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Bayesian Adaptive Learning of the Parameters of 
Hidden Markov Model for Speech Recognition 

Qiang Huo, Member, IEEE, Chorkin Chan, Member, IEEE, and Chin-Hui Lee, Senior Member, IEEE 

Abstract-In this paper, a theoretical framework for Bayesian 
adaptive training of the parameters of discrete hidden Markov 
model (DHMM) and of semi-continuous HMM (SCHMM) with 
Gaussian mixture state observation densities is presented. In 
addition to formulating the forward-backward MAP (maximum a 
posterion’) and the segmental MAP algorithms for estimating the 
above HMM parameters, a computationally efficient segmental 
quasi-Bayes algorithm for estimating the state-specific mixture 
coefficients in SCHMM is developed. For estimating the param- 
eters of the prior densities, a new empirical Bayes method based 
on the moment estimates is also proposed. The MAP algorithms 
and the prior parameter specification are directly applicable to 
training speaker adaptive HMM’s. Practical issues related to 
the use of the proposed techniques for HMM-based speaker 
adaptation are studied. The proposed MAP algorithms are shown 
to be effective especially in the cases in which the training or 
adaptation data are limited. 

I. INTRODUCTION 

HE use of hidden Markov models (HMM’s) for speech T recognition has become increasingly popular in the past 
decade (e.g. [37]). The widespread success of the HMM 
framework can mainly be attributed to the existence of efficient 
training procedures for HMM’s and the ability of the HMM 
to capture both the temporal and spectral variability in the 
speech signal. The conventional maximum likelihood (ML) 
based algorithms assume the HMM parameters to be fixed but 
unknown and the parameter estimators are derived entirely 
from the training observation sequences (sample informa- 
tion) using the Baum-Welch [2]-[4], [21], [22], [31] and 
the segmental maximum likelihood (or segmental Ic-means 
[39]. [23]) training algorithms. There are cases in which the 
prior information about the HMM parameters is available. 
Such information may, for example, come from subject matter 
considerations and/or from previous experiences. The inves- 
tigator may wish to use such prior information, in addition 
to the sample observations, in making inference about the 
HMM parameters. As is well known, the Bayesian inference 
approach provides a convenient method for combining sample 
observations and prior information. By assuming the HMM 
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parameters to be random, some of the prior information about 
the HMM parameters can sometimes be expressed in the 
form of a priori distributions. A posteriori distributions can 
now be constructed and inference can then be made based 
on the posterior distributions. Consequently, the flexibility 
in incorporating varying amount of prior information makes 
the Bayesian inference procedure ideal in handling the sparse 
training data problem that exists in most statistical pattern 
recognition applications. 

Recently, Bayesian adaptive learning of HMM parameters 
has been proposed and adopted in a number of speech recogni- 
tion applications. By assuming that the set of vectors assigned 
to each prototype is modeled by a diagonal multivariate 
Gaussian density, of which the prototype is the mean, Ferretti 
and Scarci [9] used Bayesian estimation of mean vectors to 
build speaker-specific codebooks in a discrete HMM (DHMM) 
framework. Originated in Brown et al.’s preliminary effort 
with Bayesian estimation for speaker adaptation of continuous 
density HMM (CDHMM) parameters in a connected digit 
recognizer [6], a theoretical framework of Bayesian learning 
was first proposed by Lee et al. [27] for estimating the 
mean and covariance matrix parameters of a CDHMM with a 
multivariate Gaussian state observation density. It was then 
extended to handle all the parameters of a CDHMM with 
mixture Gaussian state observation densities [ 111-[141, [261. 
Two algorithms for performing Bayesian adaptive learning, 
namely the forward-backward MAP (maximum a posteriori) 
algorithm [13], [14], [26], and the segmental MAP algorithm 
[11]-[14], [26], [27] have been developed and shown to be 
effective for many speech recognition applications [ 121. 

By using the same Bayesian learning framework as in 
[11]-[14], [26], [27], we have extended [17]-[20] the formula- 
tion to estimate parameters of DHMM’s and semi-continuous 
HMM’s (SCHMM’s [ 151, also called tied-mixture HMM’s 
[5]).  In addition to the two above-mentioned MAP estimation 
algorithms, a computationally efficient segmental quasi-Bayes 
estimation algorithm for the mixture coefficients in SCHMM 
is developed [17], [20]. A new empirical Bayes method 
for estimating the prior density parameters based on the 
moment estimates is also proposed [ 171-[19]. We also study 
practical issues related to the use of the proposed algorithms 
in estimating HMM parameters for speaker adaptation (SA) 
application. This paper investigates the problem of Bayesian 
adaptive learning for DHMM and SCHMM. We gather to- 
gether and summarize in this paper our previous results 
scattered in [17]-[20] and make it more accessible to the 
general readership. 

1063-6676/95$04,00 0 1995 IEEE 



HUO er al.: BAYESIAN ADAPTIVE LEARNING OF THE PARAMETERS OF HIDDEN MARKOV MODEL 335 

The rest of the paper is organized as follows. After a brief 
introduction of the concept of the Bayesian point estimation 
in Section 11, the formulation of MAP estimation for DHMM 
and SCHMM are derived, respectively, in Section 111 and 
IV. In Section V, the segmental MAP estimation of the 
HMM is discussed and a computationally efficient method of 
segmental quasi-Bayes estimation for SCHMM is presented. 
In Section VI, the important issue of prior density estimation 
is addressed and an empirical Bayes method to estimate 
the hyperparameters of prior density based on the moment 
estimate is proposed. A series of experimental results along 
with discussions and analyses are reported in Section VII. 
Finally, concluding remarks are given in Section VIII. 

