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Abstract

The category-partition method and the classification-tree method help construct test cases
from specifications. In both methods, an early step is to identify a set of categories (or
classifications) and choices (or classes). This is often performed in an ad hoc manner due to the
absence of systematic techniques. In this paper, we report and discussthree empirical studies
to investigate the common mistakes made by software testers in such an ad hoc approach. The
empirical studies serve three purposes: (a) to make the knowledge of common mistakes known
to other testers so that they can avoid repeating the same mistakes, (b) to facilitate researchers
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and practitioners develop systematic identification techniques, and (c) to provide a means of
measuring the effectiveness of newly developed identification techniques. Based on the results
of our studies, we also formulate a checklist to help testers detect such mistakes.

Keywords: Category-partition method, choice relation framework, classification-tree method,
specification-based testing, test frame

1 Introduction

There are two broad categories of software testing: white-box and black-box approaches. Any test
case generation method or technique falls under one or both of these approaches. Inwhite-box(or
implementation-based) testing, test cases are generated according to information derivedfrom the
source code of the program under test. White-box testing typically requires the coverage of certain
aspects of the program structures. Control flow testing [12, 15], data flow testing [10, 12, 15], and
domain testing [7, 13] are some examples.

In contrast to white-box testing,black-box(or specification-based) testinggenerates test cases
without the knowledge of the internal structure of the program. In most black-box testing methods,
test cases are generated according to the specifications. These specifications can be written in a
formal language such as Z [14], or informally such as in narrative English. Black-box testing
methods have been developed both for formal and informal specifications. Chen et al. [4] argue
that many real-life commercial specifications are informal, and hence the applicability of black-
box testing based on formal specifications is rather restricted. In this respect, the category-partition
method (CPM) [1, 6, 9] and the classification-tree method (CTM)[5, 8] are considered to be very
useful, because they can also be applied to informal specifications.

In CPM and CTM, an early step is to identify a set of categories (also known as classifications)
and their associated choices (also known as classes), whichin turn forms the basis for the sub-
sequent generation of test cases.1 Obviously, the chance of detecting faults from the software
depends on the comprehensiveness of the generated test cases, which in turn depends on the
comprehensiveness of the identified categories and choices. If, for example, a valid choice is
missing, then any fault associated with this choice may not be detected. We observe that neither the
original developers of CPM/CTM nor follow-up researchers have proposed a systematic method
for identifying categories and choices from informal specifications. As a result, this identification
process is often performed in an ad hoc manner. The quality ofthe resulting test cases may be in
question, especially when the specification is informal.

Motivated by this problem, we have conducted three empirical studies on the identification
of categories and choices from informal specifications.2 Our primary objective is to find out the
common mistakes made by software testers when identifying categories and choices in the absence
of a systematic process. Our studies have three contributions: (a) to reduce the chance of repeating
these mistakes by making them known to testers, (b) to shed light on the development of systematic

1 Classifications and classes in CTM are equivalent to categories and choices in CPM, respectively. Hence, in
the rest of the paper, the terms “classifications” and “categories” will be used interchangeably, and so are the terms
“classes” and “choices”.

2 Part of the results of these studies has been reported in [2],which focuses mainly on how to teach CTM to
undergraduates in the computer science and software engineering disciplines.
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techniques for identifying categories and choices, and (c) to provide a means of measuring the
effectiveness of newly developed identification techniques in terms of their ability to avoid or
reduce mistakes. Based on the observations of the studies, wealso formulate a checklist to help
testers detect such mistakes.

The rest of this paper is organized as follows. Section 2 outlines the background concepts of
CPM and CTM. Section 3 gives an overview of function models and function rules. Section 4
discusses important terminology and definitions, particularly on various types of problematic cat-
egory and choice. Section 5 describes the settings of our empirical studies. Section 6 reports and
discusses the results and observations of our studies, and recommends an identification checklist
to help testers detect problematic categories and choices.Section 7 discusses the validity of the
studies. Finally, Section 8 concludes the paper.

2 Background Concepts of CPM and CTM

2.1 Overview of CPM

In the category-partition method (CPM) [1, 9], anenvironment conditionis a characteristic of the
state of the system at the time of executing a functional unit. A parameteris an explicit input to a
functional unit, supplied either by the user or by another program. For the ease of discussion, we
shall collectively refer to environment conditions and parameters asfactorsin this paper.

Categoriesare defined as the major properties or characteristics of factors that affect the execu-
tion behavior of a functional unit. The values of each category are partitioned into distinct subsets
known aschoices. In this paper, (a) categories are enclosed by square brackets[ ], (b) choices are
enclosed by vertical bars| |, and (c) the notation|X: x| denotes a choice|x| in the category[X]. For
example, the choice|Number of Students:= 0| is the subset{0}, whereas the choice|Number of
Students:> 0| is the subset{1,2, . . .}.

Basically, CPM consists of the following six steps:

(1) Decompose a specification into functional unitsU ’s that can be tested independently. For
eachU selected for testing, repeat steps (2) to (6) below.

(2) Identify the factors that affect the execution behaviorof U . Hence, identify the categories
and their associated choices.

(3) Determine constraints among the identified choices. Forexample, one choice may require
another to be present or absent.

(4) Use a generator tool to generate test frames based on the categories and choices identified
in (2) and the constraints in (3). Each test frame is a set of choices, with each category
contributing to no more than one choice.

(5) For every test frame generated in (4), check whether it iscomplete or incomplete. Complete
test frames are useful for testing, whereas incomplete testframes are discarded.3

(6) For each complete test frame, generate a test case by selecting one single element from every
choice in that test frame.

