-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

On the identification of categories and choices for specification-

it based test case generation

Author(s) Chen, TY; Poon, PL; Tang, SF; Tse, TH

Citation gngfé)rmatlon And Software Technology, 2004, v. 46 n. 13, p. 887-

Issued Date | 2004

URL http://hdl.handle.net/10722/43691

Rights Creative Commons: Attribution 3.0 Hong Kong License



https://core.ac.uk/display/37882979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HKU CSIS Tech Report TR-2004-02

To appear innformation and Software Technology

On the Identification of Categories and Choices
for Specification-Based Test Case Generdfion

T.Y. Chen
School of Information Technology
Swinburne University of Technology
Hawthorn 3122, Australia
tchen@t.sw n. edu. au

Pak-Lok Poon
School of Accounting and Finance
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong
af pl poon@ net . pol yu. edu. hk

Sau-Fun Tan§ T.H. Tsed
Department of Finance Department of Computer Science
and Decision Sciences and Information Systems
Hong Kong Baptist University The University of Hong Kong
Kowloon Tong, Kowloon, Hong Kong Pokfulam Road, Hong Kong
sftang@bkbu. edu. hk tse@si s. hku. hk
Abstract

The category-partition method and the classification-tree method help cdntst cases
from specifications. In both methods, an early step is to identify a set ofjaréte (or
classifications) and choices (or classes). This is often performed phlaocamanner due to the
absence of systematic techniques. In this paper, we report and discesgmpirical studies
to investigate the common mistakes made by software testers in such an ad twachpphe
empirical studies serve three purposeg 1§ make the knowledge of common mistakes known
to other testers so that they can avoid repeating the same mistakestgcilitate researchers

*This is an extended and revised version of [4].

TThis research is supported in part by a grant of the Researaht$&sCouncil of Hong Kong (Project No.
HKU 7029/01E), an Australian Research Council Discovery Grant @etoNo. DP 0345147), and an Internal
Competitive Research Grant of The Hong Kong Polytechnicéisity (Project No. A-PC30).

* Also with the School of Information Technology, Swinburngitgrsity of Technology, Australia.

8 Corresponding author.


Administrator
HKU CSIS Tech Report TR-2004-02


and practitioners develop systematic identification techniques,@nd provide a means of
measuring the effectiveness of newly developed identification techniBasgd on the results
of our studies, we also formulate a checklist to help testers detect such esistak

Keywords: Category-partition method, choice relation framework, classification-tréleaue
specification-based testing, test frame

1 Introduction

There are two broad categories of software testing: whiteamd black-box approaches. Any test
case generation method or technique falls under one or lidtlese approaches. Wmhite-box(or
implementation-basgdesting test cases are generated according to information defiogdthe
source code of the program under test. White-box testingaylgirequires the coverage of certain
aspects of the program structures. Control flow testing [®R,data flow testing [10, 12, 15], and
domain testing [7, 13] are some examples.

In contrast to white-box testingpJack-box(or specification-basedestinggenerates test cases
without the knowledge of the internal structure of the pemgr In most black-box testing methods,
test cases are generated according to the specificatiorese Hpecifications can be written in a
formal language such as Z [14], or informally such as in rismeaEnglish. Black-box testing
methods have been developed both for formal and informalipegtions. Chen et al. [4] argue
that many real-life commercial specifications are infornaad hence the applicability of black-
box testing based on formal specifications is rather résttidn this respect, the category-partition
method (CPM) [1, 6, 9] and the classification-tree method (CTBVIB] are considered to be very
useful, because they can also be applied to informal spaidits.

In CPM and CTM, an early step is to identify a set of categoritso(nown as classifications)
and their associated choices (also known as classes), whicinn forms the basis for the sub-
sequent generation of test case®bviously, the chance of detecting faults from the software
depends on the comprehensiveness of the generated test wdseh in turn depends on the
comprehensiveness of the identified categories and choiég$or example, a valid choice is
missing, then any fault associated with this choice may aatdiected. We observe that neither the
original developers of CPXMCTM nor follow-up researchers have proposed a systematibodet
for identifying categories and choices from informal sfieations. As a result, this identification
process is often performed in an ad hoc manner. The qualityeofesulting test cases may be in
guestion, especially when the specification is informal.

Motivated by this problem, we have conducted three empigtiadies on the identification
of categories and choices from informal specificatibn®ur primary objective is to find out the
common mistakes made by software testers when identifyategories and choices in the absence
of a systematic process. Our studies have three contriiziti@) to reduce the chance of repeating
these mistakes by making them known to testénga(shed light on the development of systematic

! Classifications and classes in CTM are equivalent to caegand choices in CPM, respectively. Hence, in
the rest of the paper, the terms “classifications” and “aaieg” will be used interchangeably, and so are the terms
“classes” and “choices”.

2Part of the results of these studies has been reported iwfith focuses mainly on how to teach CTM to
undergraduates in the computer science and software emgigalisciplines.

2



techniques for identifying categories and choices, andq provide a means of measuring the
effectiveness of newly developed identification techngjireterms of their ability to avoid or
reduce mistakes. Based on the observations of the studieslsavéormulate a checklist to help
testers detect such mistakes.

The rest of this paper is organized as follows. Section Areglthe background concepts of
CPM and CTM. Section 3 gives an overview of function models amttion rules. Section 4
discusses important terminology and definitions, paridulon various types of problematic cat-
egory and choice. Section 5 describes the settings of ourriealstudies. Section 6 reports and
discusses the results and observations of our studieseanchmends an identification checklist
to help testers detect problematic categories and cholgestion 7 discusses the validity of the
studies. Finally, Section 8 concludes the paper.

2 Background Concepts of CPM and CTM

2.1 Overview of CPM

In the category-partition method (CPM) [1, 9], environment conditiors a characteristic of the
state of the system at the time of executing a functional #nptarameteris an explicit input to a
functional unit, supplied either by the user or by anothegpam. For the ease of discussion, we
shall collectively refer to environment conditions andgraeters agactorsin this paper.

Categoriesare defined as the major properties or characteristics triathat affect the execu-
tion behavior of a functional unit. The values of each catggoe partitioned into distinct subsets
known aschoices In this paper, ) categories are enclosed by square bracket®) choices are
enclosed by vertical bat$, and €) the notation X: x| denotes a choicg| in the categoryX]. For
example, the choicElNumber of Students: 0| is the subsef0}, whereas the choic@®lumber of
Students>> 0| is the subse{1,2,...}.

