Strategy focus creating a distinctive set of organizational capabilities
- Capabilities focal point from which strategies are built
- Capabilities generate the organization's value and produce results
- Organizational performance depends on quality and reach of its strategies
- Success is based on the organization's ability to provide the necessary capabilities for individuals to take effective action

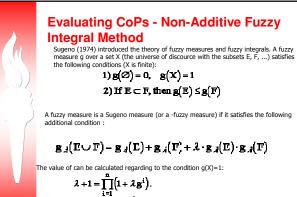

Assumptions Communities of Practice are situated in a strategic context

- Aligned with strategic imperatives
- Create the capabilities needed to link strategy with performance
- Generate meta-capabilities and new knowledge
- Create organizational readiness for change (e.g.Value Creation Networks)
 - Multiple partners with individual expertise
 - Collaboration and partnership capabilities and mindsets
 - Technology enabled



Survey based on 16 Criteria and Four Strategy Alternatives

- Study involved survey of members of Industrial Technological Research Institute, Taiwan using the 16 criteria
- Members responses were used to determine the weight they assigned to each criteria (normalised between 0 and 1) and ranking of each criteria
- P Members also scored the effectiveness of four strategy alternatives against each criteria on scale of 0 to 100.

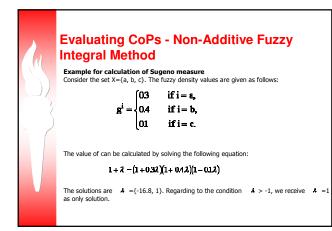

ſ		Locus of Leadership				Incentive Mechanism			
	Criteria	Top-Down Assigning	Bottom-Up Teaming	Total Execution	Partial Pilot run	Substantive Reward	Psychological Encourage	Achievements appraisal Basi	Peers
	Weight (Ranking)	0.075 (4)	0.037 (15)	0.044 (13)	0.059 (9)	0.074 (5)	0.042 (14)	0.095 (2)	0.053 (11)
		Member Interaction				Complementary Asset			
	Criteria	Homogeneity member	Differential member	Emphasize Security	Emphasize Cross-Domain Sharing	Give Extra Resource	Just Daily Work	Integrated IT Platform	Independer IT platform
	Weight (Ranking)	0.055 (10)	0.068 (6)	0.067 (7)	0.098 (1)	0.067 (7)	0.045 (12)	0.086 (3)	0.037 (15)

Evaluation of CoPs survey - FUZZY MCDM - NON-ADDITIVE FUZZY INTEGRAL METHOD

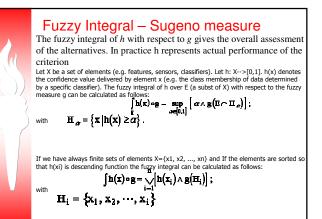
- In traditional multi-attribute evaluation approaches, each attribute must be independent of the others
- P Characteristics that have interactions and mutual influence among attributes or criteria in a real system cannot be handled by the concept of traditional additive measures alone
- P To assess CoPs criteria and strategy alternatives, it is more appropriate to apply a fuzzy integral model in which it is not necessary to assume additivity and independence.
- P This research adopts fuzzy MCDM to evaluate each of the possible strategy alternatives in a dynamic environment with multiple dimensions
- Fuzzy integral computes the maximal grade of agreement between the objective evidence and expectation

Evaluating CoPs - Non-Additive Fuzzy Integral Method

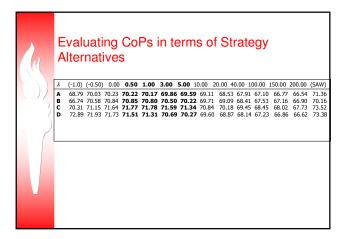
- Fuzzy measure can be considered as generalization of the classical probability measure. A fuzzy measure g over a set X (the universe of discourse with the subsets E, F...) satisfies the following conditions when X is finite:
- P 1. when **E** is an empty set then g(E) = 0.
- P 2. g(X) = 1.
- P 3. when **E** is a **subset** of **F**, then g(E) < g(F). ■
- In practice, g represents the grade of subjective importance of each criterion.