11. BAYESIAN POINT ESTIMATION 

In a Bayesian approach, if 0 is the random parameter 
vector to be estimated from a sequence of T observations 
x1 , 2 2 ,  . . . , ZT, it is assumed that an investigator’s prior 
knowledge about 0 can be summarized in a prior probability 
density function (PDF) g(t9),  with 0 E 0, where s1 denotes 
an admissible region of the parameter space. In denoting the 
prior PDF g ( 6 ) ,  we do not explicitly show the parameters 
of the prior PDF (often referred to as the hyperparameters), 
which are assigned values by the investigator. For notational 
simplicity, we use the same symbol to denote both the random 
variable and the value it may assume. By the use of Bayes’ 
theorem, the prior PDF g ( 0 )  can be combined with the sample 
density function p (  5 1  , 2 2 ,  . e , ZT 18) (which is the likelihood 
function if viewed as a function of 0) to yield a posterior PDF: 

Such a PDF can be used to make inferences about the pa- 
rameters 8. Furthermore, if an investigator has a loss function 
that reflects the cost of an incorrect estimation, it is generally 
possible to obtain an estimate, say 8, which minimizes the 
posterior expected loss. In this case, d is referred to as a 
Bayesian point estimator that minimizes the average risk. It is 
well known that the mean of the posterior PDF is the Bayesian 
point estimator given that the loss function is quadratic. On 
the other hand, the mode of the posterior PDF, usually called 
the modal or MAP estimator, corresponds to the special zero- 
one loss function case. Both the mean and the mode are 
reasonable candidates of the point estimate of 0 [25], [7], 
[U]. In particular, when the prior PDF g ( 0 )  is constant over 
the parameter space fl (i.e. an improper noninfonnative prior 
is assumed), the MAP estimator becomes the same as the 
classical ML estimator. 

Given the MAP formulation, three closely related issues 
remain to be addressed: the choice of the prior distribution 
family, the specification of the hyperparameters for prior den- 
sities, and the solution of the MAP estimator. In the following 
sections, the formulation for MAP estimation of DHMM and 
SCHMM are derived and the above three important issues are 
discussed. Whenever possible we use the same notations as in 
[14] for all MAP formulations. 

111. MAP ESTIMATION FOR DISCRETE HMM 

In this section, we discuss the MAP estimate for discrete 
HMM. Consider an N-state DHMM with parameter vector 
X = ( T ,  A,  B) ,  where d = [ T I ,  7r2, . . . , TAT] is the initial state 
probability vector, A = [a, ,] ,  i, j = 1 ,2 ,  . . . , N ,  is the tran- 
sition probability matrix, and B = [ b 3 k ] ,  j = 1, . . , N, IC = 
1, + . . , K ,  with b j k  being the probability of observing symbol 
V k  in state j .  The observation symbol set is denoted as 

For simplicity, prior independence of T ,  A and B is as- 
v = { 2 1 1 . V 2 : . ’ , U K } .  

sumed. The prior density for X is then 

g ( X )  = g ( r )  . g ( A )  . g ( B )  . (2) 

If the rows of T ,  A and B are assumed independently 
distributed a priori, and their densities assume the form 
of Dirichlet distributions (sometimes called multivariate beta 
PDF), then g(X) becomes a special case of the matrix beta 
PDF [34]: 

N N K 

i = l  j = 1  k=l 

where K, is a normalizing factor. {q i} ,  { q i j } ,  {vik} are sets 
of positive parameters for the prior PDF’s of T ,  A,  and B 
assigned by the investigator to represent his or her prior 
knowledge of the parameters. Although the use of a Dirichlet 
prior distribution has drawn some criticism [l], it does lead 
to a tractable analysis. Also note that the “extended natural 
conjugate” prior distribution that admits nonzero correlation 
between the rows of A,  B, and 7r will result in complicated 
formulas for the moments, etc. [34]. 

For an observation sequence x = ( z ~ , x ~ , . . . , z T ) ,  let 
s = ( S I , S ~ ,  . ..,ST) be the unobserved state sequence, the 
probability of observing the state sequence s is simply 

T 

(4) 
t = 2  

The joint probability for observing the sequence x and s can 
be evaluated as 

T 

t = 2  

The probability for observing the sequence x is then measured 
by 

s 

where the summation is taken over all possible state sequences. 
Given the observation sequence x and the prior density g ( X ) ,  
the MAP estimate of X can be obtained by 

(7) XMAp = argmfx P(xlX)g(X) . 

By viewing it as a missing data problem, as noted by Dempster 
et al. [8], the expectation-maximization (EM) algorithm can be 
modified to produce the MAP estimate. The EM reestimation 
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formulas for the three parameter sets 7r, A,  and B are as 
follows (see the Appendix for a derivation of these formulas): 

where 

e ,  = Pr(s l  = i1x.X) 
T - 1  

C,] = Pr(st  = i .  St+l  = jlx. A)  
t = l  

d j k  = Pr(st  = j :  xt u k  Ix. A)  (13) 
t : . r f - “ k  

and “.rt - Uk” denotes that the observation xt is encoded as 
the symbol t’k. These terms can be efficiently computed by 
using the forward-backward algorithm [2]. Strictly speaking, 
to derive the above reestimation formulas, three conditions 
must be obeyed: 1)  e ,  + vi > 1, 2) cij + q z j  > 1, and 3) 
d,k + U j k  > 1. Extension to the case of multiple independent 
observation sequences is straightforward and the formulation 
can be found in [161, 1171. 

It can be seen that the above formulation computes each 
MAP estimate as a weighted sum of two terms, each depending 
on the corresponding prior parameters and the observed data, 
respectively. The weights are also recomputed iteratively and 
depend on the hyperparameters and the data in a nonlinear 
fashion. Note that when the number of training samples 
approaches infinite, the MAP reestimation formulas approach 
the Baum-Welch ones that are used to get an approximate ML 
estimate. Thus, an asymptotical similarity of the two estimates 
is demonstrated. Iterative use of these reestimation formulas 
will give estimates of the HMM parameters corresponding to a 
local maximum of the posterior density, provided the iterative 
sequence is not trapped at some saddle point, in which case, 
a small random perturbation of X away from the saddle point 
will hopefully set the EM algorithm free. The reader is referred 
to a detailed account of the convergence properties of the EM 
algorithm in a general setting given by Wu [45]. The choice 
of initial estimate is therefore essential for finding a “good” 
solution and minimizing the number of EM iterations needed 
to attain a local maximum. One reasonable choice of the initial 
estimate is the mode of the prior density: 

Note again that the following three conditions must be obeyed: 
1) > 1, 2) r / i j  > 1, and 3) u j k  > 1. Another choice for the 
initial values is the mean of the prior density computed as: 

2 2 = 1 , 2 , . . . , N  (17) 
*(O) - 72 - 

CzN,lqi 

Both are some kind of summarization of the available infor- 
mation about the parameters before any data are observed. 