Basically, CPM consists of the following six steps:

(1) Decompose a specification into functional urits that can be tested independently. For
eachu selected for testing, repeat steps (2) to (6) below.

(2) Identify the factors that affect the execution behawbr:. Hence, identify the categories
and their associated choices.

(3) Determine constraints among the identified choices.ekample, one choice may require
another to be present or absent.

(4) Use a generator tool to generate test frames based omtingocies and choices identified
in (2) and the constraints in (3). Each test frame is a set oicels, with each category
contributing to no more than one choice.

(5) For every test frame generated in (4), check whetherciimsplete or incomplete. Complete
test frames are useful for testing, whereas incompletdrtasies are discarded.

(6) For each complete test frame, generate a test case yiisglene single element from every
choice in that test frame.

3 Formal discussions on test frames and their completendidsengiven in Section 4.

3



Let us use the following example to illustrate the above epis:

Example 1 (CPM) Consider, for instance, a programthat reads an input filE containing two
integersm and n, and outputs the value of/lm+n). Let s, denote the specification far.
Suppose that, because of the simplicitysgf, it can be treated as one functional uni} in its
entirety, and hence no decomposition is needed as listegn($) of CPM above. In step (2),
[Status ofF| and [m+ n] are two possible categories identified with respect to arir@emwent
condition and a parameter, respectively, that affect trec@tion behavior ofr. The category
[Status oF] has three associated choices, nanm®tatus of-: Does Not Exist, |Status of: Exists
but Empty, and|Status ofF: Exists and Non-Empty On the other hand, the categdnyg+ n] has
two associated choices, naméiy+ n: # 0] and|m+ n: = 0|. The choicgm-+ n: # O] corresponds
to a well-defined result of Am+ n), whereas the choiden+ n: = 0| corresponds to an undefined
result involving division by zero.

After identifying the categories and choices, step (3) ive® the identification of constraints
among choices according @, . Here, a possible constraint is tH8tatus ofF: Does Not Exist
cannot be combined with any choice [m+ n| to form part of any complete test frame. This is
because the values nfandn are irrelevant iff does not exist.

In step (4) of CPM, a generator tool is used to construct a sétstfframes based on the
identified categories, choices, and constraints. Suppesgenerator tool produces six test frames,
namelyB; = {|Status ofF: Does Not Exist}, B, = {|Status of~: Exists but Empty}, Bs = {|m+
n:= 0|}, B4 = {|m+n: # 0|}, Bs = {|Status ofF: Exists and Non-Empty [m+ n: = 0|}, and
Be = {|Status ofF: Exists and Non-Empty |m-+ n: # 0|}.

After the above test frames have been generated, the npxsdtedetermine whether they are
complete or incomplete by checking with,. In this exampleB;, B>, Bs, andBg are complete
and hence useful for testing. On the other haBylandB,4 are incomplete and are discarded. We
shall differentiate complete test frames from others byingiBC instead ofB.

Finally, one test case is generated from each completersaseB* by selecting one value
from every choice irB°. Consider, for examplég (= Bs). A possible test case {Status ofF =
Exists and Non-Emptyn+n = 78}. |

Recently, Chen et al. observed several problems that wouttehthe effective application of
CPM. This observation motivated them to develophaice relation frameworltor supporting
category-partition test case generation. They also caadwempirical studies to demonstrate the
effectiveness of the framework. Readers may refer to [6] &aids.

2.2 Overview of CTM

Grochtmann and Grimm [8] have proposed a classificatiom+trethod (CTM) as an alternative to
CPM for generating test cases from specifications. This naetlag subsequently been refined by
Chen et al. [5].

In CTM, a classification tree organizes classifications aadsgs at alternative levels in a hier-
archical structure. (Recall from footnote 1 that classiiosa and classes in CTM are equivalent
to categories and choices, respectively, in CPM.) The bagcoach of CTM is very similar to
that of CPM — both of them aim at constructing a model of the tan#s in the input domain



Function Set of Corresponding Corresponding
Rule Valid Inputs Output Complete Test Frame
1 F does not exist Output the message BS = {|Status ofF: Does Not Exist}
“F does not exist”
2 F exists but is empty Output the message  BS = {|Status ofF: Exists but Emptj}
“F is empty”

3 F exists and it containsiandn | Output the message Bg = {|Status ofF: Exists and Non-Empty
such tham+n=0 “Undefined solution” Im+n:=0|}

4 F exists and it containsiandn Output the value | Bg = {|Status ofF: Exists and Non-Empty
such tham+n# 0 of 1/(m+n) |[m+n: #£ 0|}

Table 1: A Function Model for Program

so that combinations of compatible choices (or classes)oeagenerated and combinations of
incompatible choices (or classes) can be suppressed as farsaible. Since the identification

of categories (or classifications) and choices (or classegimmon to both CPM and CTM, our

discussions in Sections 5 to 8 will only refer explicitly to k2P

3 Overview of Function Models and Function Rules

Before we proceed further, we have to introduce the notionimétion models and function
rules [14]. Afunction modefepresents the behavior of the system at an abstract |levéhas
software developers and users can agree on the system drelakiput the need for programming
details. The mapping between a given set of inputs and theesgmonding set of outputs is
expressed by means ofanction rule This rule states precisely the preconditions for the fianct
to execute and how the outputs are related to the inputs. tNatenost function models assume
that the system is deterministic, or in other words, the saetef inputs would always lead to
the same system behavior and, hence, the same set of oulpukss paper, we also make this
assumption.

Consider Example 1 in Section 2.1 again. The function modepfogram is depicted in
Table 1. Each row corresponds to a function rule. The rigktraement in each row is a possible
complete test frame, from which a test case can be genewa¢zdcute the rule associated with this
row. Without doubt, sufficient complete test frames sho@denerated with a view to uncovering
any possible fault associated with each rule.

4 Terminology and Definitions

As introduced in Section 2.Tategoriesare the major properties or characteristics of factors that
affect the execution behavior of a functional unit. For gweategoryX] proposed by the subjects
in our studies, it may either be identified in accordance tighdefinition, or incorrectly identified
with something else in mind. In view of this situation, we lsinefer to any[X] identified by the
subjects as potential categorySimilarly, any|X: x| identified by the subjects is callecatential
choice



Definition 1 (Complete and Incomplete Test Frames)Atest frameB is a set of potential choices.
B iscomplete with respect tau if, whenever a single element is selected from every potehtice
in B, a standalone input fotz is formed. Otherwise, B imcomplete.

