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A Choice Relation Framework for Supporting
Category-Partition Test Case Generation

T.Y. Chen, Pak-Lok Poon, Member, IEEE, and T.H. Tse, Senior Member, IEEE

Abstract—We describe in this paper a choice relation framework for supporting category-partition test case generation. We capture

the constraints among various values (or ranges of values) of the parameters and environment conditions identified from the

specification, known formally as choices. We express these constraints in terms of relations among choices and combinations of

choices, known formally as test frames. We propose a theoretical backbone and techniques for consistency checks and automatic

deductions of relations. Based on the theory, algorithms have been developed for generating test frames from the relations. These test

frames can then be used as the basis for generating test cases. Our algorithms take into consideration the resource constraints

specified by software testers, thus maintaining the effectiveness of the test frames (and hence test cases) generated.

Index Terms—Category-partition testing, choice relation framework, choice relation table, specification-based testing, test case

construction, test frame.
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1 INTRODUCTION

ACCORDING to various authors [10], [14], [18], software
testing is a labor-intensive and expensive process,

which may account for 50 percent of the total project cost. In
order to improve on its effectiveness, testing should be well
planned and organized. In particular, the construction of
test cases is an important aspect because it affects the scope
and, hence, the quality of the process [2], [8], [11]. This
inspired various researchers to develop test case construc-
tion methods.

Among them, Ostrand and Balcer [17] have developed
the category-partition method (CPM). A category is defined as
“a major property or characteristic of a parameter or an
environment condition.” An example is the “Account
Balance” in a typical accounting application. Such cate-
gories can easily be identified from the functional specifica-
tion of a system. Each category is partitioned into a set of
choices, which represent “all the different kinds of values
that are possible for the category.” Examples are “Account
Balance � 0” and “Account Balance < 0.” Then, all valid
combinations of choices are generated as test frames. Invalid
combinations of choices are suppressed via various con-
straints. Finally, test cases are constructed from the
generated test frames. Following up on the work of Ostrand
and Balcer, several studies on CPM were conducted. For
instance, Amla and Ammann [1] and Ammann and Offutt

[2] studied the viability of applying the method to Z
specifications. Offutt and Irvine [16] investigated the fault-
detection effectiveness of CPM when applied to object-
oriented programs.

Our study of CPM reveals the following problems:

1. All the constraints among choices must be defined
manually. This can be ineffective and prone to
human errors in real-life situations where there are
many such constraints.

2. There is no precise mechanism for checking for
consistency among constraints. This may affect the
correctness and completeness of the test frames
generated.

3. The generator for processing the test specification is
meant to be run repeatedly, with additional
constraints being imposed in each round, thereby
reducing the number of test frames generated, until
the software tester can afford to run the test cases
generated from test frames [17]. Such an approach
can be avoided if resource constraints are consid-
ered during, rather than after, the test frame
generation process.

To address these problems, we propose a choice relation
framework to support CPM. Our framework includes the
following features:

. a more rigorous approach for representing different
types of constraints among individual choices,

. consistency checks of specified constraints among
choices,

. automatic deductions of new constraints among
choices whenever possible, and

. a more effective test frame construction process.

The rest of this paper is structured as follows: Section 2
outlines the major steps of CPM. Section 3 is the core of the
paper, proposing a choice relation framework for CPM.
Section 4 describes the work related to category-partition
testing. Finally, Section 5 concludes the paper.
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2 CATEGORY-PARTITION METHOD

CPM is a specification-based testing technique developed by

Ostrand and Balcer [17]. It helps software testers create test

cases by refining the functional specification of a program

into test specifications. It identifies the elements that

influence the functions of the program and generates test

cases by methodically varying these elements over all

values of interest. The method consists of the following

steps:

1. Decompose the functional specification into func-
tional units that can be tested independently.

2. Identify the parameters (the explicit inputs to a
functional unit) and environment conditions (the
state of the system at the time of execution) that
affect the execution behavior of the function.

3. Find categories (major properties or characteristics)
of information that characterize each parameter and
environment condition.

4. Partition each category into choices, which include
all the different kinds of values that are possible for
that category.

5. Determine the constraints among the choices of
different categories. For example, one choice may
require that another is absent or has a particular
value.

6. Write the test specification (which is a list of
categories, choices, and constraints in a predefined
format) using the test specification language TSL.

7. Use a generator to produce test frames from the test
specification. Each generated test frame is a set of
choices such that each category contributes no more
than one choice.

8. For each generated test frame, create a test case by
selecting a single element from each choice in that
test frame.

3 CHOICE RELATION FRAMEWORK FOR

CATEGORY-PARTITION TESTING

Motivated by problems 1 to 3 of CPM as suggested in

Section 1, we propose a choice relation framework to

support the method. Basically, our framework helps

construct test cases from functional specifications via the

notion of a choice relation table. The intuition of this table is

to capture the constraints imposed on the choices by the

specification. These constraints are expressed as relations

between pairs of choices. They are essential information for

the automatic generation of test frames.
Our approach consists of the following major steps:

1. Decompose the functional specification into func-
tional units that can be tested separately.

2. For every functional unit, identify its parameters and
environment conditions and, hence, define the
categories and their associated choices.

3. Construct a choice relation table T for each
functional unit.

4. For each T , construct the corresponding choice
priority table P, which captures the relative

priorities for the use of the choices in generating
test frames.

5. From each T and the corresponding P, construct the
set of test frames.

6. Create a test case from each generated test frame.

Steps 1, 2, and 6 above are identical to Steps 1, 2-4, and 8,

respectively, of CPM described in Section 2. We shall

therefore concentrate on Steps 3, 4, and 5 in our discussions

in Sections 3.1, 3.2, and 3.3, respectively.

3.1 Construction of the Choice Relation Table

As mentioned above, the choice relation table T is intended

to capture the constraints imposed by the specification on

the choices. To construct T , we need to determine the

relation between each pair of choices. This is explained in

the following sections.

3.1.1 Determination of Relations among Choices

The steps prior to the construction of T correspond to
Steps 1-4 of CPM mentioned in Section 2 and, hence,
detailed explanations are not repeated here. Instead, we
shall simply illustrate the concepts of categories and choices
through an example.