IV. MAP ESTIMATION FOR SEMI-CONTINUOUS HMM 

Semi-continuous [15] or tied mixture [5] HMM have been 
used extensively in modeling speech for recognition. In this 
section, we discuss the MAP estimate for SCHMM. Consider 
an N-state SCHMM with parameter vector X = (r.A,6’), 
where 7~ is the initial state distribution, A is the state transition 
matrix, and 6’ is the parameter vector composed of mixture 
parameters 0, = {w,k. m k .  ,,,. for each state z with 
the state observation PDF being a mixture of a common set of 
Gaussian PDF’s shared by all the HMM states. For state 7, its 
observation PDF has the form of 

K K 

k=1 k = l  

where n / ( Z l m k .  ~ k )  is the lcth normal mixand denoted by 

h ‘ ( x l m k , T k )  l ~ k l l ” ~ ~ ~ [ - - ( ~  1 - m,k) t T k ( 2  - m k ) ]  (21) 
2 

with m k  being the D-dimensional mean vector and r k  being 
the D x D precision (inverse covariance) matrix. Here ‘‘ 
3: ” denotes proportionality and I T [  denotes the determinant 
of the matrix T .  Each state observation density differs from 
another by its corresponding mixture coefficients, W z k ,  which 
satisfy the constraint ~ , “ _ , w , k  = 1. By combining the MAP 
formulations for CDHMM and for DHMM, MAP estimation 
for SCHMM can be derived. We will only highlight some 
important points here. A detailed derivation can be found in 
[16] and 1171. 

Consider a collection of M SCHMM’s and a collection of K 
common Gaussian component densities. We have a parameter 
set A = (AI, XZ, . .., AM; 41, 4 2 ,  ..., 4 ~ ) ,  where A, = 
(=,(,I, a i f l ) , w , ( Y ) )  denotes the set of parameters of the mth 
SCHMM used to characterize the mth speech unit, and $k = 
( m k ,  r k )  denotes the mean vector and the precision matrix of 
the kth Gaussian component. For the general case in which 
both the mean and precision parameters are assumed random, 
the prior PDF of -2 is assumed to be the product of the 
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conjugate priors of the complete data for the individual HMM 
parameter sets as: 

n 1 

m = l  k = l  

(23) 

takes the special form of a matrix beta PDF with sets of 
positive hyperparameters of { v ! ~ ) } .  {q!:)}. {U!:)}. If the 
Gaussian mixture component has a full precision matrix. then 
g ( m k .  r k )  is assumed to be a normal-Wishart density [7], [27], 
[ 141 of the form: 

,9 (mk.  r k )  x ~ r k l ( ~ i - ~ ) ' ~  

Tk .exp[--(mE; - p k ) ' r k ( i n k  - / / E ) ]  

' exp[--tr(ukrk)] (24) 

2 
1 
2 

where { q.. (tk. U,} are the hyperparameters of the prior 
density such that ok > D - 1, r k  > 0. p k  is a vector of 
dimension D and i l k  is a D x D positive-definite matrix. Here 
tr( .) denotes the trace of a matrix. On the other hand, if the 
Gaussian mixture component has a diagonal precision matrix, 
then g (  nib. r k )  is assumed to be a product of normal-gamma 
densities [7]. [27], [14] with the form: 

n 

n= 1 

. exp[-Jkdrkd] (25) 

where the hyperparameters r k n ,  ( Y k d ,  3 k d  > 0 , d = 
1 . 2 .  ' ' ' . n. 

Let x("' ' I )  denote the rith training observation sequence of 
length Ti"' " J  associated with the mth speech unit, and each 
unit has such observation sequences. Let s("I ' I )  denote 
the unobserved state sequence and 1(".") is the sequence of 
the unobserved mixture component labels corresponding to 

the observation sequence Given the set of observation 
sequences {x (" ,~ ) }  and the above prior PDF g(A) ,  the MAP 
estimates of ,I can be obtained by 

'\I m-, 
ld,tl.w = argmax{ n n . g(A)  (26) 

.I 
m = l  n= l  

where f(x(".")IAm) is defined similarly as in (6). The maxi- 
mization of the RHS of the (26) can also be solved by using 
the EM algorithm. The readers are referred to 1161, 1171 for 
a detailed derivation of the related reestimation formulas. The 
results are summarized as follows: 

when rk is a full precision matrix, one has 

and (31), as shown at the bottom of the page, and when T k  is 
a diagonal precision matrix, one has 

and (33), again at the bottom of the page, where 
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Ct 4".")(k) = p r ( p ' " )  = klX("~"),X,) 1 5 t 5 T("'.") . 
(37) 

Here, <j"."'(i, k) and ~ ~ " ' " ' ( i )  can be related according to 
the following equation: 

Again, these terms can be computed efficiently by using the 
forward-backward algorithm [2]. 

The initial estimate can be chosen as the mode of the 
prior PDF g(A): {T,'"}, {U!,"'}, {U!:)} have the same 
form as (14) - (16) in the case of DHMM, r n k  = p k ,  

l-k = ( ( Y k  - D)U;' for the case of full precision matrix, 
and T k d  = ( a k d  - $ ) / &  for the case of diagonal precision 
matrix. Another choice is the mean of the prior PDF g(A): 
{ T ! " ) } ,  { u ~ ~ ) } ,  {U,',"'} also have the same form as (17) - 
(19), m k  = p k ,  r k  = sku,' for the case of full precision 
matrix, and T k d  = C Y k d / o k d  for the case of diagonal precision 
matrix. 