As mentioned in Section 2.1, complete test frames are usgdrerate test cases for testing.
On the other hand, incomplete test cases are not usefuklfiimge They should either be discarded
or extended into complete test frames [6]. Examples of cete@nd incomplete test frames have
been given in Example 1.

Further terminology and definitions will be required to lde tfoundation for the problems
related to the identification of categories and choices. yMad be introduced in this section.
Related examples will be given in the appendix.

Definition 2 (Set of Complete Test Frames Related to a Poteti Category) Let Tk, denote the
set of complete test frames af Given any potential categor)X] for  and all its associated
potential choicesX: x|, |X:Xz|, ..., |X:Xa|, we define theet of complete test frames related to
[X] as TR, ([X]) = {B® € TR, : |X: x| € B for somel <i < n}.

Definition 3 (Set of Complete Test Frames Related to a Potefti Choice) Given any potential
choice|X: x| in u, we define theet of complete test frames related to |X: x| as Tk, (|X:X|) =
{B e TR, : |X: x| € B}.

Definition 4 (Set of Complete Test Frames Related to a Test Frae) Given any test frame B for
u, we define theet of completetest framesrelatedto B as TR, (B) = {B® € TF, : BC B®}. Atest
frame B is said to bealid if TR, (B) # 0. Otherwise, it is said to bewalid.

We observe from Definitions 1 and 4 that a valid test frame nrayay not be complete.

Definition 5 (Relevant and Irrelevant Categories) Given any potential categoryX] for u, if
TR, ([X]) # 0, then[X] is known as aelevant category, or simply as acategory. Otherwise,
[X] is known as anrrelevant category.

Definition 6 (Missing Category) Let [Xk| denote the category associated with the factor K. Sup-
pose PC is a set of potential categories and their associptgential choices identified fam . If

K affects the execution behaviorafbut [Xk] & PC, thenXx] is amissing category in PC. In this
case, we also say that PC isset with a missing category.

Intuitively, some complete test frames may not be constribecause of missing categories.
As a result, some function rules af are not being tested, so that any faults associated with such
rules may not be detected.

Definition 7 (Valid and Invalid Choices) Given a categoryX] for «, any potential choicgX: x|
in [X] is said to bevalid if TF; (|X:x|) # 0. Otherwise|X: x| is invalid and [X] is a category with
invalid choices.

By Definition 5, given any (relevant) categof¥], since Tk, ([X]) # 0, it contains some
complete test fram&° that contains a choicgX: x| in [X]. By Definitions 1 and 7, any choice
|X: x| € B must be valid. Hence, at least one chdXex| in [X] must be valid.

6



Definition 8 (Missing Choice) Given a categoryX] for « and all the associated valid choices
IX:xq|, [X:Xal, ..., |X:xq| in [X], if there exists some other valid choig€: x| yet to be identified
and some value & |X: x| such that & |X: x| for everyl <i <n, then|X:x| is amissing choice.

In this case, we also say thp¢]| is a category with a missing choice.

Similar to missing categories as defined in Definition 6, ttistence of categories with missing
choices will cause the omission of some complete test fraiss result, we may overlook the
testing of some parts of the system.

Definition 9 (Overlapping Choices) Given a categoryX] for «, two distinct valid choicepsX: x|
and |X: xp| are said to beoverlapping if |X:x1|N|X:x2| # 0. In this case[X] is a category with
overlapping choices.

Definition 10 (Combinable Choices)SupposéX] is a category foruz. Two distinct valid choices
|X:x1| and |X: xo| in [X] are said to becombinable if, for any test frame B, both of the following
conditions are satisfied:

(@) (BU{|X:x1]}) is a complete test frame if and onlyBU {|X: x2|}) is a complete test frame.

(b) If (BU{|X:x1|}) and(BU{|X:x2|}) are complete test frames, then they are associated with
the same function rule af .

In this case[X] is known as aategory with combinable choices.

Following Definition 10, we should combine the valid choi¢¥sx; | and|X: xp| into a single
valid choice|X: x1| U|X: X2| so as to reduce the number of complete test frames and heree sa
testing effort. This replacement will not jeopardize theemage of the resulting set of complete
test frames with respect to the execution of the functioasoif 7.

Definition 11 (Composite Choice)Given a categoryX] for «, any valid choicéX: x| is said to
becomposite if there exist valid, non-overlapping, and non-combinatfieices X: x;| and |X: x;|
in [X] such thatX: x| U|X: x| C |X:X|. In this case[X] is known as aategory with composite
choices.

It is obvious from Definition 11 that we should consider rejpig the composite choid&: X|
by valid choices|X: x| and |X: Xz| in order to improve on the preciseness of the complete test
frames with respect to the execution of the function rulea of

Definition 12 (Problematic Choice) A potential choicgX: x| in a category[X] for « is said to
be problematic if at least one of the following criteria is satisfied:

(@) |X:x|is an invalid choice.
(b) |X:x| is one of the overlapping choices.
(c) |X:x|is one of the combinable choices.

(d) |X:x|is a composite choice.



Definition 13 (Problematic Category) A potential categoryX] for « is said to beproblematic
if at least one of the following criteria is satisfied:

(a) [X]is an irrelevant category.
(b) [X] is a category with missing choices.

(c) [X] is a category with problematic choices.

It should be noted that a problematic category may satisfyentiman one criterion listed in
Definitions 12 and 13. Consider the categ@dumber of Regular Meals in First-Class Cabin
in Example 9 of the appendix. Suppose this category is ifledtwith three associated choices,
namely|Number of Regular Meals in First-Class Cabin0|, [Number of Regular Meals in First-
Class Cabin= 0|, and |[Number of Regular Meals in First-Class Cabin0|. As explained in
Example 9,Number of Regular Meals in First-Class Cabi0| and|[Number of Regular Meals
in First-Class Cabin> 0| are overlapping choices. Furthermofdumber of Regular Meals in
First-Class Cabirk Q] is an invalid choice becaudé,,,., (|[Number of Regular Meals in First-
Class Cabink 0|) = 0. Hence [Number of Regular Meals in First-Class Cdliga category with
overlapping choices as well as an invalid choice.