3 Formal discussions on test frames and their completeness will be given in Section 4.
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Let us use the following example to illustrate the above concepts:

Example 1 (CPM) Consider, for instance, a programP that reads an input fileF containing two
integersm and n, and outputs the value of 1/(m+ n). Let SP denote the specification forP .
Suppose that, because of the simplicity ofSP , it can be treated as one functional unitU P in its
entirety, and hence no decomposition is needed as listed in step (1) of CPM above. In step (2),
[Status ofF ] and [m+ n] are two possible categories identified with respect to an environment
condition and a parameter, respectively, that affect the execution behavior ofP . The category
[Status ofF ] has three associated choices, namely|Status ofF : Does Not Exist|, |Status ofF : Exists
but Empty|, and|Status ofF : Exists and Non-Empty|. On the other hand, the category[m+n] has
two associated choices, namely|m+n: 6= 0| and|m+n: = 0|. The choice|m+n: 6= 0| corresponds
to a well-defined result of 1/(m+n), whereas the choice|m+n: = 0| corresponds to an undefined
result involving division by zero.

After identifying the categories and choices, step (3) involves the identification of constraints
among choices according toU P . Here, a possible constraint is that|Status ofF : Does Not Exist|
cannot be combined with any choice in[m+ n] to form part of any complete test frame. This is
because the values ofmandn are irrelevant ifF does not exist.

In step (4) of CPM, a generator tool is used to construct a set oftest frames based on the
identified categories, choices, and constraints. Suppose the generator tool produces six test frames,
namelyB1 = {|Status ofF : Does Not Exist|}, B2 = {|Status ofF : Exists but Empty|}, B3 = {|m+
n: = 0|}, B4 = {|m+ n: 6= 0|}, B5 = {|Status ofF : Exists and Non-Empty|, |m+ n: = 0|}, and
B6 = {|Status ofF : Exists and Non-Empty|, |m+n: 6= 0|}.

After the above test frames have been generated, the next step is to determine whether they are
complete or incomplete by checking withU P . In this example,B1, B2, B5, andB6 are complete
and hence useful for testing. On the other hand,B3 andB4 are incomplete and are discarded. We
shall differentiate complete test frames from others by writing Bc instead ofB.

Finally, one test case is generated from each complete test frameBc by selecting one value
from every choice inBc. Consider, for example,Bc

6 (= B6). A possible test case is{Status ofF =
Exists and Non-Empty,m+n = 78}.

Recently, Chen et al. observed several problems that would hinder the effective application of
CPM. This observation motivated them to develop achoice relation frameworkfor supporting
category-partition test case generation. They also conducted empirical studies to demonstrate the
effectiveness of the framework. Readers may refer to [6] for details.

2.2 Overview of CTM

Grochtmann and Grimm [8] have proposed a classification-tree method (CTM) as an alternative to
CPM for generating test cases from specifications. This method has subsequently been refined by
Chen et al. [5].

In CTM, a classification tree organizes classifications and classes at alternative levels in a hier-
archical structure. (Recall from footnote 1 that classifications and classes in CTM are equivalent
to categories and choices, respectively, in CPM.) The basic approach of CTM is very similar to
that of CPM — both of them aim at constructing a model of the constraints in the input domain
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Function Set of Corresponding Corresponding
Rule Valid Inputs Output Complete Test Frame

1 F does not exist Output the message Bc
1 = {|Status ofF : Does Not Exist|}

“F does not exist”
2 F exists but is empty Output the message Bc

2 = {|Status ofF : Exists but Empty|}
“F is empty”

3 F exists and it containsm andn Output the message Bc
5 = {|Status ofF : Exists and Non-Empty|,

such thatm+n = 0 “Undefined solution” |m+n: = 0|}
4 F exists and it containsm andn Output the value Bc

6 = {|Status ofF : Exists and Non-Empty|,
such thatm+n 6= 0 of 1/(m+n) |m+n: 6= 0|}

Table 1: A Function Model for ProgramP

so that combinations of compatible choices (or classes) canbe generated and combinations of
incompatible choices (or classes) can be suppressed as far as possible. Since the identification
of categories (or classifications) and choices (or classes)is common to both CPM and CTM, our
discussions in Sections 5 to 8 will only refer explicitly to CPM.

3 Overview of Function Models and Function Rules

Before we proceed further, we have to introduce the notions offunction models and function
rules [14]. A function modelrepresents the behavior of the system at an abstract level, so that
software developers and users can agree on the system behavior without the need for programming
details. The mapping between a given set of inputs and the corresponding set of outputs is
expressed by means of afunction rule. This rule states precisely the preconditions for the function
to execute and how the outputs are related to the inputs. Notethat most function models assume
that the system is deterministic, or in other words, the sameset of inputs would always lead to
the same system behavior and, hence, the same set of outputs.In this paper, we also make this
assumption.

Consider Example 1 in Section 2.1 again. The function model for programP is depicted in
Table 1. Each row corresponds to a function rule. The rightmost element in each row is a possible
complete test frame, from which a test case can be generated to execute the rule associated with this
row. Without doubt, sufficient complete test frames should be generated with a view to uncovering
any possible fault associated with each rule.

4 Terminology and Definitions

As introduced in Section 2.1,categoriesare the major properties or characteristics of factors that
affect the execution behavior of a functional unit. For every category[X] proposed by the subjects
in our studies, it may either be identified in accordance withthe definition, or incorrectly identified
with something else in mind. In view of this situation, we shall refer to any[X] identified by the
subjects as apotential category. Similarly, any|X: x| identified by the subjects is called apotential
choice.
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Definition 1 (Complete and Incomplete Test Frames)A test frame B is a set of potential choices.
B iscomplete with respect toU if, whenever a single element is selected from every potential choice
in B, a standalone input forU is formed. Otherwise, B isincomplete.

As mentioned in Section 2.1, complete test frames are used togenerate test cases for testing.
On the other hand, incomplete test cases are not useful for testing. They should either be discarded
or extended into complete test frames [6]. Examples of complete and incomplete test frames have
been given in Example 1.