Example 1 (Loan Example). Suppose a software tester is
given the following specification:

Develop a program loan for use by ABC Bank to process
applications by its customers for personal loans, based
on their employment and credit card details. In order to
evaluate an application, the program will accept the
following details from the applicant. The evaluation
criteria are not specified here.

. Employment Status: Either “Employed” or
“Unemployed.”

. Type of Employment (if the applicant is working):
Either “Self-Employed” or “Employed by
Others.”

. Type of Job (if the applicant is working): Either
“Permanent” or “Temporary.”

. Monthly Salary S (if the applicant is working):
Either “$0 < S � $2; 000,” “$2; 000 < S � $3; 000,”
or “S > $3; 000.”

. Type of Applicant: Either “Cardholder” or
“Non-Cardholder.”

. Type of Credit Card (if the applicant is a
cardholder): Either “Gold” or “Classic.”

. Credit Limit (applicable only to a classic card):
Either “$2,000” or “$3,000.”

It should be noted that there is no credit limit for a gold
card.

Suppose the software tester decides that loan can be

tested as a whole and thus further break down into

smaller functional units is not required. Additionally,

suppose the categories and their associated choices for
loan are simply defined based on the above input details.

For example, “Employment Status” is defined as a

category. Its two associated choices are “Employment

Status = Employed” and “Employment Status =

Unemployed.” When there is no ambiguity, we can
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simply refer to these two choices as “Employed” and
“Unemployed.”1,2

Before we proceed further, let us define the concepts of
test frames, valid choices, and relations among choices.

Definition 1 (Test Frames and their Completeness). A test
frame B is a set of choices. A test frame B is said to be
complete if, whenever a single element is selected from each
choice in B, a standalone input will be formed. Otherwise, it is
said to be incomplete.

Definition 2 (Set of Complete Test Frames Related to a
Choice). Let TF denote the set of all complete test frames.
Given any choice x, we define the set of complete test
frames related to x as TF ðxÞ ¼ fB 2 TF : x 2 Bg. A
choice x is valid if and only if TF ðxÞ is nonempty.

Different types of relations are possible for a given pair
of valid choices, as illustrated in the following example:

Example 2 (Relation between Two Choices). Consider the
specification of the program loan in Example 1.
TF(“Classic”) contains all the complete test frames
containing the choice “Classic” in the category “Type
of Credit Card.” The relation between “Classic” and any
other choice x can be one of three types:

. x 2 B for any B 2 TF ð}Classic}Þ. An example of x
is the choice “Cardholder” under the category
“Type of Applicant.”

. x 2 B for some, but not all, B 2 TF ð}Classic}Þ.
Consider the following two complete test frames
B1 and B2 2 TF ð}Classic}Þ:

B1 ¼ fUnemployed;Cardholder;Classic; $2; 000g;
B2 ¼ fUnemployed;Cardholder;Classic; $3; 000g:

Suppose x ¼ }$2; 000:} It is obvious from B1

and B2 that x appears in some, but not all,
B 2 TF ð}Classic}Þ.

. x 62 B for any B 2 TF ð}Classic}Þ. An example of x
is the choice “Non-Cardholder” under the cate-
gory “Type of Applicant.” Another example of x
is the choice “Gold” under the category “Type of
Credit Card.”

Because of the importance of the above distinction, we
define the three corresponding types formally as follows:

Definition 3 (Relation between Two Choices). Given any
valid choice x, its relation with another valid choice y
(denoted by x 7! y) is defined in terms of one of three
relational operators as follows:

1. x is fully embedded in y (denoted by x u y) if and
only if TF ðxÞ � TF ðyÞ.

2. x is partially embedded in y (denoted by x uP yÞ if
and only if TF ðxÞ 6� TF ðyÞ and TF ðxÞ \ TF ðyÞ 6¼ ;.

3. x is not embedded in y (denoted by x 6 u yÞ if and only
if TF ðxÞ \ TF ðyÞ ¼ ;.

The choice relations “full embedding” and “nonembed-
ding” in the above definition have straightforward mean-
ings in ordinary logic and, hence, the motivation behind
them is fairly obvious. On the other hand, the motivation
behind the choice relation “partial embedding” merits some
discussion.

Example 3 (Motivation behind the Partial Embedding

Relation). Consider the following simple specification in
a typical credit card system:

If Total Transaction Amount > $1,000,
then add 200 bonus points.

If Average Transaction Amount > $100,

then add 50 bonus points.

1. According to Definition 3, the two choices “Total
Transaction Amount > $1,000” and “Average
Transaction Amount > $100” are partially em-
bedded in each other. There is no logical
relationship between them. However, this speci-
fication is important to the user and useful to the
implementer.

2. The notion of partial embedding will be useful for
testing against problematic implementations such
as the following:

If Total Transaction Amount > $1,000,

then add 200 bonus points

else if Average Transaction Amount > $100,

then add 50 bonus points.

Since the three types of choice relations in Definition 3
are exhaustive and mutually exclusive, x 7! y can be
uniquely determined. It should be noted that, immediately
from the definition, the relational operator for x 7! x is “ u ”
and the relational operator for x 7! y is “ 6 u ” if x and y are
two different choices in the same category.

Example 4 (Choice Relation Table). Consider the loan
example again. The choice relation table T loan is
constructed and depicted in Fig. 1. Let w be the total
number of choices. Let tði; jÞ denote the element at the
ith row and jth column of T loan, i; j ¼ 1; 2; . . . ; w. For
tð12; 14Þ (Self-Employed 7! Employed), the relational
operator is “ u ” because “Self-Employed” always re-
quires “Employment Status” to be “Employed.” For
tð15; 10Þ (Unemployed 7! Permanent), the relational
operator is “6 u ” because “Unemployed” and “Perma-
nent” are mutually exclusive, as the latter requires
“Employment Status” to be “Employed.” For tð5; 15Þ
(Cardholder 7! Unemployed), the relational operator is
obviously “ uP.” The relational operator for the remaining
elements in Fig. 1 can be determined in a similar way.

Readers may note that the choice relations defined in
Definition 3 focus on the constraint between a pair of
choices. In situations where the relationships among three
or more input variables have to be considered at the same
time, we can define a single category that involves these
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input variables. Consider, for instance, the relationship
ðAþBþ C ¼ 10Þ, where A, B, and C are input variables. In
this case, we can define a single category “AþBþ C” with
two associated choices “¼ 10” and “ 6¼ 10.”