Definition 14 (Problematic Set of Potential Categories and &ential Choices) Given a set PC
of potential categories and their associated potentialicks for, it is said to beproblematic if
at least one of the following criteria is satisfied:

(a) PC has missing categories.

(b) PC has problematic categories.

5 Setting of the Empirical Studies

We have conducted three empirical studies to find out the cammmistakes made by testers during
an ad hoc identification of categories and choices from médrspecifications. The respective
specifications used in the three studies are denotedrhApE, SPURCHASE andsmos.

The first specificatiory Trape IS related to the credit sales of goods by a wholesaler td reta
customers, and is mainly in the form of narrative descrigio In general terms, the system
determines whether credit sales should be approved farichdil retail customers based on various
factors. These factors include the credit status and thaitdmmit of the customer, the invoice
amount of the transactions, and any special managemerd\abpy the wholesaler.

The second specificatianpyrcHase is related to the purchase of goods using credit cards
issued by an international bank. There are a variety of tcadds determined by various attributes
such as status (diamond, gold, or classic), type (corporgtersonal), and credit limit. The main
functions of the system are to determine whether a purclhassdction using a credit card should
be approved, and to calculate the number of rewards poiatswhl result from an approved
purchase. The number of rewards points further determheetype of benefit (such as free airline
tickets and shopping vouchers) the customer is entitleSitailar toS TrRaDE, S PURCHASEIS Mainly
written in narrative descriptions.



Finally, Smos is a real-life specification prepared for an internationampany providing
catering service for many different airlines. The compargfgrs to remain anonymous and will
only be referred to asIR-FOOD. In order to protect the identity agfiR-FOOD and to makesyos
suitable for our study, we have slightly amended the origspacification before our third study
commences. The majority of the content of the origisyabs, however, has remained intact.

Smos has been produced for a meal ordering system (MOS) that heks 00D determine
the types and numbers of meals to be prepared and loadedamttdlight. s os contains various
components such as narrative descriptions, screen lgyandseport layouts. MOS has been fully
developed and released for production uselm-FooD for several years. Since MOS is relatively
more complex, more mistakes have occurred when identifgatggories and choices fGkos
than whenstrape andspurcHaseare processed. Hence, the majority of the examples distusse
in the appendix refer t@vos.

For empirical studies 1 and 2, the subjects are 48 final-yrdengraduates in the computer
science and software engineering programs at The UniyesEitlelbourne (UM). On the other
hand, for empirical study 3, the subjects are a mix of 44 updeluates and postgraduates in the
computer science, software engineering, and informa#ohriology programs in Swinburne Uni-
versity of Technology (SU). In both universities, a one-hleature was devoted to the introduction
of CPM and CTM. Teaching of the methods was supported by relagedture such as [3], [8],
and [11]. The lecture was reinforced by a one-hour tutorith warious examples (including the
one used in [8], which involves a program counting the nunolbéimes an element occurs inside
a list). The subjects in both universities were being talyhthe same instructor using the same
teaching materials.

In study 3, after the subjects have learned CPM and CTM, we as$lad to carry out the
following tasks:

(a) Decompose the specificationos into several functional units that can be tested indepen-
dently. For example, there may be a unityea. directly related to the generation of daily
meal schedules and another unit related to the maintenduice airline codes.

(b) Suppose we focus on the functional uait e, . ldentify from it a set of categories and
their associated choices.

(c) For every identified category or choice, state the reasats afentification.

In studies 1 and 2, on the other hand, we asked the subjeatsabeach of the specifications
STRADE ands$pyrcHasedenoted byt trape and U pyrcHAsE respectively, as a single functional
unit. This is becausgtrape andspurcHaseare less complex thasyos and can therefore be
tested in their entirety. For each oftrape and ¢ purcHasts the subjects are asked to identify
a set of categories and their associated choices, and ta@prpstifications similarly to tasks)
and €) above. For all the three studies, the subjects were asleahplete tasks) to (c) in about
three weeks.

6 Findings, Discussions, and Recommendations

An initial examination of the potential categories and ptitd choices identified by the subjects
for the three functional unitel TrRape, U purcHASE andU veaL reveals the following:

9



Number of Sets of Number of
Functional Potential Categories Potential Categories (Choices)
Unit and Potential Choices Total | Mean" | Range | Standard Derivation
U TRADE 48 265 (579) | 5.5(12.1) | 4-9 (10-20) 0.9(1.5)
U PURCHASE 48 475 (1138)| 9.9(23.7) | 6-14 (15-35) 2.0(4.4)
UMEAL 44 615 (1488)| 14.0 (33.8)| 4-40 (10-83) 7.8 (16.7)

(*) by each subject

Table 2: Statistics of Potential Categories and Potentialic@sddentified for Each Functional

Unit

(@)

(b)

(©)

Table 2 shows the statistics of the potential categoriespmtential choices identified for
each functional unit. Every subject is asked to identify ané only one set of potential
categories and their associated potential choices. Wé s@aPC's to denote these sets.
Thus, the number d?C's is equal to the number of subjects.

We observe that the numbers of potential categories andfatehoices increase with the
complexity of the functional unit, withii Trape being the least complex andyeaL the
most complex. We also note that these numbers vary sulatar@gmong the subjects, as
evidenced by the large ranges and standard derivatione atiimbers of potential categories
and potential choices identified. The latter observatiahciaies that the quality dPC's,
identified by the subjects in an ad hoc manner, also variesfisigntly — an argument that
we have put forward in Section 1.

The mean numbers of potential choices in each potentiaboay are 2.2 g—gg), 24 =

113 148 :
Z75), and 2.4 & WS) for 4 trADE, UPURCHASE and U meaL, respectively. Hence, the

number of potential choices in each potential categoryirtyfamall, even though all the
potential choices in a potential category should coverhalibhput elements relevant to that
category. The main reason for a small number of potentiatelsan each potential category
is that a potential choice consists of a set of values. Fanele, the valid choicém+-n: # 0|

in Example 1 consists of all integers except zero.