Further terminology and definitions will be required to lay the foundation for the problems
related to the identification of categories and choices. They will be introduced in this section.
Related examples will be given in the appendix.

Definition 2 (Set of Complete Test Frames Related to a Potential Category) Let TFU denote the
set of complete test frames ofU . Given any potential category[X] for U and all its associated
potential choices|X: x1|, |X: x2|, . . . , |X: xn|, we define theset of complete test frames related to
[X] as TFU ([X]) = {Bc ∈ TFU : |X: xi| ∈ Bc for some1≤ i ≤ n}.

Definition 3 (Set of Complete Test Frames Related to a Potential Choice) Given any potential
choice|X: x| in U , we define theset of complete test frames related to |X: x| as TFU (|X: x|) =
{Bc ∈ TFU : |X: x| ∈ Bc}.

Definition 4 (Set of Complete Test Frames Related to a Test Frame) Given any test frame B for
U , we define theset of complete test frames related to B as TFU (B) = {Bc ∈ TFU : B⊆ Bc}. A test
frame B is said to bevalid if TFU (B) 6= /0. Otherwise, it is said to beinvalid.

We observe from Definitions 1 and 4 that a valid test frame may or may not be complete.

Definition 5 (Relevant and Irrelevant Categories) Given any potential category[X] for U , if
TFU ([X]) 6= /0, then [X] is known as arelevant category, or simply as acategory. Otherwise,
[X] is known as anirrelevant category.

Definition 6 (Missing Category) Let [XK] denote the category associated with the factor K. Sup-
pose PC is a set of potential categories and their associatedpotential choices identified forU . If
K affects the execution behavior ofU but [XK] 6∈ PC, then[XK] is amissing category in PC. In this
case, we also say that PC is aset with a missing category.

Intuitively, some complete test frames may not be constructed because of missing categories.
As a result, some function rules ofU are not being tested, so that any faults associated with such
rules may not be detected.

Definition 7 (Valid and Invalid Choices) Given a category[X] for U , any potential choice|X: x|
in [X] is said to bevalid if TFU (|X: x|) 6= /0. Otherwise,|X: x| is invalid and[X] is a category with
invalid choices.

By Definition 5, given any (relevant) category[X], sinceTFU ([X]) 6= /0, it contains some
complete test frameBc that contains a choice|X: x| in [X]. By Definitions 1 and 7, any choice
|X: x| ∈ Bc must be valid. Hence, at least one choice|X: x| in [X] must be valid.
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Definition 8 (Missing Choice) Given a category[X] for U and all the associated valid choices
|X: x1|, |X: x2|, . . . , |X: xn| in [X], if there exists some other valid choice|X: x| yet to be identified
and some value v∈ |X: x| such that v6∈ |X: xi| for every1≤ i ≤ n, then|X: x| is a missing choice.
In this case, we also say that[X] is a category with a missing choice.

Similar to missing categories as defined in Definition 6, the existence of categories with missing
choices will cause the omission of some complete test frames. As a result, we may overlook the
testing of some parts of the system.

Definition 9 (Overlapping Choices) Given a category[X] forU , two distinct valid choices|X: x1|
and |X: x2| are said to beoverlapping if |X: x1| ∩ |X: x2| 6= /0. In this case,[X] is a category with
overlapping choices.

Definition 10 (Combinable Choices)Suppose[X] is a category forU . Two distinct valid choices
|X: x1| and |X: x2| in [X] are said to becombinable if, for any test frame B, both of the following
conditions are satisfied:

(a) (B∪{|X: x1|}) is a complete test frame if and only if(B∪{|X: x2|}) is a complete test frame.

(b) If (B∪{|X: x1|}) and(B∪{|X: x2|}) are complete test frames, then they are associated with
the same function rule ofU .

In this case,[X] is known as acategory with combinable choices.

Following Definition 10, we should combine the valid choices|X: x1| and|X: x2| into a single
valid choice|X: x1| ∪ |X: x2| so as to reduce the number of complete test frames and hence save
testing effort. This replacement will not jeopardize the coverage of the resulting set of complete
test frames with respect to the execution of the function rules ofU .

Definition 11 (Composite Choice)Given a category[X] for U , any valid choice|X: x| is said to
becomposite if there exist valid, non-overlapping, and non-combinablechoices|X: x1| and|X: x2|
in [X] such that|X: x1| ∪ |X: x2| ⊆ |X: x|. In this case,[X] is known as acategory with composite
choices.

It is obvious from Definition 11 that we should consider replacing the composite choice|X: x|
by valid choices|X: x1| and |X: x2| in order to improve on the preciseness of the complete test
frames with respect to the execution of the function rules ofU .

Definition 12 (Problematic Choice) A potential choice|X: x| in a category[X] for U is said to
beproblematic if at least one of the following criteria is satisfied:

(a) |X: x| is an invalid choice.

(b) |X: x| is one of the overlapping choices.

(c) |X: x| is one of the combinable choices.

(d) |X: x| is a composite choice.
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Definition 13 (Problematic Category) A potential category[X] for U is said to beproblematic
if at least one of the following criteria is satisfied:

(a) [X] is an irrelevant category.

(b) [X] is a category with missing choices.

(c) [X] is a category with problematic choices.

It should be noted that a problematic category may satisfy more than one criterion listed in
Definitions 12 and 13. Consider the category[Number of Regular Meals in First-Class Cabin]
in Example 9 of the appendix. Suppose this category is identified with three associated choices,
namely|Number of Regular Meals in First-Class Cabin:< 0|, |Number of Regular Meals in First-
Class Cabin:= 0|, and |Number of Regular Meals in First-Class Cabin:≥ 0|. As explained in
Example 9,|Number of Regular Meals in First-Class Cabin:= 0| and|Number of Regular Meals
in First-Class Cabin:≥ 0| are overlapping choices. Furthermore,|Number of Regular Meals in
First-Class Cabin:< 0| is an invalid choice becauseTFU MEAL (|Number of Regular Meals in First-
Class Cabin:< 0|) = /0. Hence,[Number of Regular Meals in First-Class Cabin] is a category with
overlapping choices as well as an invalid choice.