For the cases of known mean vector m k  or known precision 
matrix r -k ,  the related formulation of MAP estimate can also 
be similarly derived [16]. 

V. SEGMENTAL MAP ESTIMATION FOR HMM 

Analogous to the segmental k-means algorithm [39], [23], 
a similar optimization criterion can be considered for the 
MAP estimate of HMM. For an observation sequence x = 
( . r l .  x2 . .  . . . z T ) ,  let s = (SI. s2.. . . . ST) be the associated 
unobserved state sequence. By maximizing the joint posterior 
density of the parameters X and state sequence s, p(X.slx), 
one has 

i = argmaxmaxp(X. SIX)  = argmaxmaxp(x.  S I A ) ~ ( X )  

(39) 
H here g( A )  is the prior density for parameter X and x is called 
the segmental MAP estimate of X [27], [ 141. It is easy to show 
that by starting with any estimate A('), alternate maximization 
over s and X gives a sequence of estimates with nondecreasing 
values of p ( ~ .  SIX) ,  i.e., p ( ~ ( ' + ' ) .  S('+')(X) > - p ( ~ ( ' ) .  s(')Ix) 
with 

A s  A s  

The segmental MAP algorithms for CDHMM parameters 
have been derived in [27], [12], [14], we now give the 
corresponding algorithms for estimating the parameters of 
DHMM's and SCHMM's in the following subsections. 

A.  Segmental MAP Estimate for DHMM 

By applying the Viterbi algorithm to all the training data, the 
sets of observations associated with each HMM state on the 
most likely state sequence are also available. Let n!') denote 
the number of observations in state z at time t = 1, and nZJ 
be the transition count from state i to state j in the most 
likely state sequences. Furthermore, let f J k  denote the count 
of observing symbol i l k  in state 1. It is straightforward to show 
that the reestimation formulas in (8) N (10) are the closed-form 
solution of (41) by replacing the P ,  by n:'), c , ~  by nZJ and 
d , k  by f j k ,  respectively, for each of the HMM states. 

B. Segmental MAP Estimate for SCHMM 

The reestimation formulas for { ~ i }  and { a i j }  are the same 
as those in DHMM. For each set of the HMM state mixture 
coefficients and the common set of the Gaussian density 
parameters, we replace ~j~'~)(z) in (38) by S(si"") - i )  

(7n.n) p4(L I;) = S(s, - i )  

where s("'.") is the most likely state sequence corresponding to 
observation sequence x ( ~ . ~ ) ,  and S(.) denotes the Kronecker 
delta function, the reestimation formulas in (29) N (33) can 
be taken as the corresponding segmental MAP reestimation 
formulas. 

Note that in the process of segmental MAP reestima- 
tion of SCHMM parameters, the maximization over {w,!,"' }, 
{mk} and { r k }  in (41) is usually accomplished with an 
EM algorithm that itself is an iterative algorithm and very 
time consuming. A compromise is to perform several EM 
iterations provided the constraint in (42) is satisfied. The 
optimal scheme that allows the problem to be solved in the 
shortest time possible is completely experiment dependent. 
Another possibility to solve the problem efficiently is to use 
the approximate solution, such as the quasi-Bayes method, 
proposed in next subsection. 

(40) C. Segmental Quasi-Bayes Estimate of the Mixture CoefJicients 

Similar to the segmental MAP algorithm, by applying the 
Viterbi algorithm to the training data, sets of observations 
(e.g., TI, s 2 ,  . . ., XT) associated with each HMM state 
can be identified. Given the sequence of observations, the 
updating formula for { U & }  corresponding to the maximization 
in (41) can be derived by solving the following quasi-Bayes 
estimation problem for a general finite mixture distribution. 

Conditional on w', =(wzl, w , ~ ,  . . ., w , ~ )  and density func- 
tions f l ,  f 2 ,  ..., f K ,  each 2, is assumed independently 
observed with the PDF as shown in (20). Assuming that the 

A ( ' ~ ' )  = argmaxp(x. S ( ' ) I X ) ~ ( X ) .  (41) 

me likely State sequence s ( l )  is decoded by of 
the Viterbi algorithm [lo]. If maximizing the W S  of (41) has 
no closed form solution, it can be accomplished by any hill 
climbing procedure that replaces A(') by ~ ( l + l )  subject to the 
following constraint: 

x 

p(x. si')(X('+')).~(X(E+l)) > - p(x. s(')(A(')).q(X(')) . (42) 
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prior density for w, has the form of a Dirichlet density 

K 
”(01  - 1 

g ( w , )  = D(W,IVZ(?. . . . V ! 2 )  3: JJ w$ (44) 
k = l  

where v$) > 0, for k = 1. . . . . K .  After observing x-1 ,  the 
posterior density of w, becomes 

h. 

where 

and h, ,  is the Kronecker delta function 6,, = 6(z - j). 
Many well-known approximate Bayesian learning procedures 
to solve this problem arise from approximating the RHS of 
(45) by 

Note that when compared with the segmental MAP algo- 
rithm, the segmental quasi-Bayes method achieves its com- 
putational efficiency at the loss of guaranteeing a monotonic 
increasing property of the objective function, due to its ap- 
proximate nature in maximizing the RHS of the equation (41). 
However, it will be experimentally shown in the following 
sections that either (51) or (52) will lead to a reasonable 
estimate of w,. Also note that the results of the above quasi- 
Bayes method depend on the order of the presentation of the 
.rZ’s. A natural choice is to present the x,’s in the order of 
their appearance in the training speech data. Another potential 
advantage of the segmental quasi-Bayes method over the 
segmental MAP one is due to its sequential nature in updating 
both the hyperparameters of the prior distribution and the 
SCHMM parameters. This makes the so-called incremental 
(or on-line) adaptation of the mixture coefficients a natural 
mode of updating the parameters. However, in this paper, 
only the so-called batch (or block) adaptation scheme is con- 
sidered. The on-line adaptation formulation will be discussed 

where the Al l ’ s  take values according to a specified method. 
Proceeding in this way, the necessary computation could be 
kept within reasonable bounds. 