Table 3 shows the statistics of missing and problematiegmates for each functional unit.
Similar to the numbers of potential categories and potkakiaices as reported ira), the
numbers of missing categories and problematic categdgesrecrease with the complexity
of the functional unit. Note the high percentagesdP@’s with missing categories aridr
problematic categories in all the three functional uniteréy we have two observations:

e The occurrence of missing categoriedA@'s would mean that th®C's are not com-
prehensive, since they do not contain sufficient relevaiegoaies (and associated valid
choices) to generate enough complete test frames fordgasifunction rules of each
functional unit.

e The occurrence of problematic categoriedPi@s would mean that th&C's are not
effective, since these problematic categories will cabigegeneration of incomplete

10



Number (%) Average Number (%) Average

Number of PC's* Number of Number of PC's* Number of

Number of with Missing of with Problematic

Functional of Missing Missing Categories || Problematic | Problematic Categories

Unit PC's* Categories | Categories | in Each PC* Categories Categories | in Each PC*
U TRADE 48 1 1(2.1%) 0.02 43 42 (87.5%) 0.90
U PURCHASE 48 33 23 (47.9%) 0.69 79 46 (95.8%) 1.65
UMEAL 44 158 44 (100.09%) 3.59 158 41 (93.2%) 3.59

(*) PC = Set of potential categories and potential choices

Table 3: Statistics of Missing and Problematic Categorieg&#ch Functional Unit

Number (%) of
Categories with Problematic Choices
Categories || Categories| Categories | Categories | Categories
with with with with with

Functional Irrelevant Missing Invalid Overlapping | Combinable | Composite

Unit Categories Choices Choices Choices Choices Choices
U TRADE 0 (0.0%) 3(1.1%) 0 (0.0%) 6 (2.3%) 0(0.0%) | 34(12.8%)
U PURCHASE 0 (0.0%) 9 (1.9%) 2 (0.4%) 26 (5.5%) 0 (0.0%) 42 (8.8%)

U MEAL 123 (20.0%)|| 12 (2.0%) || 14 (2.3%) 4 (0.7%) 5 (0.8%) 4 (0.7%)

Table 4. Numbers and Percentages of Different Types of Bnadilic Category

test frames.

Let us further analyze the problematic categories idedtifig the subjects. Consider Table 4
that shows the numbers and percentages of different tyg@slblematic category, and Table 5 that
shows the numbers and percentageB@§ containing different types of problematic category. A
closer examination reveals that 42 (87.5%), 46 (95.8%),4d4n(®3.2%) of thd>C's for ¢ traDE,

U purcHASE andu meaL , respectively, contain at least one problematic category.

Refer to the second columns from the left in Tables 4 and 5. €hedb15 potential categories
identified for @ meaL, we find that 123 (20.0%) are irrelevant with respectitgea.. These
irrelevant categories occur in 33 (75.0RL’s, and are identified with regard to factors related
to the execution of functional units other thanyeaL in Smos. The occurrence of irrelevant
categories clearly indicates that the logical decompmsitif a specification into several indepen-
dent functional units is not a trivial task that can be perfed effectively without the help of
systematic methodologies. Farrrape and U purcHass O irrelevant category is detected. The
main reason for the absence of irrelevant categories inctgg is that, for each specification
STRADE andspurcHast the subjects were asked to treat it as one single functiorisind hence
no decomposition is required. Thus, it is impossible to idenrrelevant categories for factors
outside TrRape and U pURCHASE

If we compare Tables 4 and 5, we observe that:

() The relative frequency distributions of different typeflspooblematic category are fairly
similar across all three studies.

11



Number (%) of Sets of Potential Categories and Potential Chaies PC's) Containing
Categories with Problematic Choices
Categories | Categories| Categories | Categories | Categories
with with with with with
Functional || Irrelevant Missing Invalid Overlapping | Combinable | Composite
Unit Categories|| Choices Choices Choices Choices Choices
U TRADE 0 (0.0%) 3 (6.3%) 0 (0.0%) 6 (12.5%) 0 (0.0%) 34 (70.8%)
UpurcHase | 0 (0.0%) 8 (16.7%) 2 (4.2%) 25 (52.1%) 0 (0.0%) 31 (64.6%)
UMEAL 33 (75.0%)| 7(15.9%) || 11 (25.0%)| 4 (9.1%) 3 (6.8%) 4 (9.1%)

Table 5: Numbers and Percentage®Gfs Containing Different Types of Problematic Category

(if) Categories with composite choices are the most common. ©uthier hand, categories with
combinable choices are the least common.

The above observations together clearly suggest that theoaddentification approach is
highly ineffective. Without doubt, there is a strong needdgstematic methods for identifying
(relevant) categories and valid choices from informal gpations.

Based on the above observations and discussions, we fomtiaé&atollowing checklist to help
testers detect the existence of missing categories, pnattie categories, and problematic choices.

A Checklist for Detecting Missing Categories, Problematic @tegories, and Problematic
Choices:

(1) Due care should be taken when decomposing an informaifggion into ’s. In
particular, check whether there exist any irrelevant aaieg identified for factors that
are not related to the execution behavior of the seleated

(2) Check whether there exists any fadtothat affects the execution behavior of the selegted
1 but is not associated with any potential category. If thisgems, there will be missing
categories that we fail to identify.

(3) For every potential choid&X: x|, check whetheTF; (|X: x|) = 0. If so, |X: x| is an invalid
choice.

(4) For every categoryX], check whether the union of all its valid choices identifiedfar
covers all the input values relevant[]. If not, [X]| contains missing choices yet to be
identified.

(5) For any non-empty set of valid choices in every categtetermine whether these choices
are overlapping by checking the existence of common elesnent

(6) When identifying potential categories and potential ices, consider alsoaj the
constraints among potential choices in the formation ofgete test frames, ant)the
function rules involving these choices. This will help detidae occurrence of combinable
choices and composite choices. The detection of categartbscomposite choices i
particularly important, since our studies have indicatest they are the most common
among various types of problematic category.

[92)

12



We cannot guarantee that a process based on the above shacklnecessarily detect all
possible missing categories, problematic categories papiolematic choices. According to our
analysis and empirical studies, however, such unwarrargees can be greatly reduced.

7 Validity of the Empirical Studies

The empirical studies have the following limitations duefte respective settings:

(@) The subjects of studies 1 and 2 were all undergraduates intdreas those of study 3 were
a mix of undergraduates and postgraduates in SU. Because diffierences in universities
and the subjects’ calibers, readers are recommended notiipase the mistakes made by
the subjects among these studies, which is not the maintolgjexf the paper. Instead, the
paper aims to identify the types of common mistake made bgubgcts when identifying
categories and choices in the absence of a systematic proces

(b) For studies 1 and 2, the specificationgape ands purcHasewere given to the subjects as
one single assignment. Hence, we do not know which speddfictite subjects worked on
first, although we think that the majority of the subjectsiddchave started witly Trape
because it is less complex. One can argue that the subjegtgamain experience after
doing the first case. However, this effect should be minimhahy, because the subjects were
advised of their errors only after they have completed a&ltésks for both specifications.