It would obviously be quite inefficient and error-prone if
all the relational operators in the choice relation table had to
be defined manually, especially when the number of
choices is large. To solve the problem, we have developed
techniques for consistency checks and automatic deductions
of choice relations. These techniques are rendered possible
by a set of properties of the relational operators described in
the next section.

3.1.2 Properties of Relations among Choices

Some useful properties for the three relational operators are
stated in the following propositions and corollaries. Readers
may refer to Appendix E for the proofs of these proposi-
tions and corollaries.

Proposition 1 (Symmetry of the Nonembedding of
Choices). For any pair of valid choices x and y, x 6 u y if
and only if y 6 u x.

Immediately from Proposition 1, we have the following
corollary:

Corollary 1 (Reverse of Full and Partial Embedding of
Choices). Let x and y be valid choices. 1) If x u y, then y u x
or y uP x. 2) If x uP y, then y u x or y uP x.

It should be noted that the results in Corollary 1 cannot
be narrowed down any further. This is further discussed in
Appendix E of the paper.

Proposition 2 (Full Embedding of Choices). Let x, y, and z
be valid choices. 1) If x u y and y u z, then x u z. 2) If x u y
and x u z, then y u z or y uP z.

Proposition 3 (Full Embedding and Nonembedding of

Choices). Let x, y, and z be valid choices. 1) If x u y and

y 6 u z, then x 6 u z. 2) If x u y and x 6 u z, then y uP z or y 6 u z.

Immediately from Propositions 1 and 3, we have the

following corollary:

Corollary 2 (Full Embedding and Nonembedding of

Choices). Let x, y, and z be valid choices. 1) If x u z and

y 6 u z, then x 6 u y. 2) If y u z and x 6 u y, then z uP x or z 6 u x.

Proposition 4 (Full and Partial Embedding of Choices). Let

x, y, and z be valid choices. 1) If x u y and x uP z, then y uP z.
2) If x u z and y uP z, then y uP x or y 6 u x. 3) If y u z and x uP y,

then z u x or z uP x.

Proposition 5 (Partial Embedding and Nonembedding of

Choices). Let x, y, and z be valid choices. 1) If x uP y and

y 6 u z, then x uP z or x 6 u z. 2) If x uP y and x 6 u z, then y uP z or

y 6 u z.

Immediately from Propositions 1 and 5, we have the

following corollary:

Corollary 3 (Partial Embedding and Nonembedding of

Choices). Let x, y, and z be valid choices. 1) If x uP z and y 6 u z,
then x uP y or x 6 u y. 2) If y uP z and x 6 u y, then z uP x or z 6 u x.

Each of the above propositions and corollaries provides a

certain scope of consistency checks for the relations among

choices. For example, we know that x uP y and y 6 u x cannot

coexist or else it would contradict Proposition 1. However,

not all incorrectly defined relations can be identified as

inconsistencies. For example, suppose x u y and y u x are

correct but somehow mistakenly defined as x u y and y uP x.

This mistake is not inherently inconsistent.
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3.1.3 System Deduction Rules for Choice Relations

Consider again Propositions 1, 2.1, 3.1, and 4.1, and
Corollary 2.1. The “then” parts of these propositions and
corollary contain definite relations, which provide a basis
for automatic deductions. Thus, when appropriate relations
have been defined, other relations can be deduced. For
example, once we know that x u y and y u z, we can
conclude from Proposition 2.1 that x u z.

The effectiveness of automatic deductions, however,
varies with the chronological order of defining the relations.
The following example illustrates this point.

Example 5 (Chronological Order of Defining Choice

Relations). Consider the choices “$2,000,” “Classic,”
and “Permanent” in Fig. 1 for the loan example. Suppose
the relations ($2; 000 7! Classic), ($2; 000 7! Permanent),
and (Classic 7! Permanent) have yet to be defined. If
($2; 000 u Classic) and ($2; 000 uP Permanent) are manu-
ally defined first, then (Classic uP Permanent) can be
deduced using Proposition 4.1. On the other hand, if
($2; 000 u Classic) and (Classic uP Permanent) are manu-
ally defined first, then ($2; 000 uP Permanent) must still be
manually defined since it cannot be deduced from any of
the propositions or the corollary.

In view of Example 5, we shall propose a heuristic
approach in Section 3.1.4 to determine the chronological
order of defining relations in order to improve on the
effectiveness of automatic deductions. First, however, we
discuss some important system deduction rules that form
the basis of our heuristic approach.

System Deduction Rule (1). Given x u y, we should next
define y 7! z, z 7! y, x 7! z, and z 7! x if they have not yet
been defined or deduced.

If y u z, then we can deduce x u z by applying
Proposition 2.1. If y 6 u z, then we can deduce x 6 u z by
applying Proposition 3.1. If z 6 u y, then we can deduce
x 6 u z by applying Corollary 2.1. If x uP z, then we can
deduce y uP z by applying Proposition 4.1. If z u x, then
we can deduce z u y by applying Proposition 2.1.

System Deduction Rule (2). Given x uP y, we should next
define x 7! z if it is not yet defined or deduced.

If x u z, then we can deduce z uP y by applying
Proposition 4.1.

System Deduction Rule (3). Given x 6 u y, we should next
define z 7! x and z 7! y if they have not yet been defined
or deduced.

If z u x, then we can deduce z 6 u y by applying
Proposition 3.1. If z u y, then we can deduce z 6 u x by
applying Corollary 2.1.

The above system deduction rules provide the basis of
our heuristic approach for the automatic identification of
the next relation to be defined.

3.1.4 Table Construction

As explained in Section 3.1.2, an incorrectly defined choice
relation may not lead immediately to any inconsistency
highlighted by Propositions 1-5 and Corollaries 1-3. Other
choice relations may have been defined manually before the

incorrect choice relation is identified. By this time,
additional choice relations may have already been deduced
automatically by the system, some of which are erroneously
based on the original incorrect relation. It is therefore
desirable to provide a function to the tester so that an
incorrectly defined relation and the erroneously deduced
relations can be corrected during the construction of the
choice relation table. This correction function will be
discussed later in this section. Before that, we must first
explore the possible types of elements in the choice relation
table T .