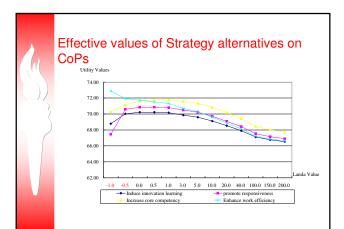


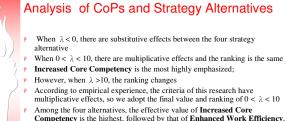
 $g_{\lambda}(\{x_{1}^{k}, x_{2}^{k}, ..., x_{n}^{k}\}) = \frac{1}{\lambda} [\prod_{i=1}^{n} (1 + \lambda g_{\lambda}(\{x_{i}^{k}\})) - 1]$


Evaluating CoPs - Non-Additive Fuzzy Integral Method

- In the ranking of effective values between criteria A and B, there are three conditions:
- ∉ If λ>0, then , $g_{\lambda}(A \cup B) > g_{\lambda}(A) + g_{\lambda}(B)$ which represents the multiplicative effect occurring between *A* and *B*;
- P If $\lambda = 0$, then , $g_{\lambda}(A \cup B) > g_{\lambda}(A) + g_{\lambda}(B)$ which represents the additive effect occurring between *A* and *B*;
- P If A < 0, then , $g_A(A \cup B) > g_A(A) + g_A(B)$ which represents the substitutive effect occurring between *A* and *B*.


In	Integral Meth	oPs - Non-Additive Fuzzy od
	{a} {b} →	g({a}) = 0.3 g({b}) = 0.4
	{c} {a, b} {a, c}	$g(\{c\}) = 0.1$ $g(\{a, b\}) = g(\{a\}) + g(\{b\}) + Ag(\{a\})$ $g(\{b\}) = 0.82$ $g(\{a, c\}) = g(\{a\}) + g(\{c\}) + Ag(\{a\})$ $g(\{c\}) = 0.43$
	{b, c} {a, b, c}	$\begin{split} g(\{c\}) &= 0.43\\ g(\{b,c\}) &= g(\{b\}) + g(\{c\}) + \textbf{i} \ g(\{b\})\\ g(\{c\}) &= 0.54\\ g(\{a,b,c\}) &= g(X) = 1 \end{split}$





Among the four alternatives, the effective value of **Increased Core Competency** is the highest, followed by that of **Enhanced Work Efficiency**, **Promoted Responsiveness**, and **Induced Innovation** respectively.

High	Weight and I	Low	Effec	ctive	Value	Э
Dim	Weight/Effective Value ension/Criteria	Weight of cross dimension	Induced Innovation	Promoted Responsive- ness	Increased Core Competency	Enhanced Work Efficiency
Loci	is of Leadership					
1	Top-Down Assigning	0.075	65.6	70.3	79.0	77.0
H	Bottom-Up Teaming	0.037	78.8	71.7	71.5	69.8
, 1	Total Execution	0.044	63.9	72.3	72.1	73.5
I	Partial Pilot run	0.059	74.5	67.7	74.6	70.8
	ntive Mechanisms					
) 5	Substantive Reward	0.074	69.7	69.3	74.6	77.2
	Psychological Encouragement	0.042	77.6	71.8	72.1	73.7
·	Achievements Appraisal Basis	0.095	70.4	73.5	76.9	78.8
H	Peer approval	0.053	77.7	71.6	73.1	80.2
Men	aber Interaction					
H	Iomogeneity of members	0.055	58.1	67.2	72.2	75.0
I	Differential members	0.068	81.4	68.2	70.2	66.5
	Emphasis on Security	0.067	56.0	56.9	67.0	63.4
H	Emphasis on Cross-Domain Sharing	0.098	83.3	74.9	75.2	70.2
Com	plementary assets					
5	Supplying Extra Resources	0.067	73.7	71.5	74.6	74.3
	Routine Daily Work	0.045	59.3	65.5	67.1	69.5
	ntegrated IT Platform	0.086	76.1	77.0	77.0	80.4
	ndependent IT platform	0.037	65.6	65.7	68.9	65.0

Analysis of CoPs and Strategy Alternatives

Instead of qualitatively assessing the issue of CoPs, this research provides a practical quantitative model and approach for research institutes and enterprises to conduct their own CoPs research in the knowledge-based economy. Before distributing the research questionnaires, we conducted a pre-test with experts to both help us modify our questions to ensure accessibility, and to help us choose important dimensions and criteria. Through the experts' review of and input into the survey design, this random the experts review of and input into the survey design, this research identifies four dimensions and sixteen critical criteria in the CoPs research area. We utilized pair wise comparison in the first level to establish the relative importance of the four strategic constructions and, repeated this in the second level for criteria-weighting, and finally concluded various AHP weights.