(c) Obviously, the results of our studies might differ if thebgacts were real software testers
with substantial commercial software development expegeanstead of being undergradu-
ates and postgraduates. If such were their backgroundsptight make fewer mistakes in
an ad hoc identification of categories and choices. We obsbhowever, that even in study 3,
where most of the postgraduates in SU had real-life IT waylemperience, problematic
categories and choices were identified. This observatipp@ts our earlier argument that
the ad hoc identification approach cannot assure the qualitye resulting categories and
choices, regardless of the caliber of the subjects.

8 Conclusion

We have analyzed and discussed the common mistakes wharasotesters use an ad hoc ap-
proach to identifying categories and choices from inforgpecifications. We have conducted three
empirical studies via different specifications and testéosfacilitate the analysis of our empirical
results, we have formally defined missing categories anwsitypes of problematic category
and choice. We have also discussed plausible reasons fadehgfication of such categories
and choices. Our results confirm that missing categoriedfl@matic categories, and problematic
choices are likely to occur when the identification of categgand choices is performed in an ad
hoc manner. There is, therefore, a great demand for thedunttmn of systematic identification
techniques to improve on the quality of the process and aaéintthe quality of the resulting test
cases.

13



The contributions of our empirical studies are threefoluisti-by defining missing categories
and the various types of problematic category and choicenggidighting them to inexperienced
users, testers will be alerted to avoid them. Secondly, tieg/ledge of such categories and choices
and plausible reasons for their identification give redsens and practitioners an insight into the
development of systematic identification methods. Thijrtiye effectiveness of any developed
identification method can be measured in terms of its abibtgcreen out missing categories,
problematic categories, and problematic choices.

Based on the results of our empirical studies, we have desdlap identification checklist
to help testers detect the existence of missing categgreblematic categories, and problematic
choices when the identification process is performed in amoadnanner.

Acknowledgments

We are grateful to the students of the Department of Compuiene and Software Engineering
at The University of Melbourne, and those of the School obinfation Technology at Swinburne
University of Technology who have participated in this stud

References

[1] M. J. Balcer, W. M. Hasling, T.J. Ostrand, Automatic generation of sesipts from formal test
specifications, in: Proceedings of the 3rd ACM Annual Symposium omw@oé Testing, Analysis,
and Verification (TAV '89), ACM Press, New York, 1989, pp. 210821

[2] T.Y. Chen, P.-L. Poon, Experience with teaching black-box testing @@mputer sciengsoftware
engineering curriculum, IEEE Transactions on Education 47 (1) (202450.

[3] T.Y.Chen, P.-L. Poon, S.-F. Tang, A systematic method for auditiegarsceptance tests, Information
Systems Audit and Control Journal 5 (1998) 31-36.

[4] T.Y. Chen, P.-L. Poon, S.-F. Tang, T.H. Tse, An experimentallysis of the identification of
categories and choices from specifications, in: Proceedings of th&CG3&lInternational Conference
on Software Engineering, Artificial Intelligence, Networking and Pardbédtributed Computing
(SNPD 2002), International Association for Computer and Informatidergée, Mt. Pleasant, MI,
2002, pp. 99-106.

[5] T.Y. Chen, P.-L. Poon, T.H. Tse, An integrated classification-tneethodology for test case
generation, International Journal of Software Engineering and keune Engineering 10 (6) (2000)
647—-679.

[6] T.VY. Chen, P.-L. Poon, T.H. Tse, A choice relation frameworkdaopporting category-partition test
case generation, IEEE Transactions on Software Engineering 2Z20@3)Y577-593.

[7] L.A. Clarke, J. Hassell, D.J. Richardson, A closer look at domadtirtg, IEEE Transactions on
Software Engineering SE-8 (4) (1982) 380—-390.

[8] M. Grochtmann, K. Grimm, Classification trees for partition testing, Sofwkasting, Verification
and Reliability 3 (2) (1993) 63-82.

14



[9] T.J. Ostrand, M. J. Balcer, The category-partition method for i§geg and generating functional
tests, Communications of the ACM 31 (6) (1988) 676—686.

[10] S. Rapps, E.J. Weyuker, Selecting software test data using datanfbrmation, IEEE Transactions
on Software Engineering SE-11 (4) (1985) 367-375.

[11] H. Singh, M. Conrad, S. Sadeghipour, Test case design lmas2dnd the classification-tree method,
in: Proceedings of the 1st International Conference on Formal EmgmeMethods (ICFEM'97),
IEEE Computer Society Press, Los Alamitos, CA, 1997, pp. 81-90.

[12] J. Wang, R. Hao, J. Wu, TUGEN: an automatic test suite generatagratiteg data-flow and
control-flow methods, in: Digital Technology — Spanning the Universeocedings of the IEEE
International Conference on Communications (ICC'98), vol. 1, IEEE@ater Society Press, Los
Alamitos, CA, 1998, pp. 286—-290.

[13] L.J. White, E.I. Cohen, A domain strategy for computer progrartings|EEE Transactions on
Software Engineering SE-6 (3) (1980) 247-257.

[14] J.B. Wordsworth, Software Development with Z: A Practical Agmio to Formal Methods in
Software Engineering, Addison Wesley, Wokingham, UK, 1992.

[15] S.J. Zeil, Selectivity of data-flow and control-flow path criteria, inodeedings of the 2nd Workshop
on Software Testing, Verification, and Analysis, IEEE Computer Societg2rWashington, DC,
1988, pp. 216—-222.

Appendix: Examples to lllustrate Terminology and Definitions
Examples 2 to 6 refer to the functional unit, in Example 1 of Section 2.1.