Definition 14 (Problematic Set of Potential Categories and Potential Choices) Given a set PC
of potential categories and their associated potential choices forU , it is said to beproblematic if
at least one of the following criteria is satisfied:

(a) PC has missing categories.

(b) PC has problematic categories.

5 Setting of the Empirical Studies

We have conducted three empirical studies to find out the common mistakes made by testers during
an ad hoc identification of categories and choices from informal specifications. The respective
specifications used in the three studies are denoted byS TRADE, S PURCHASE, andSMOS.

The first specificationS TRADE is related to the credit sales of goods by a wholesaler to retail
customers, and is mainly in the form of narrative descriptions. In general terms, the system
determines whether credit sales should be approved for individual retail customers based on various
factors. These factors include the credit status and the credit limit of the customer, the invoice
amount of the transactions, and any special management approval by the wholesaler.

The second specificationS PURCHASE is related to the purchase of goods using credit cards
issued by an international bank. There are a variety of credit cards determined by various attributes
such as status (diamond, gold, or classic), type (corporateor personal), and credit limit. The main
functions of the system are to determine whether a purchase transaction using a credit card should
be approved, and to calculate the number of rewards points that will result from an approved
purchase. The number of rewards points further determines the type of benefit (such as free airline
tickets and shopping vouchers) the customer is entitled to.Similar toS TRADE, S PURCHASEis mainly
written in narrative descriptions.
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Finally, SMOS is a real-life specification prepared for an international company providing
catering service for many different airlines. The company prefers to remain anonymous and will
only be referred to asAIR-FOOD. In order to protect the identity ofAIR-FOOD and to makeSMOS

suitable for our study, we have slightly amended the original specification before our third study
commences. The majority of the content of the originalSMOS, however, has remained intact.
SMOS has been produced for a meal ordering system (MOS) that helpsAIR-FOOD determine

the types and numbers of meals to be prepared and loaded onto each flight.SMOS contains various
components such as narrative descriptions, screen layouts, and report layouts. MOS has been fully
developed and released for production use inAIR-FOOD for several years. Since MOS is relatively
more complex, more mistakes have occurred when identifyingcategories and choices forSMOS

than whenS TRADE andS PURCHASEare processed. Hence, the majority of the examples discussed
in the appendix refer toSMOS.

For empirical studies 1 and 2, the subjects are 48 final-year undergraduates in the computer
science and software engineering programs at The University of Melbourne (UM). On the other
hand, for empirical study 3, the subjects are a mix of 44 undergraduates and postgraduates in the
computer science, software engineering, and information technology programs in Swinburne Uni-
versity of Technology (SU). In both universities, a one-hour lecture was devoted to the introduction
of CPM and CTM. Teaching of the methods was supported by relatedliterature such as [3], [8],
and [11]. The lecture was reinforced by a one-hour tutorial with various examples (including the
one used in [8], which involves a program counting the numberof times an element occurs inside
a list). The subjects in both universities were being taughtby the same instructor using the same
teaching materials.

In study 3, after the subjects have learned CPM and CTM, we askedthem to carry out the
following tasks:

(a) Decompose the specificationSMOS into several functional units that can be tested indepen-
dently. For example, there may be a unitU MEAL directly related to the generation of daily
meal schedules and another unit related to the maintenance of the airline codes.

(b) Suppose we focus on the functional unitU MEAL . Identify from it a set of categories and
their associated choices.

(c) For every identified category or choice, state the reason ofits identification.

In studies 1 and 2, on the other hand, we asked the subjects to treat each of the specifications
S TRADE andS PURCHASEdenoted byU TRADE andU PURCHASE, respectively, as a single functional
unit. This is becauseS TRADE andS PURCHASEare less complex thanSMOS and can therefore be
tested in their entirety. For each ofU TRADE andU PURCHASE, the subjects are asked to identify
a set of categories and their associated choices, and to provide justifications similarly to tasks (b)
and (c) above. For all the three studies, the subjects were asked tocomplete tasks (a) to (c) in about
three weeks.

6 Findings, Discussions, and Recommendations

An initial examination of the potential categories and potential choices identified by the subjects
for the three functional unitsU TRADE, U PURCHASE, andU MEAL reveals the following:

9



Number of Sets of Number of
Functional Potential Categories Potential Categories (Choices)

Unit and Potential Choices Total Mean∗ Range∗ Standard Derivation
U TRADE 48 265 (579) 5.5 (12.1) 4–9 (10–20) 0.9 (1.5)
U PURCHASE 48 475 (1 138) 9.9 (23.7) 6–14 (15–35) 2.0 (4.4)
U MEAL 44 615 (1 488) 14.0 (33.8) 4–40 (10–83) 7.8 (16.7)

(*) by each subject

Table 2: Statistics of Potential Categories and Potential Choices Identified for Each Functional
Unit

(a) Table 2 shows the statistics of the potential categories and potential choices identified for
each functional unit. Every subject is asked to identify oneand only one set of potential
categories and their associated potential choices. We shall usePC’s to denote these sets.
Thus, the number ofPC’s is equal to the number of subjects.

We observe that the numbers of potential categories and potential choices increase with the
complexity of the functional unit, withU TRADE being the least complex andU MEAL the
most complex. We also note that these numbers vary substantially among the subjects, as
evidenced by the large ranges and standard derivations of the numbers of potential categories
and potential choices identified. The latter observation indicates that the quality ofPC’s,
identified by the subjects in an ad hoc manner, also varies significantly — an argument that
we have put forward in Section 1.