Each element tði; jÞ in T can be classified into one of the
following three types:

. A defined element if it is manually defined.

. A deduced element if it is automatically deduced.

. A yet-to-be-defined element if it has not been defined or
deduced.

An element tðm;nÞ in T is said to be an ancestor of
another element tði; jÞ if the former has been used to deduce
the latter, either directly or indirectly. When the user
identifies a defined element for correction, the system will
also check (and amend if necessary) all the elements that
have been deduced from it. When the system amends a
deduced element, it will also check (and amend if
necessary) all the relevant ancestors that have been defined.
Ancestor information is therefore vital to the correction of
incorrectly defined or deduced elements in T . We use an
element relation table with parent linked lists to capture this
information. Besides, this table will also serve as a guide for
automatically identifying the next relation that should be
manually defined, as explained in Section 3.1.3 and further
elaborated below.

Given w choices, the dimension of T is w� w. A
corresponding element relation table E has the same dimen-
sion. Each element of E, denoted by eði; jÞ, consists of the
following four fields:

. Type: It contains an integer value of ÿ1, 0, or 1,
indicating that the corresponding tði; jÞ is a defined,
yet-to-be-defined, or deduced element, respectively.

. Parent-Pointer: An element tðm;nÞ in T is called a
parent of another element tði; jÞ if the former is an
immediate ancestor of the latter. The set of all
parents of tði; jÞ is represented by a parent linked list
PLi;j. If tði; jÞ is a deduced element and the
corresponding pair of choices belong to different
categories, then the parent-pointer contains the
header address of the parent linked list. Otherwise,
the parent-pointer is set to a null value.

. Deduction-Pointer: If i ¼ j or the type is 0, then the
deduction-pointer contains a null value. Otherwise,
it contains the header address of a deduction linked list
DLi;j. Each node of DLi;j contains a yet-to-be-
defined element in T which, according to the three
system deduction rules in Section 3.1.3, should be a
candidate for the next manual definition. Obviously,
DLi;j may be empty.

. Counter: This field is used to determine the relative
chance of deducing some other relations if we know
the relational operator for the corresponding tði; jÞ. It
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contains an integer value � ÿ1. Intuitively, a higher
value in this field indicates a greater chance of
deducing other relations when we know the rela-
tional operator. It should be noted that the value of
this field is ÿ1 if the corresponding tði; jÞ has been
defined or deduced, and this field may be updated
once T is updated.

Table 1 summarizes the possible values for the above four
fields.

Appendix A shows an algorithm build table for the
construction of T . It incorporates the features for automatic
deductions and consistency checks. The main philosophy is
to perform automatic deduction for every yet-to-be-defined
tði; jÞ as far as possible and to perform consistency checks
whenever a tði; jÞ is manually defined. We note that:

1. The procedure correct operatorðÞ will not only
correct the erroneous elements selected by the user,
but also all the deduced elements resulting from
these erroneous elements. As a result, the user need
only continue constructing the choice relation table
from that point, rather than repeat the entire table
construction process.

2. For every incorrectly defined choice relation, the
number of executions required to correct this
relation as well as other related relations is in the
order of w4 in the worst case, where w is the total
number of choices. Thus, if m choice relations have
been defined incorrectly, then the number of execu-
tions is in the order of mw4.

The algorithm also automatically identifies the next tði; jÞ
to be manually defined, as guided by the system deduction
rules explained in Section 3.1.3. It would be useful to outline
the main idea behind this feature. Each element tði; jÞ in T
is associated with a counter at eði; jÞ of E, which provides an
estimate of the number of other relations that can be
deduced. The higher the value of the counter at eði; jÞ, the
greater will be the chance of the corresponding tði; jÞ to be
selected for the next manual definition so that the chance of

deducing other relations will be increased. This is illu-
strated by the following example:

Example 6 (System Deduction Rules). Assume that we are
constructing the choice relation table for the loan example,
as shown in Fig. 1. Suppose that the choice relation

($2; 000 6 u Gold) has just been defined. According to
System Deduction Rule 3 in Section 3.1.3, we should next
define (z 7! $2; 000) and (z 7! Gold), where z is a choice
such as “Permanent.” Suppose further that (z 7! $2; 000)

is yet-to-be-defined and (z 7! Gold) has been defined or
deduced. Then, the counter value for (z 7! $2; 000) will be
increased by one, but not that for (z 7! Gold). This will
effectively increase the chance of (z 7! $2; 000) being
selected for the next manual definition.

We have built a prototype system implementing the
algorithm build table, in which previously presented tech-
niques for consistency checks and automatic deductions
have been incorporated. Fig. 2 shows the input screen for
defining the relation between a pair of distinct choices. It
also provides users with the option of defining group
constraints by means of a single manual definition (see
Step 5d of the procedure build tableðÞ). This will further
reduce the number of manual definitions required. When
users select the option of group constraint definitions in
Fig. 2, for instance, the relational operator “ 6 u ” will not only
be assigned to (Gold 7! $2; 000), but also to (Gold 7! $3; 000).
Fig. 3 depicts a system screen that alerts users about
detected inconsistencies among relations and allows them
to choose the erroneous relations to be removed. “Full-
EmbedIn,” “PartEmbedIn,” and “NotEmbedIn” in the
figure represent the relational operators “ u ,” “ uP ,” and
“6 u ,” respectively.

3.1.5 Empirical Studies

We have conducted empirical studies to evaluate the
effectiveness of our table construction technique and to
compare our approach with the original CPM. Our studies
involve four real-life commercial specifications:

. The specification Sregister is for the inventory regis-

tration module of an inventory management system
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used by a group of public hospitals. The main

functions of the module are to record inventory

details, to capture parent-child relationships among
the inventory items, and to generate bar-code labels.

. Spurchase is for a purchase-order generation module
used by the same group of public hospitals. The

module allows purchasing officers to add procure-

ment information to replenishment requests sent

from various hospital units and generates purchase

orders automatically.
. Sinquiry is for an online telephone inquiry system

used in a large telecom company. The system

handles more than 60,000 inquiries a day and

supports various modes of inquiries such as in-

complete name searches, alternative name searches,

and complex phonetic searches.
. Smeal is for the meal scheduling module of a meal

ordering system used by an international airline
catering company. The main function is to determine

the quantity for every type of meal to be prepared
and loaded onto the aircrafts served by the company.