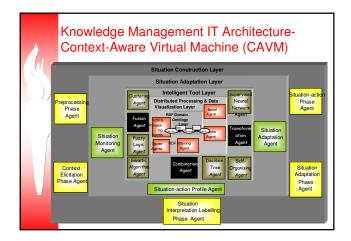
Analysis of CoPs and Strategy Alternatives

- Weights Assigned to Dimensions and Criteria
 By employing fuzzy logic, the decision-making methodology eliminates the issue dimensions implies that they are equally important. Nevertheless, the dimension weighting of Member Interaction was the highest, which indicates people interface is key to knowledge sharing and emphasizes the human aspect of CoPs. This result again supports the idea that the essence of a community is its members and that they organize themselves and participate because they get value from their participation. Incertive Mechanisms was weighted the second. The result supports the idea that when you reward people for certain behavior, for example, sharing knowledge, they will want to do it more. Therefore, developing meaningful rewards is essential to sustaining community goals and achieving a knowledge-centered organization.
 Among the sixteen criteria indicates that CoPs practitioners hope to break through boundaries in new thinking and work patterns while enlarging cross field synergy by way of mutual exchange and integration.

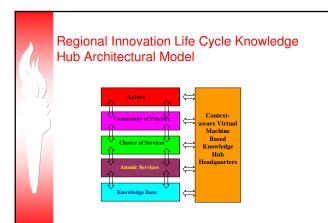
Analysis of CoPs and Strategy Alternatives

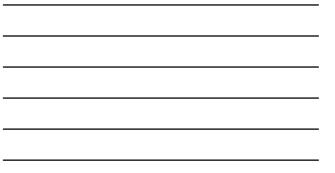
Perception of the Assessment of CoPs

- Apart from functional divergence, many organizations consist of different divisions with distinct projects targeting correspondent industries and customers. This mix usually causes different acknowledgements and choices of strategies inside CoPs. When first implementing CoPs, such disagreements may even be major obstacles in their functioning. In addition, differences in strategic preferences bring about not only different outcomes but also different operational modes and preferred performances.


Analysis of CoPs and Strategy Alternatives

- Final Ranking of the Fuzzy Integral
 - In the possible rankings we surveyed, we found that when $0 < \lambda < 10$, four alternatives have the same ranking with non-additive multiplying value. As for utility value, **Increased Core Competency** is the highest, which may provide obvious benefits as a starting point when **Induced Innovation** becomes the greatest benefit in the future.
 - After analyzing the survey results, this research provides insight into preferences for the strategy alternatives created by CoPs. The results show that there are gaps between the effective value (scores 56.0 to 80.2) and ideal value (score 100) of CoPs and provide directions by which to improve the CoPs' performances. The criteria with high weights but low effective values should be improved first.

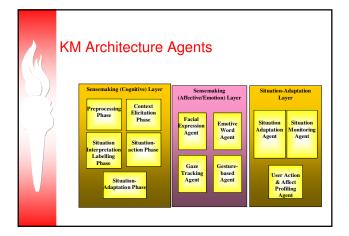

Application - Knowledge Management in **Regional Communities**


- The Regional Innovation Leadership (RIL) cycle has been chosen as the background environment because it synthesizes the main scientific contributions related to innovation and territorial business development based on the strategic role that is played by knowledge. These contributions highlight the importance of knowledge as enabling factor for building sustainable competitive advantage at territorial level. According to region-enterprise metaphor, RIL represents "the collective capacity of a regional community to initiate and sustain significant changes to work effectively with forces that shape change". RIL cycle is supported by a number of methodologies and tools for promoting territorial cluster-based development, forstering interactive learning and innovation processes, assisting and sustaining local institutions and policy makers in their planning activities.

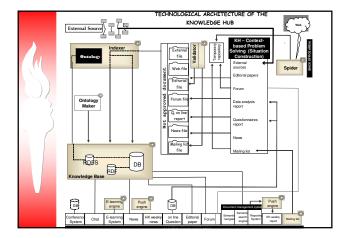
- planning activities. The organizational form we want to support for feeding the RIL cycle is the *community of practice* (CoP). Final goal is to create and maintain a complex knowledge management system for knowledge sharing and decision support which is aimed at a community of entrepreneurs, businessmen and government officials, enabling *Regional Innovation Leadership* (RIL)

Actors - Regional Innovation Leadership (An Example)

- The Regional Innovation Leadership (RIL) cycle has been chosen as the background environment because it synthesizes the main scientific contributions related to innovation and territorial business development based on the strategic role that is played by knowledge. These contributions highlight the importance of knowledge as enabling factor for building sustainable competitive advantage at territorial level. ٩
- The actors identified that interact with the Knowledge Hub_belong to the following communities:
- Local and regional institutions, directly involved in planning and carrying out territorial growth and innovation projects;
 Local entrepreneurs and trade associations, representing the economical power resource of a territory;
 Citizene carl a content of the conomical power resource of a territory;
- Citizens_and government officials, directly or indirectly involved in the local growth;
- Corporate headquarters and enterprises, attracted by new favorable environmental conditions and potentially interested in investing in the territory; Public and private research centers, representing the main source of innovation.