(b) The mean numbers of potential choices in each potential category are 2.2 (= 579
265), 2.4 (=

1138
475 ), and 2.4 (= 1488

615 ) for U TRADE, U PURCHASE, andU MEAL , respectively. Hence, the
number of potential choices in each potential category is fairly small, even though all the
potential choices in a potential category should cover all the input elements relevant to that
category. The main reason for a small number of potential choices in each potential category
is that a potential choice consists of a set of values. For example, the valid choice|m+n: 6= 0|
in Example 1 consists of all integers except zero.

(c) Table 3 shows the statistics of missing and problematic categories for each functional unit.
Similar to the numbers of potential categories and potential choices as reported in (a), the
numbers of missing categories and problematic categories also increase with the complexity
of the functional unit. Note the high percentages ofPC’s with missing categories and/or
problematic categories in all the three functional units. Here, we have two observations:

• The occurrence of missing categories inPC’s would mean that thePC’s are not com-
prehensive, since they do not contain sufficient relevant categories (and associated valid
choices) to generate enough complete test frames for testing the function rules of each
functional unit.

• The occurrence of problematic categories inPC’s would mean that thePC’s are not
effective, since these problematic categories will cause the generation of incomplete

10



Number (%) Average Number (%) Average
Number of PC’s∗ Number of Number of PC’s∗ Number of

Number of with Missing of with Problematic
Functional of Missing Missing Categories Problematic Problematic Categories

Unit PC’s∗ Categories Categories in Each PC∗ Categories Categories in Each PC∗

U TRADE 48 1 1 (2.1%) 0.02 43 42 (87.5%) 0.90
U PURCHASE 48 33 23 (47.9%) 0.69 79 46 (95.8%) 1.65
U MEAL 44 158 44 (100.0%) 3.59 158 41 (93.2%) 3.59

(*) PC= Set of potential categories and potential choices

Table 3: Statistics of Missing and Problematic Categories for Each Functional Unit

Number (%) of
Categories with Problematic Choices

Categories Categories Categories Categories Categories
with with with with with

Functional Irrelevant Missing Invalid Overlapping Combinable Composite
Unit Categories Choices Choices Choices Choices Choices
U TRADE 0 (0.0%) 3 (1.1%) 0 (0.0%) 6 (2.3%) 0 (0.0%) 34 (12.8%)
U PURCHASE 0 (0.0%) 9 (1.9%) 2 (0.4%) 26 (5.5%) 0 (0.0%) 42 (8.8%)
U MEAL 123 (20.0%) 12 (2.0%) 14 (2.3%) 4 (0.7%) 5 (0.8%) 4 (0.7%)

Table 4: Numbers and Percentages of Different Types of Problematic Category

test frames.

Let us further analyze the problematic categories identified by the subjects. Consider Table 4
that shows the numbers and percentages of different types ofproblematic category, and Table 5 that
shows the numbers and percentages ofPC’s containing different types of problematic category. A
closer examination reveals that 42 (87.5%), 46 (95.8%), and41 (93.2%) of thePC’s for U TRADE,
U PURCHASE, andU MEAL , respectively, contain at least one problematic category.

Refer to the second columns from the left in Tables 4 and 5. Out of the 615 potential categories
identified forU MEAL , we find that 123 (20.0%) are irrelevant with respect toU MEAL . These
irrelevant categories occur in 33 (75.0%)PC’s, and are identified with regard to factors related
to the execution of functional units other thanU MEAL in SMOS. The occurrence of irrelevant
categories clearly indicates that the logical decomposition of a specification into several indepen-
dent functional units is not a trivial task that can be performed effectively without the help of
systematic methodologies. ForU TRADE andU PURCHASE, no irrelevant category is detected. The
main reason for the absence of irrelevant categories in thiscase is that, for each specification
S TRADE andS PURCHASE, the subjects were asked to treat it as one single functionalunit and hence
no decomposition is required. Thus, it is impossible to identify irrelevant categories for factors
outsideU TRADE andU PURCHASE.

If we compare Tables 4 and 5, we observe that:

(i) The relative frequency distributions of different types of problematic category are fairly
similar across all three studies.
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Number (%) of Sets of Potential Categories and Potential Choices (PC’s) Containing
Categories with Problematic Choices

Categories Categories Categories Categories Categories
with with with with with

Functional Irrelevant Missing Invalid Overlapping Combinable Composite
Unit Categories Choices Choices Choices Choices Choices
U TRADE 0 (0.0%) 3 (6.3%) 0 (0.0%) 6 (12.5%) 0 (0.0%) 34 (70.8%)
U PURCHASE 0 (0.0%) 8 (16.7%) 2 (4.2%) 25 (52.1%) 0 (0.0%) 31 (64.6%)
U MEAL 33 (75.0%) 7 (15.9%) 11 (25.0%) 4 (9.1%) 3 (6.8%) 4 (9.1%)

Table 5: Numbers and Percentages ofPC’s Containing Different Types of Problematic Category

(ii ) Categories with composite choices are the most common. On the other hand, categories with
combinable choices are the least common.

The above observations together clearly suggest that the adhoc identification approach is
highly ineffective. Without doubt, there is a strong need for systematic methods for identifying
(relevant) categories and valid choices from informal specifications.

Based on the above observations and discussions, we formulate the following checklist to help
testers detect the existence of missing categories, problematic categories, and problematic choices.

A Checklist for Detecting Missing Categories, Problematic Categories, and Problematic
Choices:

(1) Due care should be taken when decomposing an informal specification intoU ’s. In
particular, check whether there exist any irrelevant categories identified for factors that
are not related to the execution behavior of the selectedU .