Empirical Study 1: Effectiveness of Table Construction

1. Effectiveness of Automatic Deductions and Group
Constraint Definitions. First, we identified the
categories and choices for the four specifications
described above in the usual manner. For the
categories and choices for each specification, we
randomly generated five different initial sequences
of choices. It should be noted that the actual sequence
of manually defined choice relations depends on the
initial sequence of choices and the deduction
heuristics described in Sections 3.1.3 and 3.1.4.

Table 2 shows the effectiveness of automatic

deductions and group constraint definitions in the

algorithm build table. On average, about 41.9 percent

of the choice relations were automatically deduced.

This automatic deduction feature was not available

in the original CPM, in which all the constraints

among choices had to be defined manually. In

addition, because of group constraint definitions,

an extra 28.0 percent of choice relations need not be

defined individually. As a result, the amount of

human effort was significantly reduced—only about

30.1 percent of the total number of choice relations

had to be specified manually.
2. Effectiveness of Consistency Checks. At the con-

clusion of the 20 trial runs, we experienced seven
erroneous choice relations, as shown in the right-
most column of Table 2. All these problematic
cases were defined at an intermediate stage of the
table construction process. Each error was detected
by the consistency checking mechanism almost

CHEN ET AL.: A CHOICE RELATION FRAMEWORK FOR SUPPORTING CATEGORY-PARTITION TEST CASE GENERATION 583

Fig. 3. Input screen to trigger the correction of erroneous relations.

TABLE 2
Empirical Study 1: Effectiveness of Table Construction



immediately after the manual definition, rather
than after a series of other manual definitions. A
plausible explanation is that real-life specifications
involve a fairly large number of categories and
choices and, hence, a large number of choice
relations. The chance of erroneously defining a
choice relation at an intermediate stage, and yet
slipping through the consistency checking mechan-
ism, is very slim.

The immediate detection of inconsistencies
caused by erroneously defined choice relations also
means that the number of related choice relations to
be corrected by the procedure correct operatorðÞ of
the algorithm build table can be kept to a minimum.
This is because, whenever an incorrect choice
relation is defined, it will be detected and, hence,
retracted immediately before it is erroneously used
for deducing other choice relations.

As mentioned earlier, the number of executions
required to correct m incorrectly defined choice
relations is Oðmw4Þ in the worst case. Our actual
experience shows, however, that the amount of work
due to corrections is much less than that portrayed
by this formula because:

. Only six of the 20 trial runs involved erroneous
manual definitions. Each erroneous case in-
volved only one or two incorrectly defined
choice relations.

. In the six trial runs that involved erroneous
manual definitions, the incorrect choice relations
were detected almost immediately before they
were used for deducing other relations. Hence,
the number of steps involved in removing an
error was much less than Oðw4Þ.

By virtue of the consistency checking mechanism,
all the choice relations are verified before the
construction of test frames, as described in
Section 3.3 below. This proves to be very handy.
For the original CPM, on the other hand, users have
to check manually for incorrectly defined constraints
against test specifications. If some incorrect con-
straints are detected only after the execution of the
associated generator, certain effort will be wasted.

Empirical Study 2: Comparison with the Original CPM. It
would also be useful to further evaluate the effectiveness of
consistency checks in the choice relation framework by
comparing our approach with the original CPM. The study
involves two subjects, to be referred to as Person-A and
Person-B. Both of them have postgraduate qualifications in
computer science or information technology and have about
10 years of working experience in industry. Neither of the
subjects has been involved with the development of the
original CPM or our choice relation framework.

Before the study started, both subjects were given the
relevant sections of this paper as well as the literature
relating to the original CPM [4], [17] for self-study. We then
gave them a sample specification and asked them to
construct a TSL specification in the original CPM and a
choice relation table using the prototype system. The
exercise was followed by a thorough discussion of the
results. The idea was to familiarize them with CPM and our
framework.

After the initial training, Person-A first constructed the
choice relation tables followed by the TSL specifications for
the specifications Sregister and Spurchase. He also constructed
the TSL specifications followed by the choice relation tables
for the specifications Sinquiry and Smeal. On the other hand,
Person-B first constructed the TSL specifications followed
by the choice relation tables for Sregister and Spurchase. She
also constructed the choice relation tables followed by the
TSL specifications for Sinquiry and Smeal.

Table 3 summarizes the results of the study. It shows that
the subjects have included erroneous definitions in both the
TSL specifications and the choice relation tables. We have
two observations:

1. The number of error cases for TSL specifications (19)
was not substantially different from that of the
choice relation tables (15). The number of errors
varied little independent of whether the TSL speci-
fications or the choice relation tables were con-
structed first.

2. All 15 error cases in the choice relation tables were
corrected during table construction with the help of
the consistency checking and correction mechan-
isms. About 86.7 percent of these errors were
detected immediately. The rest were detected after
the next manual definition. As a result, all the
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definitions were correct at the conclusion of the table
construction processes. This feature was not avail-
able in the TSL specifications. None of the 19 errors
were detected by the subjects themselves. We note
that, when erroneous constraint definitions are left
undetected, the resulting number of erroneous test
frames is usually many times that of the incorrect
definitions.

3.2 Construction of the Choice Priority Table

In most real-life situations, resource constraints are imposed

on the software tester. Hence, not all complete test frames

may be used for generating test cases for a program. A

possible approach is to define the relative priorities for the

choices based on the software tester’s expertise and

experience in the application domain. In this way, the

choices with higher priorities can first be used to generate

test frames, thus respecting both the resource constraints

and the relative importance of the choices.
Users are requested to define the following parameters

after the choice relation table T has been constructed:

1. Preferred Maximum Number of Test Frames M.
Software testers are required to define a preferred
maximum number of test frames M that they are
willing to handle. The word “preferred” implies that
M is not absolute, as the limit may be overwritten by
the minimally achievable priority level m in 3.