Cluster of Services


- The Knowledge Hub is aimed at empowering all above categories of users and amplifying the network of existing relations among the typologies of actors. This purpose is achieved by increasing the frequency and effectiveness of their learning and knowledge sharing processes, through the organization of a *front office* area composed by dynamically configurable clusters of services. Knowledge Hub is able to presents a different, tailored set of atomic services to each Community of practice, satisfying their needs and enhancing their potentialities The front-office area is organized as a Web-based portal and functionally corresponds to the *Belief Agent* in the distributed processing layer of the Context-Aware Virtual Machine (CAVM). It represents the interface to the system through which the Knowledge Hub actors' beliefs are checked, imported into the system and converted into knowledge to be semi-automatically associated with concepts maintained by the RDF agents in the distributed processing layer of CAVM also provide added functionality to the user in the first-office area.

	Sen		ee Levels king and in			-
	Behavioral level	Situation Awarenes s	Inference/Reasoning (cognitive function)	Corresponding CAVM Constructs	Leveraging CAVM Layer	Leveraging CAVM Agents (some)
	Perception- action level	Sensing	Reflex/Reactive inference based on skills	Preprocessing	Reactive-agent Layer	Data aggregation, Data visualisation
	Procedural level	Situation recognition as a pattern matching activity	Remembering a rule or procedure: If Situation then Algorithm of actions	Learnt patterns, rules and associations	Intelligent Technology Agent Layer	Neural Network, Clustering, fuzzy-neuro fusion agents
	Constructive level	Situation constructio n	Formulating hypotheses and decision pathways that involve possible actions, constraints and resources	Context Elicitation Phase, Context-based Situation Interpretation Labeling Phase, Situation-action phase, Situation Adaptation Phase	Sensemaking (cognitive) Layer, Situation- Adaptation Agent Layer Sensemaking (affective) Layer	Situation Monitoring, Situation Adaptation, User- Profiling, Non-verbal Affective agents

Knowledge Hub Agents

Indexing Agent

- creates the link between documents and knowledge base. It allows associating to a document some concepts or semantic assertions, structured as subject-predicate-object sentences.
- Spider agent
 - Finds new knowledge items to be inserted in the knowledge base. The Knowledge Hub Headquarters members configure the spider using a web-configuration facility.

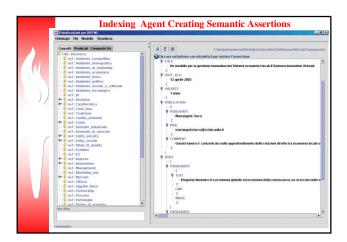
Validator agent

 allows adding notes and comments, distinguishing keeping them separate from the rest of the document. In this way, each member of a community of practice (CoP) can visualize both the notes and their authors, individuating immediately the core part of a document.

Indexing Process

For example, referring to the semantic assertion "Current document/Xpath speaks about an enterprise", the system will generate the following RDF statement:

 1. <[xpath], indi:speak_about, onto: enterprise>


- The indexing agent allows for specifying not only a set of concepts, but also their instances referring to the semantic assertion "Current document/Xpath speaks about the enterprise ACME"
 - 1. <[xpath], indi:speak_about, doc:ID_01>
 - 2. < doc:ID_01, rdf:type, onto: enterprise>
 - 3. < doc:ID_01, indi:name, "ACME">

Indexing Process

Example:

- Current document/Xpath speaks about enterprise that invest in technology", the system will generate the following set of RDF statements:
- 1. <[xpath], indi:assert, doc_st_01>
- 2. <doc_st_01, rdf:type, rdf:statement>
- 3. <doc_st_01, rdf:subject, onto:enterprise>
- 4. <doc_st_01, rdf:predicate, onto:invest>
- 5. <doc_st_01, rdf:object, onto:technology>

- Conclusion
 CoPs and Strategy alternatives used as central theme for design KM systems
 Study of CoPs conducted in industry
 Study Shows that CoPs exist beyond functional boundaries in organisations
 KM approach based on mix of Technology push model (largely explicit knowledge) and Strategy-pull model
 Fuzzy Integral method used for MCDM
 Sensemaking modeled using situation construction and adaptation constructs
 Three levels of behaviour employed for situation modeling.

- constructs Three levels of behaviour employed for situation modeling Dynamic user adaptation and optimization for constructing new meaning Also intend to model human emotional states as part of KM in future work (situation-action-affect profiles) Implications for e-learning Multi-layered multi-level KM architecture