(2) Check whether there exists any factorK that affects the execution behavior of the selected
U but is not associated with any potential category. If this happens, there will be missing
categories that we fail to identify.

(3) For every potential choice|X: x|, check whetherTFU (|X: x|) = /0. If so, |X: x| is an invalid
choice.

(4) For every category[X], check whether the union of all its valid choices identified so far
covers all the input values relevant to[X]. If not, [X] contains missing choices yet to be
identified.

(5) For any non-empty set of valid choices in every category,determine whether these choices
are overlapping by checking the existence of common elements.

(6) When identifying potential categories and potential choices, consider also (a) the
constraints among potential choices in the formation of complete test frames, and (b) the
function rules involving these choices. This will help detect the occurrence of combinable
choices and composite choices. The detection of categorieswith composite choices is
particularly important, since our studies have indicated that they are the most common
among various types of problematic category.
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We cannot guarantee that a process based on the above checklist will necessarily detect all
possible missing categories, problematic categories, andproblematic choices. According to our
analysis and empirical studies, however, such unwarrantedcases can be greatly reduced.

7 Validity of the Empirical Studies

The empirical studies have the following limitations due tothe respective settings:

(a) The subjects of studies 1 and 2 were all undergraduates in UM, whereas those of study 3 were
a mix of undergraduates and postgraduates in SU. Because of the differences in universities
and the subjects’ calibers, readers are recommended not to compare the mistakes made by
the subjects among these studies, which is not the main objective of the paper. Instead, the
paper aims to identify the types of common mistake made by thesubjects when identifying
categories and choices in the absence of a systematic process.

(b) For studies 1 and 2, the specificationsS TRADE andS PURCHASEwere given to the subjects as
one single assignment. Hence, we do not know which specification the subjects worked on
first, although we think that the majority of the subjects should have started withS TRADE

because it is less complex. One can argue that the subjects may gain in experience after
doing the first case. However, this effect should be minimal,if any, because the subjects were
advised of their errors only after they have completed all the tasks for both specifications.

(c) Obviously, the results of our studies might differ if the subjects were real software testers
with substantial commercial software development experience instead of being undergradu-
ates and postgraduates. If such were their backgrounds, they might make fewer mistakes in
an ad hoc identification of categories and choices. We observe, however, that even in study 3,
where most of the postgraduates in SU had real-life IT working experience, problematic
categories and choices were identified. This observation supports our earlier argument that
the ad hoc identification approach cannot assure the qualityof the resulting categories and
choices, regardless of the caliber of the subjects.

8 Conclusion

We have analyzed and discussed the common mistakes when software testers use an ad hoc ap-
proach to identifying categories and choices from informalspecifications. We have conducted three
empirical studies via different specifications and testers. To facilitate the analysis of our empirical
results, we have formally defined missing categories and various types of problematic category
and choice. We have also discussed plausible reasons for theidentification of such categories
and choices. Our results confirm that missing categories, problematic categories, and problematic
choices are likely to occur when the identification of categories and choices is performed in an ad
hoc manner. There is, therefore, a great demand for the introduction of systematic identification
techniques to improve on the quality of the process and eventually the quality of the resulting test
cases.
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The contributions of our empirical studies are threefold. First, by defining missing categories
and the various types of problematic category and choice andhighlighting them to inexperienced
users, testers will be alerted to avoid them. Secondly, the knowledge of such categories and choices
and plausible reasons for their identification give researchers and practitioners an insight into the
development of systematic identification methods. Thirdly, the effectiveness of any developed
identification method can be measured in terms of its abilityto screen out missing categories,
problematic categories, and problematic choices.

Based on the results of our empirical studies, we have developed an identification checklist
to help testers detect the existence of missing categories,problematic categories, and problematic
choices when the identification process is performed in an adhoc manner.
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Appendix: Examples to Illustrate Terminology and Definitions

Examples 2 to 6 refer to the functional unitU P in Example 1 of Section 2.1.

Example 2 (Set of Complete Test Frames Related to a Potential Category) The set of complete
test frames forU P is{Bc

1,B
c
2,B

c
5,B

c
6}. Hence, the set of complete test frames related to the potential

category[m+n] is TFU P ([m+n]) = {Bc
5,B

c
6}.

Example 3 (Set of Complete Test Frames Related to a Potential Choice) The set of complete
test frames related to the potential choice|Status ofF : Exists but Empty| is TFU P (|Status of
F : Exists but Empty|) = {Bc

2}.

Example 4 (Set of Complete Test Frames Related to a Test Frame)Consider the test frameB=
{|Status ofF : Exists and Non-Empty|}. The set of complete test frames related toB is TFU P (B) =
{Bc

5,B
c
6}.

Example 5 (Relevant and Irrelevant Categories)Refer to Example 2 again. SinceTFU P ([m+
n]) 6= /0, [m+n] is a relevant category.

Suppose a tester identifies[m] as a potential category with|m < 0|, |m = 0|, and|m > 0| as
its associated potential choices. According to Example 2, the set of complete test frames forU P
is {Bc

1,B
c
2,B

c
5,B

c
6}. Any potential choice of[m], however, does not appear inBc

1, Bc
2, Bc

5, andBc
6.

Hence,TFU P ([m]) = /0 and[m] is therefore an irrelevant category.
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Example 6 (Missing Category) Suppose[Status ofF ] is the only category identified forU P , as
if the category[m+n] did not exist. In such circumstances,[Status ofF ] is the only category that
exists in the setPC of potential categories and choices identified forU P . Consider the factor “m+
n” that affects the execution behavior ofU P , and in particular whether “m+n= 0” or “m+n 6= 0”.
Let [Xm+n] denote the category corresponding to the factor “m+n”. Since[Xm+n] 6∈ PC, [Xm+n] is
a missing category inPC, andPC is said to have a missing category.