2. Relative Priority of Every Choice. Given w choices,
a choice priority table P with a dimension of w� 2 is
constructed, capturing the relative priority of every
choice. Let pði; 1Þ and pði; 2Þ denote the first and
second elements, respectively, of the ith row of P.
Basically, pði; 1Þ contains a valid choice xi and pði; 2Þ
contains a positive integer ri. The smaller the value
of ri, the higher will be the priority of the
corresponding xi for inclusion as part of a test
frame. Our framework assumes that the smallest
value of ri is 1.

3. Minimally Achievable Priority Level m. The defini-
tion of a minimally achievable priority level m
allows the software tester to ensure that those xis
with ri � m will always be selected for inclusion as
part of a test frame, independent of whether the
number of generated test frames exceeds M or not.
Our framework assumes that m � 0. In the situation
where M should not be waived by m, the software
tester should set m to zero. In this way, M becomes
the absolute maximum number of generated test
frames.

In the above, the value of M is largely dependent on the

testing resources. The more the available resources, the

higher should M be defined. As pointed out in [12], [13],

[15], 1) it would be far more effective to have an idea of the

kinds of faults that are most probable or most damaging

and then to construct test cases that are likely to reveal these

significant faults and 2) this fault-guessing process depends

largely on the software tester’s expertise and experience.

Smaller values of ri, representing higher priorities, should

be assigned to those crucial choices xi that are likely to

reveal the significant faults. Furthermore, m should not be
assigned a value smaller than any of these ri.

Example 7. Consider the program loan in Example 1.
Suppose the software tester defines M to be 10 and
assigns the relative priority for all the choices, as
illustrated partially in Table 4. Now, suppose m is set
to 3. In this situation, the choices “Employed,” “Un-
employed,” “Self-Employed,” and “Employed by
Others” will always be used for the construction of test
frames, regardless of whether the number of generated
test frames exceeds 10 or not.

3.3 Construction of Test Frames

3.3.1 Test Frames and Their Relations

According to Definition 1, a test frame consists of a group of
choices. Furthermore, a test frame B is complete if and only
if, whenever a single element is selected from every choice
in B, the result will constitute a standalone input.

Consider, for instance, the following test frame for loan in
Example 1:

B0 ¼ fType of Applicant ¼ Cardholder;Type of Credit Card

¼ Classic;Credit Limit ¼ $2; 000g:

B0 is incomplete because additional details such as
“Employment Status = Employed” must be supplied before
we have sufficient information to generate a test case for
execution.

Although B0 is incomplete, it may be a subset of a
complete test frame, such as the following:

B ¼fType of Applicant ¼ Cardholder;

Type of Credit Card ¼ Classic;Credit Limit ¼ $2; 000;

Employment Status ¼ Employed;

Type of Employment ¼ Employed by Others;

Type of Job ¼ Permanent;

Monthly Salary ðSÞ ¼ $0 < S � $2; 000g:

Definition 4 (Set of Complete Test Frames Related to a

Given Test Frame). Let TF denote the set of all complete
test frames. Given any test frame B0, we define the set of
complete test frames related to B0 as the set TF ðB0Þ ¼
fB 2 TF : B0 � Bg. A test frame B0 is valid if and only if
TF ðB0Þ is nonempty.

It follows immediately from Definition 4 that a complete
test frame must be valid.

Like the treatment of choices, the relations between valid
test frames can also be classified into three types:
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Definition 5 (Relation between Two Test Frames). Given
any pair of valid test frames B1 and B2,

1. B1 is fully embedded in B2 (denoted by B1 u B2Þ if
and only if TF ðB1Þ � TF ðB2Þ.

2. B1 is partially embedded in B2 (denoted by
B1 uP B2Þ if and only if TF ðB1Þ 6� TF ðB2Þ and
TF ðB1Þ \ TF ðB2Þ 6¼ ;.

3. B1 is not embedded in B2 (denoted by B1 6 u B2Þ if
and only if TF ðB1Þ \ TF ðB2Þ ¼ ;.

3.3.2 Properties of Relations among Test Frames

In light of Definition 5, we can extend Propositions 1-5 and
Corollaries 1-3. For example, Proposition 1 and Corollary 1
can be extended into the following dual versions:

Dual Proposition 1 (Symmetry of the Nonembedding of

Test Frames). For any valid test frames B1 and B2, B1 6 u B2

if and only if B2 6 u B1.

Dual Corollary 1 (Reverse of Full and Partial Embedding

of Test Frames). Let B1 and B2 be valid test frames. 1) If
B1 u B2, then B2 u B1 or B2 uP B1. 2) If B1 uP B2, then B2 u

B1 or B2 uP B1.

Propositions 2-5 and Corollaries 2-3 can be extended in a
similar fashion. Readers may refer to Appendix D for a full
list of dual propositions and corollaries.

Proposition 6 (Generalization Property). Given any valid
choice x, TF ðfxgÞ ¼ TF ðxÞ.

Because of Proposition 6, a choice x and the test frame fxg
will be used interchangeably in this paper.

3.3.3 Deduction of Relations among Test Frames

Two very important special cases of B1 7! B2 are B 7! x and
x 7! B. Propositions on these special cases are practically
useful for automatic deductions of relations. They will be
discussed in this section.

Given any valid choice x and any valid test frame B, we
can only have three scenarios: 1) There exists some y 2 B
such that y 6 u x, 2) there exists some y 2 B such that y u x,
and 3) y uP x for every y 2 B. Proposition 7 below shows that

these three scenarios are not only exhaustive but also

mutually exclusive. Before we present Proposition 7, we

need the following lemma.

Lemma 1 (Full Embedding Lemma). Given any valid test

frames B1 and B2, if B1 � B2, then B2 u B1.

Proposition 7 (Mutual Exclusion of Fully Embedded and

Nonembedded Choices). Let x be a valid choice and B be a

valid test frame. We cannot have any y and z 2 B such that

y u x and z 6 u x.

The following proposition shows how we can uniquely

determine B 7! x and x 7! B when there exists some y 2 B
such that y 6 u x.

Proposition 8 (Test Frame Containing Nonembedded

Choice). Let x be a valid choice and B be a valid test frame.

If there exists some valid choice y 2 B such that y 6 u x, then

B 6 u x and x 6 u B.