In the quasi-Bayes procedure proposed by Smith and Makov 
1431, [321, it is suggested that a 1 k  be replaced by p , k ( r l )  
shown in (46), and therefore 

where v!:) = U::) + p z k ( x l ) .  Then, subsequent updating takes 
place entirely within the Dirichlet family of distributions, viz., 
p ( ~ ,  1 x 1 .  .r2. . . . . .rn) is Dirichlet with parameters 

In the sense that the approximate posterior distribution with a 
mean identical to that of the true distribution, the convergence 
properties were established in [43]. 

It can be verified from the properties of the Dirichlet 
distribution that the (quasi-) posterior mean for d L k ,  after 
observing .rl. .r2. . . .. ~r,,  is given by 

and the mode of the approximate posterior density is 

VI. HYPERPARAMETERS ESTIMATION OF PRIOR DISTRIBUTION 

In previous sections, the prior density g(A) is assumed to 
be a member of a preassigned family of prior distributions. 
In a strict Bayesian approach, the hyperparameter vector cp of 
this family of PDF’s {g(.Ip)} is also assumed known based 
on a subjective knowledge about A. In reality, it is difficult 
to possess a complete knowledge of the prior distribution. 
An attractive compromise between the classical non-Bayesian 
approach that uses no prior information and the strict Bayesian 
one is to adopt the empirical Bayes (EB) approach [40], 
[41], [33]. Here, we use a somewhat broader interpretation 
of the term “empirical Bayes” than what was implied by 
Robbins’s original definition 1401, 1411. When replacing cp 
by any estimate derived from the previous observed data, the 
previous data and current data are linked in the form of a two- 
stage sampling scheme by a common prior PDF g(A) of the 
unknown parameters A. 

Prior density estimation and the choice of density parame- 
ters depend on the particular application of interest. In speaker 
adaptation application presented later in this paper, prior 
density g( Alcp) represents the information of the variability 
of a certain model among a set of different speakers. Taking 
the empirical Bayes approach, the speaker independent (SI) 
training data set X for estimating hyperparameters cp can be 
divided into different subsets XI. xp, . . . , XQ correspond to 
Q different speakers or speaker groups so that each token 
of the speaker independent (SI) training data is associated 
with a speaker (group) ID information Cl. One may use 
this information to estimate the corresponding HMM’s A = 

- 1 ( x1 ,x2 ,  . . ., XQ) with the classical Baum-Welch or segmental 
k-means algorithm, or directly derive the corresponding HMM 
parameters at the last iteration of SI training. One then pretends 
to view { i t }  as the random observations with the density g(A). 
Generally speaking, the maximum likelihood estimation based 

(52) 

Both (51) and (52) can serve as the updating formula for the 
mixture coefficients in the segmental quasi-Bayes learning for 

Ljjn) - 

C K  (VI;) - 1) ’ 
ck - 

m = l  

SCHMM’s. Equation 
the hyperparameters. 

. .  

(49) is-used as the updating formula of on the marginal density f(Xlcp), or for simplicity, a modified 
likelihood approach based on the joint PDF f(X.Alp), can 
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be used to estimate the hyperparameters p [331, 1131, [14]. 
However, under the current assumptions on the form of the 
prior PDF g ( .  Ip), getting the maximum likelihood estimates 
of p is nontrivial. To further simplify the problem, the method 
of moment is adopted in the following to estimate cp. 

In the case of a DHMM where g ( X )  is assumed to have 
the form of (3), i.e., a matrix beta PDF, with the properties of 
the moments for matrix beta PDF [34], one has the following 

Note that the constraint Q k d  > 1 must be satisfied, otherwise 
V a r ( m k d )  does not exist. If the moment estimate of f f k d  in 
(56) violates this constraint, it is arbitrarily set to 2.0 in the 
following experiments. For the full covariance matrix case, the 
prior density g ( m k .  T k )  has the form of (24). It is more difficult 
to write down a suitable number of estimating equations for 
the moment estimates of T k ,  Q k ,  p k .  and U k .  If one considers 
a more restrictive prior density family by further assuming 

hyperparameter estimates .. 

Replacing E ( r L ) ,  Lrar(7rz), E(a,,), Var(a, , ) ,  E ( b , k ) ,  
I ‘ar(b,k)  by their corresponding sample moments from 
random observations { i l .  i 2 .  . . . . i~}, the moment estimates 
of q 2 ,  q l J ,  v , k  are thus obtained. An ad hoc method to estimate 
the hyperparameters of prior density has also been employed. 
Let &, t tJ and d J k  be the respective estimated counts of 
related events at the last iteration of an SI training. These 
counts are divided by the number of training tokens for each 
speech unit and then plus one. The hyperparameters are then 
set to these values. 

In the case of a SCHMM, the hyperparameters { T ! ~ ) } ,  
{ q ~ ~ ) } , { v ~ ~ ) }  can also be estimated in a way similar to that 
for their counterparts in DHMM with the method of moment or 
simply the ad hoc method (the latter is adopted in the following 
experiments). When the Gaussian mixture component has a 
diagonal precision matrix and the prior density f J ( m k .  rk)  takes 
the form of (25), the moment estimates of hyperparameters 
n k d ,  ~ ? k d ,  / l k d ,  T k d  are obtained as follows: 

G k d  = [ E ( r k d ) ] 2 / v a r ( r k d )  (56) 
‘jkd = E ( r k d ) / V a r ( r k d )  (57) 
b k d  = E ( m k d )  ( 5 8 )  
j k d  = j k d / { L 7 a r ( m k d ) ( G k d  - I)} (59) 

where sample means of T k d  and m k d  take the values of the 
SI trained parameters ri:’) and m E ) ,  and the related sample 
variances are obtained by 

with 

X€Xl t 

and 

by replacing E ( m k )  and E ( T k )  with their corresponding 
sample estimates. 