Consider again the complete test framesBc
5 = {|Status ofF : Exists and Non-Empty|, |m+n: =

0|} andBc
6 = {|Status ofF : Exists and Non-Empty|, |m+n: 6= 0|} in Table 1. Both of them contain

a choice in the category[m+n]. Thus, if [m+n] is missing,Bc
5 andBc

6 will be omitted by mistake
because they cannot be constructed solely from the choices in [Status ofF ].

All the following examples refer to the specificationSMOS and the functional unitU MEAL in
Section 5.

Example 7 (Valid and Invalid Choices) Every master flight schedule (MFS) contains a data el-
ement called “Weekly Departure Pattern” (WDP), which indicates whether a flight departs on a
daily basis. For a non-daily flight, WDP further indicates theday(s) of the week that the flight will
depart. Consider, for example, the following two values of WDP:

(a) WDP = “1234567”: The flight is a daily-flight. Note that a “1”, “2”, . . . , and “7” in WDP
indicate that the flight departs on Mondays, Tuesdays, . . . , and Sundays, respectively.

(b) WDP = “– – 345 – –”: The flight is a non-daily flight. It only departs on Wednesdays,
Thursdays, and Fridays.

According to the specificationSMOS, the MFS for a daily flight will always be used to generate
the corresponding daily meal schedule (DMS) on every day of the week without further checks,
as long as this MFS is “current”. (To avoid lengthy discussion, we shall skip the criteria for
determining whether a given MFS is current.) On the other hand, further checking is required for
a non-daily flight even though its MFS is current, in order to determine whether the corresponding
DMS should be generated on a particular day of the week.

In study 3, some subjects have identified[WDP] as a category forU MEAL with three potential
choices, namely|WDP: Daily|, |WDP: Non-Daily|, and |WDP: Others|. Since every flight must
depart on a daily or non-daily basis,TFU MEAL (|WDP: Daily|) 6= /0, TFU MEAL (|WDP: Non-Daily|) 6=
/0, andTFU MEAL (|WDP: Others|) = /0. Hence, the potential choices|WDP: Daily| and|WDP: Non-
Daily| are valid while the potential choice|WDP: Others| is invalid. In this case,[WDP] is a
category with an invalid choice.

Example 8 (Missing Choice)According to the specificationSMOS, there are three different types
of MFS, namely “Outdated”, “Current”, and “Future”. (To avoid lengthy discussion, the details
of how to determine the type of an MFS are not included here.) The types of MFS, together with
some other information such as WDP introduced in Example 7, determine which MFSs are used to
generate the corresponding DMSs on a particular date. It is also specified inSMOS that the kitchen
of AIR-FOOD installs a monitor to display all types of MFS. This arrangement helps kitchen staff
to plan and produce the required meals. Outdated, current, and future MFSs are displayed on the
monitor in “Red”, “Blue”, and “Green” colors, respectively.
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Given the above information,[Type of MFS] should be identified as a category, with|Type
of MFS: Outdated|, |Type of MFS: Current|, and |Type of MFS: Future| as its associated valid
choices. We observe that some subjects have identified only|Type of MFS: Current| and |Type
of MFS: Future| as valid choices. SinceTFU MEAL (|Type of MFS: Outdated|) 6= /0 and |Type of
MFS: Outdated| has not been identified by these subjects,|Type of MFS: Outdated| is a missing
choice and[Type of MFS] is a category with a missing choice.

Example 9 (Overlapping Choices)The specificationSMOS states that every seat in a flight be-
longs to one of the three classes, namely “First”, “Business”, and “Economy”. For each class,
passengers can order regular meals or special meals such as vegetarian meals. The types of regular
and special meals are different across the three cabin classes. As expected, the regular and special
meals offered in the first-class cabin are of better quality than those in the other cabins. The
numbers of regular and special meals for each cabin class in aflight is kept in an MFS associated
with this flight, so that a corresponding DMS can be generatedlater.

With the above information, the following categories and valid choices should be identified for
U MEAL :

(a) [Number of Regular Meals in First-Class Cabin] with |Number of Regular Meals in First-
Class Cabin:= 0| and|Number of Regular Meals in First-Class Cabin:> 0| as its associated
choices.

(b) [Number of Special Meals in First-Class Cabin] with |Number of Special Meals in First-
Class Cabin:= 0| and|Number of Special Meals in First-Class Cabin:> 0| as its associated
choices.

(c) [Number of Regular Meals in Business-Class Cabin] with |Number of Regular Meals in
Business-Class Cabin:= 0| and|Number of Regular Meals in Business-Class Cabin:> 0| as
its associated choices.

(d) [Number of Special Meals in Business-Class Cabin] with |Number of Special Meals in
Business-Class Cabin:= 0| and |Number of Special Meals in Business-Class Cabin:> 0|
as its associated choices.

(e) [Number of Regular Meals in Economy-Class Cabin] with |Number of Regular Meals in
Economy-Class Cabin:= 0| and|Number of Regular Meals in Economy-Class Cabin:> 0|
as its associated choices.

( f ) [Number of Special Meals in Economy-Class Cabin] with |Number of Special Meals in
Economy-Class Cabin:= 0| and|Number of Special Meals in Economy-Class Cabin:> 0|
as its associated choices.

Thus, by selecting one valid choice from each of the above categories, 26 = 64 different situations
are possible when generating test frames.

Consider[Number of Regular Meals in First-Class Cabin] in (a) above. Suppose it is now
identified with two associated valid choices|Number of Regular Meals in First-Class Cabin:= 0|
and|Number of Regular Meals in First-Class Cabin:≥ 0|. The two valid choices are overlapping
because the element (Number of Regular Meals in First-Class Cabin = 0) exists in both choices.
Accordingly, [Number of Regular Meals in First-Class Cabin] is a category with overlapping
choices.
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Example 10 (Combinable Choices)Consider the category[Number of Regular Meals in First-
Class Cabin] in bullet (a) of Example 9 again. Suppose this category is identified withthe following
three associated distinct and valid choices:

(i) |Number of Regular Meals in First-Class Cabin:= 0|,

(ii ) |Number of Regular Meals in First-Class Cabin:= 1|, and

(iii ) |Number of Regular Meals in First-Class Cabin:> 1|.