The next proposition shows how we can uniquely

determine B 7! x and x 7! B when there exists some y 2 B
such that y u x.

Proposition 9 (Test Frame Containing Fully Embedded

Choice). Let x be a valid choice and B be a valid test frame. If

there exists some valid choice y 2 B such that y u x, then the

following will hold: 1) B u x. 2) If there exists some z 2 B
such that x uP z, then x uP B; otherwise, x u B.

The following example shows that we cannot uniquely

determine B 7! x and x 7! B when y uP x for every y 2 B.

Example 8 (Test Frame Containing Partially Embedded

Choices Only). Let x be a valid choice and B ¼ fy; zg be

a valid test frame. Suppose y uP x and z uP x. In this case,

B 7! x and x 7! B may take one of the forms depicted in

Fig. 4. It can be seen from the figure that the relational

operator for B 7! x and x 7! B may be “ u ,” “ uP ,” or “ 6 u .”

In spite of the above limitation, the next proposition

shows that x 7! B can still be determined in some

circumstances.
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Proposition 10 (Test Frame Containing Fully Embedding
Choices Only). Let x be a valid choice and B be a valid test
frame. We have x u B if and only if x u y for every y 2 B.

In summary, except when y uP x for every y 2 B, both the
relational operators for B 7! x and x 7! B can be uniquely
determined using Propositions 8 and 9. Even in the partial
embedding case, x 7! B can still be determined using
Proposition 10 under certain circumstances. Thus, a manual
definition of relational operators is not required in all these
cases. This proves to be very handy in test frame
construction, which will be discussed in Section 3.3.4.

3.3.4 Test Frame Construction

Our approach for the construction of test frames is
incremental, consisting of the following two steps:

1. For every unprocessed choice x, combine it with
each test frame B to form one or more test frames
Bnews. Continue with this process until the resource
constraints in terms of M and m have been
exceeded.

a. The selection of x depends on its relative
priority so that choices with higher priorities
are selected first for combining with existing Bs
to form Bnews.

b. The relational operators for B 7! x and x 7! B
determine how to generate Bnews. Hence, these
operators are indispensable in test frame con-
struction. They are determined automatically
using Propositions 8 and 9 except when y uP x for
every y 2 B. In the latter case, x 7! B can be
determined using Proposition 10 under certain
circumstances. Furthermore, when B consists
only of a single choice y, B 7! x and x 7! B are
effectively the same as y 7! x and x 7! y because
of Proposition 6. Hence, they can be found
directly from the choice relation table.

2. For every incomplete test frame Bnew generated in
Step 1, extend it into a complete test frame.

Before we present our construction algorithm for test
frames, we have to discuss the construction rules first.
These rules help us to generate new test frames in an
incremental manner.

Given a valid choice x and a valid test frame B, it follows
from Dual Proposition 1 and Dual Corollary 1 that the only
possible relations between x and B are

1. B 6 u x and x 6 u B,
2. B u x and x u B,
3. B u x and x uP B,
4. B uP x and x u B, and
5. B uP x and x uP B.

If we know the relations between x and B, we can use the
following rules to construct new test frames:

Construction Rule 1. If B 6 u x and x 6 u B, then any complete
test frame containing x will not contain B and any
complete test frame containing B will not contain x. To
generate all the complete test frames for this situation,
we need to retain the original test frame B and construct
a new test frame fxg.

Construction Rule 2. If B u x and x u B, then any complete
test frame containing B will contain x and vice versa. To
reflect the situation, we replace B by a new test frame
B [ fxg.

Construction Rule 3. If B u x and x uP B, then any complete
test frame containing B will contain x but not vice versa.
To reflect the situation, we replace B by new test frames
fxg and B [ fxg.

Construction Rule 4. If B uP x and x u B, then any complete
test frame containing x will contain B but not vice versa.
To reflect the situation, we need to retain the original test
frame B and construct a new test frame B [ fxg.

Construction Rule 5. If B uP x and x uP B, then complete test
frames containing B may or may not overlap with
complete test frames containing x. To generate all the
complete test frames for this situation, we retain the
original test frame B and construct new test frames fxg
and B [ fxg.
Let x be a valid choice and B be a valid test frame. If

there exists some valid choice y 2 B such that y 6 u x, then by
Proposition 8 and Construction Rule 1, we need to retain the
original test frame B and construct a new test frame fxg. If
there exists some valid choice y 2 B such that y u x, then, by
Proposition 9 and Construction Rules 2 and 3, we should
replace B by a new test frame B [ fxg and add a new test
frame fxg if appropriate. If x u y and y uP x for every y 2 B,
then, by Proposition 10, Construction Rule 2 or 4 should
apply. Since every test frame generated by Construction
Rule 2 will also be generated by Construction Rule 4 but not
vice versa, we recommend applying Construction Rule 4 in
order to play it safe and avoid possible omissions. Thus, we
shall retain the original test frame B and construct a new
test frame B [ fxg.

For the case where y uP x for every y 2 B and no other
information is known, we recommend applying Construc-
tion Rule 5 so as to play it safe and avoid possible omissions
since every test frame generated by any of Construction
Rules 1 to 4 will also be generated by Construction Rule 5
but not vice versa. Thus, the original test frame B will be
retained and new test frames fxg and B [ fxg will be
constructed. By Proposition 7, the above scenarios are
mutually exclusive and, hence, the recommended proce-
dure is well-defined.

Appendix B shows the algorithm build test frame for
the incremental construction of test frames. As we can see
from this algorithm, the number of executions is in the
order of c� w�M in the worst case, where c is the total
number of categories, w is the total number of choices, and
M is the absolute maximum number of generated test
frames.

On the completion of build test frame, all the test
frames generated are stored in K. Furthermore, because of
Step 2.2.b.v in build test frameð Þ, all the generated test
frames are distinct.

3.3.5 Test Frame Extension

In the algorithm build test frame, a preferred maximum
number of test frames M and a minimally achievable
priority level m are used by the software tester to specify
the resource constraints. As a result, some of the choices
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may remain unprocessed or partially processed when the

algorithm is terminated because of resource limitations. In

this way, some test frames in K may not be complete.