When enough training data are available, the above method 
of moment will lead to a reasonable estimate of hyperpa- 
rameters cp. Note that the physical meaning of the prior 
density g ( X l p )  is application dependent. For example, in the 
speaker adaptation problem, g(XJcp) may be used to represent 
the information of the variability of a certain model among 
different speakers. In another application, for example, to 
build the context-dependent models from context-independent 
model, the prior density g(Xlp) will represent the variability of 
X caused by different contexts. Therefore, the training data can 
be divided into subsets according to the context information. 
Further applications of this kind of Bayesian learning method 
to speech recognition can be found in [12]. 

Also note that the prior knowledge represented by g(Xlcp) 
does not include those deterministic ones. For example, in 
the left-to-right HMM’s, some parameters are known and 
fixed, and g(Xlp) will not include them. The estimation 
of hyperparameters cp is still an open problem and further 
research is thus needed. This is a key problem in making the 
Bayesian learning method applicable to adaptive training of 
HMM’s. 

VII. SPEAKER ADAPTATION EXPERIMENTS 

A.  Experimental Setup 

To examine the viability of the proposed techniques, the 
Bayesian adaptive learning framework is applied to speaker 
adaptation application and a series of experiments are con- 
ducted. The 26 letters of the English alphabet are chosen 
as the vocabulary for all experiments. Two databases are 
used for evaluating the adaptation algorithms, viz., the OGI 
ISOLET and the TI46 corpora. These two databases were 
recorded at two separate sites with a time gap of 10 years. The 
sampling rates and quantization precisions are 16 KHz with 
16-bit quantization and 12.5 KHz with 12-bit quantization, 
respectively. The speech in the ISOLET corpus is recorded 
with a Sennheiser HMD 224 close-talking noise-cancelling 
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microphone and the one in TI46 is recorded with an Electro- 
Voice RE-16 cardoid dynamic microphone positioned two 
inches from the speaker’s mouth. They have therefore very 
different acoustic characteristics. The speech data in the two 
corpora are lowpass-filtered at 3.3 KHz and down-sampled to 
8 KHz so that hopefully, they will become more compatible 
to each other. The feature vectors used in this study consist 
of 12 bandpass-liftered LPC-derived cepstral coefficients with 
a 30 ms frame length and a 10 ms frame shift [28]. For 
SI training and prior density estimation, the OGI ISOLET 
database is used. It consists of 150 speakers, 75 females and 
75 males, each speaking each of the letters twice. For speaker 
dependent (SD) or adaptive training and testing, the English 
alphabet subset of the TI46 isolated word corpus is used. It 
is produced by 16 speakers, eight females and eight males. 
Among them, four males’ data are incomplete, so only 12 
speakers are used in this study. Each person utters each of 
the letters 26 times, 10 of them are used for SD/SA training 
and the remaining 16 tokens are used for testing. Throughout 
the experiments, each of the 26 letters in the vocabulary is 
modeled by a single left-to-right five-state HMM with arbitrary 
state skipping. In recognition, the decision rule determines the 
recognized letter as the one that attains the highest forward- 
backward probability. 

1 2 1 4 5 6 i 8 0 10 I 1  12 13 14 15 16 

0 7 0 12 0 12 0 10 0 9 0 10 0 9 0 6 

S 0 9 0 I7 0 6 I 10 0 11 0 7 0 6 0 

B. VQ-Based Speaker Clustering 

Since there are not enough data from a single speaker to 
estimate a model for each letter, speaker clustering based 
on vector quantization is performed to obtain 16 speaker 
clusters from which 16 sets of models needed to obtain the 
moment estimates of the hyperparameters are derived. To 
use a VQ method for speaker clustering is motivated by 
its simplicity and its success in speaker recognition prob- 
lems [42], albeit other altematives (e.g., [381, 1351, 1361, 
[24]). The speaker clustering process begins from two natural 
male/female groups. The clustering algorithm is as follows: 

1) View all male speakers as one group and all female 
speakers as another group. Generate two codebooks of 
size 256, one for the female and the other for the male 
speaker groups, respectively. 

2 )  Perform “speaker classification” with respect to each 
codebook of each speaker group with the VQ method 

3) Reformulate the codebook for each speaker group with 
the speaker classification result in Step 2. 

4) If the speaker classification process is stable, a prede- 
fined maximum number of iterations is reached or the 
variation of the total quantization error (for all speakers) 
is less than a predefined threshold, then go to Step 5; 
else go to Step 2. 

5) If a predefined number of speaker groups is reached, 
stop; else go to Step 6. 

6) Split the codebook by a simple perturbation method, go 
to Step 2. 

The criterion used here is to minimize the “total quantization 
error,” so the number of speakers in each group does not have 
to be the same. All the training utterances of each speaker are 

[421. 

4 

TABLE I 
SPEAKER CLUSTERING RESULTS OF 2 TO 16 CLUSTERS 

kemalr 1H 0 20 0 24 0 12 1 

\ laic 0 Jb 0 39 

reln,lie -I:I 0 31 i 

\o of I o i ~ i r i  1 L I 4 5 6 7 S 9 10 

I 1 1 ,  

SA1 54 1 

SAS 48.1 

59.1 61.7 62.0 64.1 64.3 65.2 65.9 66.3 6 6 3  

54 6 3 2  61.1 63.2 63.6 64.1 64.6 65.2 65.6 

used for “speaker classification.” Each codebook is generated 
by using the LBG algorithm [30] with an Euclidean distortion 
measure. Table I shows the male/female composition of the 
clusters created by this algorithm. Most clusters are dominated 
by either male or female. In the case of two clusters, one 
cluster is completely male, and the other completely female. 
This is a very positive indication of the clustering method 
validity. 