Example 2 (Set of Complete Test Frames Related to a PotentialaBzgory) The set of complete
test frames fouu, is {B{, BS, BE,Bg}. Hence, the set of complete test frames related to the paltent
categoryim+n| is TR, ([m+n]) = {BEg, BE}. u

Example 3 (Set of Complete Test Frames Related to a Potentialh®@ice) The set of complete
test frames related to the potential choi@tatus ofF: Exists but Emptyis TF,, (|Status of
F: Exists but Empt}) = {B5}. n

Example 4 (Set of Complete Test Frames Related to a Test Fram&jonsider the test frang=
{|Status ofF: Exists and Non-Empty. The set of complete test frames related@ts TF;,, (B) =
{BE,Bg}. |

Example 5 (Relevant and Irrelevant Categories)Refer to Example 2 again. Sindd,, ([m+
n)) # 0, [m+n] is a relevant category.

Suppose a tester identifi@s| as a potential category witlm < 0|, [m= 0|, and|m > 0| as
its associated potential choices. According to Examplé set of complete test frames far,
is {B§,B5,Bg,Bg}. Any potential choice ofm], however, does not appear B}, BS, BZ, andB.
Hence,TF,, ([m)) = 0 and[m] is therefore an irrelevant category. n

15



Example 6 (Missing Category) SupposdStatus ofF] is the only category identified fotz», as
if the categoryim+ n| did not exist. In such circumstancgStatus ofF| is the only category that
exists in the sePC of potential categories and choices identifieddor. Consider the factorh-+
n” that affects the execution behavior af,, and in particular whethemi+-n= 0" or “m+n+# 0.
Let [Xm+n] denote the category corresponding to the factorn". Since [Xmin] € PC, [Xmtn| iS
a missing category iRC, andPC is said to have a missing category.

Consider again the complete test frarBgs= {|Status ofF: Exists and Non-Empty|m+n: =
0|} andBg = {|Status of: Exists and Non-Empty|m+n: £ 0|} in Table 1. Both of them contain
a choice in the categofiyn+ n|. Thus, if[m+n| is missing,B andBg will be omitted by mistake
because they cannot be constructed solely from the chaig8satus ofF|. n

All the following examples refer to the specificatioiyos and the functional unitz ygaL in
Section 5.

Example 7 (Valid and Invalid Choices) Every master flight schedule (MFS) contains a data el-
ement called “Weekly Departure Pattern” (WDP), which intesawhether a flight departs on a
daily basis. For a non-daily flight, WDP further indicates tlag/(s) of the week that the flight will
depart. Consider, for example, the following two values of WDP

(a) WDP =%1234567": The flight is a daily-flight. Note that a “1”, “2”, ..., and “7’hiWDP
indicate that the flight departs on Mondays, Tuesdays, nd Sundays, respectively.
(b) WDP = “~-345—--": The flight is a non-daily flight. It only departs on Wednesdays

Thursdays, and Fridays.

According to the specificatiosios, the MFS for a daily flight will always be used to generate
the corresponding daily meal schedule (DMS) on every daypefweek without further checks,
as long as this MFS is “current”. (To avoid lengthy discussiwe shall skip the criteria for
determining whether a given MFS is current.) On the othedh&mther checking is required for
a non-daily flight even though its MFS is current, in order éedmine whether the corresponding
DMS should be generated on a particular day of the week.

In study 3, some subjects have identif{[#dDP] as a category fot: yeaL with three potential
choices, namelyWDP: Daily|, |WDP: Non-Dailyj, and |WDP: Other$. Since every flight must
depart on a daily or non-daily basiB; ., (|WDP: Daily]) # 0, TR, (|WDP: Non-Daily) #

0, andTFy e, (|WDP: Other$) = 0. Hence, the potential choicé&/DP: Daily| and|WDP: Non-
Daily| are valid while the potential choic®VDP: Other$is invalid. In this case[WDP] is a
category with an invalid choice. ]

Example 8 (Missing Choice) According to the specificationvos, there are three different types
of MFS, namely “Outdated”, “Current”, and “Future”. (To addiengthy discussion, the details
of how to determine the type of an MFS are not included herkg fypes of MFS, together with
some other information such as WDP introduced in Exampletéraene which MFSs are used to
generate the corresponding DMSs on a particular date. lgasspecified ins mos that the kitchen
of AIR-FOOD installs a monitor to display all types of MFS. This arrangairhelps kitchen staff
to plan and produce the required meals. Outdated, curnedtiudure MFSs are displayed on the
monitor in “Red”, “Blue”, and “Green” colors, respectively.

16



Given the above informatiorType of MFS should be identified as a category, wijifype
of MFS: Outdated |Type of MFS: Currerjt and |Type of MFS: Futurgas its associated valid
choices. We observe that some subjects have identified|dphe of MFS: Currertand |Type
of MFS: Future as valid choices. Sinc&F;,,., (|Type of MFS: Outdated # 0 and |Type of
MFS: Outdateflhas not been identified by these subje¢Tgpe of MFS: Outdateds a missing
choice andType of MFS is a category with a missing choice. ]

Example 9 (Overlapping Choices)The specificatiorns os States that every seat in a flight be-
longs to one of the three classes, namely “First”, “Busineastl “Economy”. For each class,
passengers can order regular meals or special meals suefetanan meals. The types of regular
and special meals are different across the three cabireslads expected, the regular and special
meals offered in the first-class cabin are of better quahntthose in the other cabins. The
numbers of regular and special meals for each cabin claslighais kept in an MFS associated
with this flight, so that a corresponding DMS can be generiziteqdl.
With the above information, the following categories antid/ehoices should be identified for
U MEAL -
(@ [Number of Regular Meals in First-Class Cdbivith |[Number of Regular Meals in First-
Class Cabin= 0| and|Number of Regular Meals in First-Class Cahin0| as its associated
choices.

(b) [Number of Special Meals in First-Class Cdbmith |[Number of Special Meals in First-
Class Cabin= 0| and|Number of Special Meals in First-Class Cahin0| as its associated
choices.

(¢) [Number of Regular Meals in Business-Class Calith [Number of Regular Meals in
Business-Class Cabis: 0] and|Number of Regular Meals in Business-Class Cabif| as
its associated choices.

(d) [Number of Special Meals in Business-Class Calwith [Number of Special Meals in
Business-Class Cabig: 0] and [Number of Special Meals in Business-Class Cabif
as its associated choices.

() [Number of Regular Meals in Economy-Class Cabiith [Number of Regular Meals in
Economy-Class Cabir: 0] and|Number of Regular Meals in Economy-Class CabirQ)|
as its associated choices.