According to the specification, however,U MEAL should treat (ii ) and (iii ) in exactly the same way
under the same function rules. In particular, given any setB of valid choices,B combines with
(ii ) to form a complete test frameBc

1 if and only if B combines with (iii ) to form a complete test
frameBc

2. Furthermore,Bc
1 andBc

2 should produce the same test results because there is no function
rule that states otherwise. In such circumstances, (ii ) and (iii ) are combinable into a single choice
|Number of Regular Meals in First-Class Cabin:≥ 1| = |Number of Regular Meals in First-Class
Cabin:= 1| ∪ |Number of Regular Meals in First-Class Cabin:> 1|. Thus,[Number of Regular
Meals in First-Class Cabin] is a category with combinable choices.

By combining the valid choices (ii ) and (iii ), we can reduce the number of complete test frames
generated and hence alleviate the testing effort. On the other hand, the coverage of the function
rules is not compromised.

Example 11 (Composite Choice)The information captured in MFSs will be used to generate the
corresponding DMSs. During the generation process, some information in MFSs can be overridden
by the following exceptional schedules/records if they exist:

• Exceptional flight schedules (EFSs): They allow users to change the estimated time of
departure (ETD) of a flight on a particular date after the MFS of this flight has been created.

• Exceptional crew configuration records (ECCRs): They allow users to change the number
of crewmembers in a flight on a particular date after the MFS ofthis flight has been created.
Such records are necessary sinceAIR-FOOD needs to prepare meals for the crews as well as
the passengers.

Because of the EFSs and ECCRs, any given MFS falls into one of the following situations:

(a) It is associated with an EFS but not an ECCR.

(b) It is associated with an ECCR but not an EFS.

(c) It is associated with an EFS and an ECCR.

(d) It is not associated with any EFS or ECCR.

In order to generate sufficient complete test frames to coverthe above four situations, one
approach is to identify[Existence of EFS] and[Existence of ECCR] as two categories. The former
has|Existence of EFS: Yes| and |Existence of EFS: No| as associated valid choices, whereas the
latter has|Existence of ECCR: Yes| and |Existence of ECCR: No| as associated valid choices.
Thus, all of the above situations can be catered for by selecting one valid choice in[Existence
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of EFS] and one in[Existence of ECCR]. For example, the valid choices|Existence of EFS: Yes|
and|Existence of ECCR: Yes| will cover situation (c).

In study 3, some subjects have identified[Existence of Exceptional Schedules/Records] as one
category instead of defining[Existence of EFS] and[Existence of ECCR]. This new category has
|Existence of Exceptional Schedules/Records: EFS and ECCR Do Not Exist| and |Existence of
Exceptional Schedules/Records: Otherwise| as associated valid choices. As a result,|Existence of
Exceptional Schedules/Records: Otherwise| applies to situations (a), (b), and (c) above, whereas
|Existence of Exceptional Schedules/Records: EFS and ECCR Do Not Exist| applies to situa-
tion (d). Note that|Existence of Exceptional Schedules/Records: Otherwise| cannot be used to
generate different complete test frames to cover situations (a), (b), and (c) separately.

Consider|Existence of Exceptional Schedules/Records: Otherwise|. It can be replaced by three
valid and non-overlapping choices, namely|Existence of Exceptional Schedules/Records: Only
EFS Exists|, |Existence of Exceptional Schedules/Records: Only ECCR Exists|, and|Existence of
Exceptional Schedules/Records: Both EFS and ECCR Exist|. We note the following:

(i) (|Existence of Exceptional Schedules/Records: Only EFS Exists| ∪ |Existence of Excep-
tional Schedules/Records: Only ECCR Exists|) ⊂ |Existence of Exceptional
Schedules/Records: Otherwise|.

(ii ) Let

• Bbe a valid but incomplete test frame{|WDP: Daily|, |Type of MFS: Current|, |Number
of Regular Meals in First-Class Cabin:> 0|, |Number of Special Meals in First-Class
Cabin:= 0|, |Number of Regular Meals in Business-Class Cabin:> 0|, |Number of
Special Meals in Business-Class Cabin:> 0|, |Number of Regular Meals in Economy-
Class Cabin:> 0|, |Number of Special Meals in Economy-Class Cabin:> 0|, . . .}.4

• |Existence of Exceptional Schedules/Records: Only EFS Exists|) be a complete test
frame.

• |Existence of Exceptional Schedules/Records: Only ECCR Exists|) be a complete test
frame.

Bc
1 andBc

2 are associated with different function rules because, according to the specification
SMOS, Bc

1 andBc
2 correspond to two different sources of overriding information in MFSs

during the generation of DMSs. In other words, the valid choices|Existence of Exceptional
Schedules/Records: Only EFS Exists| and |Existence of Exceptional Schedules/Records:
Only ECCR Exists| are non-combinable.

Hence, |Existence of Exceptional Schedules/Records: Otherwise| is a composite choice and
[Existence of Exceptional Schedules/Records] is a category with a composite choice. Obviously,
the composite choice could be replaced by|Existence of Exceptional Schedules/Records: Only
EFS Exists|, |Existence of Exceptional Schedules/Records: Only ECCR Exists|, and |Existence
of Exceptional Schedules/Records: Both EFS and ECCR Exist|, with a view to improving the
comprehensiveness of the resulting set of complete test frames.

4 To avoid lengthy discussions, we only list the valid choicesin B that have been introduced in earlier examples.
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