C. MAP Estimates of DHMM Parameters 

In this subsection, experimental results concerned with the 
adaptation of DHMM’s are discussed. A 256-vector codebook 
is generated from the ISOLET corpus by using the LBG 
algorithm 1301 with a Euclidean distortion measure and is 
used in all subsequent experiments. The SUSD word models 
are trained by using the standard Baum-Welch algorithm [2] 
and the SA ones are obtained by using the MAP estimate 
presented in Section 111. The average recognition rates for 
12 speakers (eight females, four males) based on the SA 
models are summarized in Table 11. “SA1” corresponds to 
the speaker adaptation experiments with the ad hoc prior 
parameters, “SAT’ refers to the ones with prior parameters 
estimated by the method of moment. For comparison purposes, 
the word recognition rates for the SD models (row labeled as 
“SD’) and the SI models are also reported. 

Table I1 clearly shows that the regular MLE training pro- 
cedure (“SD’) is inadequate when the amount of available 
training data is insufficient. The fact that the SD recognition 
rate using only one training token is better than that of the SI 
system is a good indication of the serious mismatch between 
SI training set and SD testing set. The results here show that 
speaker adaptation can be used to reduce this mismatch. The 
performance for “SD’ improves as the number of speaker 
specific training tokens increases; however, it is noted that 
when using the same amount of training data, SA training 
outperforms SD training in all the cases tested. This implies 
that SA training utilizes training data more effectively than 
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TABLE III 
SD PERFORMANCE As A FUNCTION OF THE NUMBER OF TRAINING TOKENS 

does SD training, especially when training data are insufficient. 
As expected, the SA performance quickly becomes equivalent 
to the SD performance when the number of adaptive training 
tokens increases. It is also noted that the performance of “SAl” 
is in most cases better than that of ‘‘SAT’. The hyperparameters 
of prior distribution estimated with the ad hoc method seem 
more robust in experiments here than that estimated with the 
method of moment which may suffer more from the sparse 
training data problem. 

D. MAP Estimates of SCHMM Parameters 

In this subsection, the effects of the adaptation schemes 
presented in Section IV for estimating SCHMM parameters are 
examined. A common set of 256 Gaussian mixture components 
with diagonal covariance matrices are used in each SCHMM 
state. The SUSD word models are trained by using the standard 
forward-backward algorithm. A pruning strategy that keeps 
only the top 10 mixands when computing the likelihood in (20) 
is used both in training and in testing. A series of recognition 
experiments on 12 speakers are conducted. 

The first experiment is to recognize the English alphabet 
subset of TI46 with the SI system trained with speech tokens 
from OGI ISOLET. The average recognition rate is 47.8%. The 
second experiment is to recognize the same TI46 subset with 
SD systems trained with various numbers of SD tokens for 
each speaker and the average recognition rates for 12 speakers 
are tabulated in Table 111. 

Once again, due to the serious mismatch between SI training 
set and SD testing set, the SI recognition rate is inferior even 
to the SD recognition rate using only one training token. 
In the following experiments, it will be shown that the SI 
performance can be improved by using the speaker adapted 
HMM’s. To examine the SA effects of the different set of 
model parameters, viz., the mixture coefficients, the state 
transition probabilities, the mean vectors, and the covariance 
matrices of the Gaussian mixands, respectively, a series of 
experiments are conducted with corresponding parameters 
of the SI system replaced progressively and systematically 
by their SA counterparts. The average recognition rates are 
summarized in Table IV. 

The first observation can be derived by comparing the first 
two rows of Table IV against Table 111. It shows that both the 
SI and the SD performances are greatly improved by using 
the SA training for the mixture coefficients and the transition 
probabilities when the SD training data are limited (e.g., one 
token). However, by comparing rows three and four of Table 
IV against the first two rows, a second observation is that 
only using SA training of the above parameters is insufficient. 
Speaker dependent information on density means is very 
important. By additionally using SA (SD) mean vectors, the 
SA performances are further greatly improved and even better 
than the pure SD system when insufficient training data are 
available for SD training (in particular here, less than three 
tokens). As a third observation, by comparing rows four and 
six against rows three and five in Table IV, respectively, 
it is noticed that using SD means yields consistently better 
recognition rates irrespective to the variances and the number 
of tokens for SD training or adaptation. This shows that 
the mean vectors of the Gaussian codebook in SCHMM can 
represent the essential characteristics of different speakers and 
can be rapidly and sufficiently estimated even with limited 
amount of training data by regular SD training. However, the 
variances cannot be reliably estimated with limited training 
data. As a fourth observation, in the particular setup here, 
by comparing rows five and six against rows three and four 
in Table IV, it is found that using SA variances has little 
advantage in comparison with using SI variances. 

E. Segmental Quasi-Bayes Estimates of SCHMM Parameters 

As is well known, the mixture coefficients are very im- 
portant parameters in modeling speech unit with SCHMM. 
To examine the viability and effect of the segmental quasi- 
Bayes algorithm presented in Section V for estimating the 
mixture coefficients of SCHMM only, a series of comparative 
experiments are conducted. For simplicity, in SA/SD train- 
ing, Gaussian mixture component PDF’s and the transition 
probabilities are fixed to the SI-trained ones. In SA training, 
the hyperparameters of the prior distribution of the mixture 
coefficients are estimated with the ad hoc method discussed 
in Section VI. The average word recognition rates for 12 
speakers are summarized in Table V. The columns in Table 
V correspond to the numbers of training tokens used for 
each SD and SA cases. “SEG-ML” stands for SD segmental 
ML training of the mixture coefficients and “SEG-MAP’ 
corresponds to its MAP counterpart. “SEG-QB” stands for SA 
segmental quasi-Bayes training of the mixture coefficients. As 
expected, many facts observed in the previous subsection are 
repeated here. Apart from those facts, another more impor- 
tant observation-that the recognizer performance with the 
segmental quasi-Bayes method is not much different from 
that with the segmental MAP method-shows the viability 
of the quasi-Bayes approximation in maximizing the RHS of 
(41). 