(f) [Number of Special Meals in Economy-Class Cabith [Number of Special Meals in
Economy-Class Cabir: 0] and|Number of Special Meals in Economy-Class Cabir0)|
as its associated choices.

Thus, by selecting one valid choice from each of the abowegeaies, 8 = 64 different situations
are possible when generating test frames.

Consider[Number of Regular Meals in First-Class Cabin (a) above. Suppose it is now
identified with two associated valid choicpéumber of Regular Meals in First-Class Cabin0|
and|Number of Regular Meals in First-Class Cabin0|. The two valid choices are overlapping
because the element (Number of Regular Meals in First-Class Gab) exists in both choices.
Accordingly, [Number of Regular Meals in First-Class Cabia a category with overlapping
choices. ]

17



Example 10 (Combinable Choices)Consider the categorfNumber of Regular Meals in First-
Class Cabihin bullet (a) of Example 9 again. Suppose this category is identified thigtfollowing
three associated distinct and valid choices:

(i) [Number of Regular Meals in First-Class Cabin0|,
(i) [Number of Regular Meals in First-Class Cabini
(iii) |[Number of Regular Meals in First-Class Cahini|.

, and

According to the specification, howeverear should treati{) and {ii ) in exactly the same way
under the same function rules. In particular, given anyBset valid choices B combines with
(i) to form a complete test franig if and only if B combines with ifi ) to form a complete test
frameB$. FurthermoreB] andB§ should produce the same test results because there is rimfunc
rule that states otherwise. In such circumstanadBsaiid (i) are combinable into a single choice
INumber of Regular Meals in First-Class Cabini| = |[Number of Regular Meals in First-Class
Cabin:= 1| U |Number of Regular Meals in First-Class Cahinl|. Thus,[Number of Regular
Meals in First-Class Cabijiis a category with combinable choices.

By combining the valid choices § and {ii ), we can reduce the number of complete test frames
generated and hence alleviate the testing effort. On ther dthnd, the coverage of the function
rules is not compromised. [ ]

Example 11 (Composite Choice)The information captured in MFSs will be used to generate the
corresponding DMSs. During the generation process, soloenation in MFSs can be overridden
by the following exceptional schedulgecords if they exist:

e Exceptional flight schedules (EFSs): They allow users tanghahe estimated time of
departure (ETD) of a flight on a particular date after the MF&is flight has been created.

e Exceptional crew configuration records (ECCRSs): They allowsus®e change the number
of crewmembers in a flight on a particular date after the MF®isfflight has been created.
Such records are necessary singe-FOOD needs to prepare meals for the crews as well as
the passengers.

Because of the EFSs and ECCRs, any given MFS falls into one of lbeviiog situations:

(a) Itis associated with an EFS but not an ECCR.
(b) Itis associated with an ECCR but not an EFS.
(c) Itis associated with an EFS and an ECCR.
(d) Itis not associated with any EFS or ECCR.

In order to generate sufficient complete test frames to cthwerabove four situations, one
approach is to identif{fExistence of EFSand[Existence of ECCRas two categories. The former
has|Existence of EFS: Yesand |[Existence of EFS: Noas associated valid choices, whereas the
latter has|Existence of ECCR: Yeésand |Existence of ECCR: Noas associated valid choices.
Thus, all of the above situations can be catered for by setecne valid choice ifExistence

18



of EFS and one inExistence of ECCR For example, the valid choicéBxistence of EFS: Yes
and|Existence of ECCR: Yewwill cover situation ¢€).

In study 3, some subjects have identif{egtistence of Exceptional Schedul@ecord$as one
category instead of definingxistence of EFSand|Existence of ECCR This new category has
|Existence of Exceptional Schedul&ecords: EFS and ECCR Do Not Exisind |[Existence of
Exceptional ScheduléRecords: Otherwideas associated valid choices. As a regtdkistence of
Exceptional Schedul¢Records: Otherwigeapplies to situationsaj, (b), and €) above, whereas
|Existence of Exceptional Schedul&ecords: EFS and ECCR Do Not Existpplies to situa-
tion (d). Note that|Existence of Exceptional Schedul&ecords: Otherwigecannot be used to
generate different complete test frames to cover situat@n (b), and €) separately.

Considel Existence of Exceptional Schedul®secords: Otherwigelt can be replaced by three
valid and non-overlapping choices, namé@xistence of Exceptional Schedul&ecords: Only
EFS Exist$ |Existence of Exceptional Schedul&ecords: Only ECCR Existsand|Existence of
Exceptional Schedul¢Records: Both EFS and ECCR ExistVe note the following:

(i) (|Existence of Exceptional Schedul&ecords: Only EFS Exists) |Existence of Excep-
tional ScheduleRecords: Only ECCR Exists C |Existence of Exceptional
SchedulegRecords: Otherwide

(i) Let

e Bbe avalid butincomplete test frani@VDP: Daily|, | Type of MFS: Current |Number
of Regular Meals in First-Class Cabin:0|, [Number of Special Meals in First-Class
Cabin:= 0|, [Number of Regular Meals in Business-Class Cabif}], |[Number of
Special Meals in Business-Class Cabi#0|, [Number of Regular Meals in Economy-
Class Cabinz 0|, [INumber of Special Meals in Economy-Class Cabir@|, ...}.4

e |Existence of Exceptional Schedul&ecords: Only EFS Existsbe a complete test
frame.

¢ |Existence of Exceptional Schedul&ecords: Only ECCR Exisisbe a complete test
frame.

B} andB§ are associated with different function rules because,rdougto the specification
Smos, B andB§ correspond to two different sources of overriding inforimatin MFSs
during the generation of DMSs. In other words, the valid chsjExistence of Exceptional
SchedulegRecords: Only EFS Existand |Existence of Exceptional Schedul&ecords:
Only ECCR Existsare non-combinable.

Hence, |[Existence of Exceptional Schedul®&ecords: Otherwigeis a composite choice and
[Existence of Exceptional Schedul&ecord$is a category with a composite choice. Obviously,
the composite choice could be replaced|Byistence of Exceptional Schedul&ecords: Only
EFS Exist$, |Existence of Exceptional Schedul&ecords: Only ECCR Existsand |Existence
of Exceptional Schedul¢Records: Both EFS and ECCR EXjswvith a view to improving the
comprehensiveness of the resulting set of complete tesefa ]

4To avoid lengthy discussions, we only list the valid choiceB that have been introduced in earlier examples.

19