Although the batch (or block) adaptation scheme is adopted 
in this study, in view of its sequential nature in updating 
both the hyperparameters of the prior distribution and the 
mixture coefficients themselves, the segmental quasi-Bayes 
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TABLE V 
S L M M A R ~  OF RECOC~ITIO? k S L L T S  WITH SEGME4T4L TRAIYED SCHMM'S 

method presented in this paper will also be very suitable 
for performing the incremental (or on-line) adaptation of the 
mixture coefficients in SCHMM. The segmental quasi-Bayes 
method presented in this paper can only be theoretically jus- 
tified in the case of fixed mixture components, but adjustable 
coefficients. More theoretical research is definitely needed to 
extend this framework to cases involving adjustable mixture 
coefficients as well as mixture component PDFs' parameters. 
Before that, some pragmatic procedures that combine the 
quasi-Bayes adaptation of mixture coefficients and different 
adaptation schemes of the component density should also be 
experimentally tested. Research along this line of thought 
has been conducted. We will report the related results else- 
where. 

F. General Discussions 
The effects of SA training, in the particular setup here, are 

not so significant. This is caused by the serious mismatch 
between the two corpora. After more detailed analysis, it is 
found that the SA effects are very different among different 
speakers. In the Bayesian learning framework, one hopes to 
use prior distribution of HMM parameters to represent the 
information of the variability of a certain model among the 
speakers. If a new speaker happens to be an outlier in this 
prior distribution. one may get little benefit from the SA 
training. If the SI task is severely mismatched with the SD 
one, the SA training may deteriorate the performance of the 
SD system (this is equivalent to bringing in some abnormal 
training samples for SD training), but it still improves the SI 
system tremendously. So the SA effects depend heavily on the 
suitability of the prior distribution to the new speaker. To cope 
with the mismatch problem between the prior distribution and 
the ne& adaptation data, some kind of speaker normalization 
(or signal space equalization) should be performed first in 
the acoustic (feature) space before the Bayesian framework is 
applied to adapt the model parameters. In the process of model 
adaptation. to get a better match of prior distribution and the 
adaptation data. multiple set of prior distributions can be used 
by clustering the training data for prior distribution estimation, 
provided enough training data are available. Results reported 
in previous subsections are obtained with only a single set 
of SI seed models. To substantiate the above argument, by 
using two sets of gender-dependent seed models, recognition 
results corresponding to SA mixture coefficients and transition 
matrices with SD means and SUSA variances in SCHMM are 
listed in Table VI for comparison purposes. The average SI 
recognition rate increases to 51.3%. As for the SA system 
performance, in comparison with their counterparts in the case 
of a single set of prior distributions, better performance is 
achieved with two sets of gender-dependent seed models. 

TABLE VI 
RESULTS WITH GENDER-DEPENDENT SEED 
MODELS (SI RECOGNITION RATE: 51.3%) 

VIII. SUMMARY 

In this paper, a theoretical framework for Bayesian adaptive 
training of the parameters of DHMM and of SCHMM with 
Gaussian mixture state observation densities is presented. In 
addition to formulating the forward-backward MAP and the 
segmental MAP algorithms for estimating the above HMM 
parameters, a computationally efficient segmental quasi-Bayes 
algorithm for estimating the state-specific mixture coefficients 
in SCHMM is developed. For estimating the parameters of 
the prior densities, a new empirical Bayes method based on 
the moment estimates is also proposed. The MAP algorithms 
and the prior parameter specification are directly applicable to 
training speaker adaptive HMM's. Practical issues related to 
the use of the proposed techniques for HMM-based speaker 
adaptation are studied. The proposed MAP algorithms are 
shown to be effective, especially in the cases that the training 
or adaptation data are limited. The MAP method is also 
applicable to other problems in HMM training for speech 
recognition such as sequential training, context adaptation, and 
parameter smoothing. 

However, some topics in Bayesian adaptive learning of 
the HMM parameters still deserve further research. The most 
immediate one is the definition of the prior distribution and the 
related hyperparameters estimation problem. The segmental 
quasi-Bayes learning method that can be used to update 
the hyperparameters of the prior distribution and the HMM 
parameters incrementally for both mixture coefficients and the 
mixture component parameters in SCHMM is another topic of 
particular importance. When the Bayesian learning framework 
is applied to cope with the possible mismatch problem between 
training and testing conditions, the choice of the appropriate 
prior distribution is critical to the success of the algorithm. 
The lessons we've learned are that in order to handle severely 
mismatched cases effectively, different sources of variations 
should be identified and then different strategies be adopted 
to cope with these variations. For example, in the speaker 
adaptation application discussed in this study, if a speaker 
normalization step is first taken in the entire feature vector 
space before the Bayesian learning framework is applied, more 
significant performance improvements can then be expected. 
Research along this line of thought is in progress. 

APPENDIX 
DERIVATION OF MAP ESTIMATE FOR DHMM 

Let y = (x, s) denote the complete data, where x is the 
observed data and s the missing one. Then, the complete-data 
log-likelihood is 

T T 

l ogP(x . sp )  = log7r,, + c l o g a , , ~ , , ,  + Clogb, , ( :c t )  . 
t = 2  t=l  

(68) 
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As noted by Dempster et al. [SI and similar to [14], we define 
a modified auxiliary function R(i1X) = Q(A]X) +logg( i )  for 
a given preliminary estimate A, where Q(AlX)  is the auxiliary 
function for the E-step in ML estimation (e.g., [29]): 

Q(AlX) = E[log P ( x .  slA)(x. A] (69) 

s N N  

i = l  i = l  j = 1  

N K 

By combining (3) and (71), the modified auxiliary function 
can be evaluated as 

N K 
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where K, is just a function of {vi}, {vij}, and { V i k } ,  not 
dependent on x. By choosing A to maximize the RHS of 
(72), the EM reestimation formulas in (8) - (10) can thus 
be derived. 
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