Obviously, these incomplete test frames should be extended

further.
Given any incomplete test frame B, we would like to

extend it to include valid choices x that remain unprocessed

or partially processed, as long as B and x do not mutually

exclude each other. The extension rule can easily be

formulated using the relation B 7! x, as follows:

Extension Rule. When B is fully or partially embedded in

x, extend B into B [ fxg. When B is not embedded in x,

do not change B.

We observe that the number of test frames will remain

unchanged when the extension rule is applied. Hence, we

can preserve the constraint on the number of generated test

frames as imposed by M and m.
To determine B 7! x for the extension rule, we note the

following:

1. If B consists only of a single choice, we can
determine B 7! x from the choice relation table.

2. Otherwise, if there exists some valid choice y 2 B
such that y 6 u x, then, by Proposition 8, we have
B 6 u x.

3. Otherwise, if there exists some valid choice y 2 B
such that y u x, then, by Proposition 9, we have
B u x.

4. Otherwise, if x u y for every valid choice y 2 B, then,
by Proposition 10, we have x u B. Hence, by Dual
Corollary 1.1, we must have B u x or B uP x.

For those cases not covered above, users will be requested

to define B 7! x manually. Based on the above logic, we

have developed an algorithm called extend test frame (as

shown in Appendix C), which extends every incomplete test

frame generated by build test frame. For this algorithm, the

number of executions involved is on the order of c� w�N
in the worst case, where c is the total number of categories, w

is the total number of choices, and N is the total number of

generated test frames.
Once we have a set of complete test frames, the

generation of test cases is straightforward. Given any

complete test frame B, we randomly select a single element

from each choice contained in B. The set of elements thus

selected will constitute a test case corresponding to B.

Consider, for example, the following complete test frame

generated by the algorithm extend test frame:

B1 ¼fType of Applicant ¼ Cardholder;

Type of Credit Card ¼ Classic;Credit Limit ¼ $2; 000;

Employment Status ¼ Employed;

Type of Employment ¼ Employed by Others;

Type of Job ¼ Permanent;

Monthly Salary ðSÞ ¼ $0 < S � $2; 000g:

The following may be selected as a test case corresponding

to B1:

Type of Applicant ¼ Cardholder;

Type of CreditCard ¼ Classic;Credit Limit ¼ $2; 000;

Employment Status ¼ Employed;

Type of Employment ¼ Employed by Others;

Type of Job ¼ Permanent;Monthly Salary ðSÞ ¼ $1; 358:

3.3.6 Merits of Test Frame Construction

Our choice relation framework supports CPM mainly in
1) consistency checks and automatic deductions of choice
relations and 2) the automatic but constrained generation of
test frames. The effectiveness of consistency checks, auto-
matic deductions, and group constraint definitions has been
discussed in Section 3.1.5. The approaches in constraining
the total number of generated test frames can be compared
as follows:

. In the original CPM, special annotations [error] and
[single] can be attached to a choice x so that a
complete test frame containing only x will be
generated [4], [17]. The [error] annotation is
designed to test a particular value that will cause
an exception or other error state. It is assumed that
any call of the function with this particular value in
the annotated parameter or environment condition
will result in the same error. On the other hand, the
[single] annotation is intended to describe special,
unusual, or redundant conditions that do not need to
be combined with other possible choices. The main
purpose of using these two annotations is to reduce
the number of complete test frames generated.

Given a special choice x, this objective can also be
achieved through our framework by defining all the
choice relations x 7! y as x 6 u y for any choice x 6¼ y.
In this case, x will not be combined with any other
choices to form complete test frames. Instead, a
single complete test frame containing only x will be
generated.

. In the original CPM, the number of generated test
frames can only be reduced by means of incorporat-
ing additional constraints among choices. As a
result, the tester does not have direct control of the
exact number of test frames generated. After all the
constraints have been taken into consideration,
further reduction will not be possible even if the
number of generated test frames is still too large for
the available testing resources. On the contrary, our
framework provides a means of further reducing the
number of test frames after all the choice relations
(that is, constraints) have been considered. This is
achieved using M, m, and the relative priorities of
individual choices, as explained in Section 3.2.

4 RELATED WORK

It would be worth reviewing other work related to the
original CPM and our choice relation framework:

1. Amla and Ammann [1] suggest that CPM is applic-
able to natural-language functional specifications,
which may be incomplete and unstructured. Soft-
ware testers will need undue effort to define testing
requirements, thus hampering the effectiveness of
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the method. On the other hand, they argue that
testing requirements are, to a large extent, already
captured in formal specifications. They analyze the
feasibility of applying CPM to Z specifications and
verify that testing requirements can be derived from
formal specifications more easily.

2. Following up on the above study, Ammann and
Offutt [2] define a minimal coverage criterion, called
the base-choice-coverage criterion, for category-parti-
tion testing. They develop a procedure for convert-
ing Z specifications into test specifications that
satisfy this criterion and introduce a method to
produce test scripts from the test specifications.

3. Using the notion of test templates, Stocks and
Carrington [19] develop a unified, flexible, and
formal framework for specification-based testing.
Their framework provides not only a formal model
of tests and test suites, but also a method for
applying the model in testing. In this way, test
suites can be constructed in a concise and formal
manner. They also investigate several application
areas of the framework, including test oracles,
refinement, and regression testing.

4. Zeil and Wild [20] observe that test descriptions
generated by testing criteria are, effectively, sets of
constraints that define test cases. Solutions to a set of
constraints correspond to actual test data.3 There
may, however, be more that one solution and a
common practice is to choose one of them arbitrarily.
Zeil and Wild argue that some solutions may have a
higher probability of revealing failures. Hence, they
suggest a refinement process to reduce the solution
set with the aim of identifying test data with a higher
failure-revealing capability. Refinement is achieved
by imposing further constraints incrementally.

5. Offutt and Irvine [16] investigate the effectiveness of
fault detection in object-oriented programs using test
cases generated by CPM. Common types of faults in
C++ programs are identified. Such faults are
inserted into two programs. Test cases are then
generated using CPM with a view to uncovering
these seeded faults. Their results show that these test
cases help identify almost all the faults, except those
involving memory management. They propose that
C++ programs can be tested effectively by combin-
ing CPM with a tool for detecting memory manage-
ment faults. They further conclude that traditional
testing techniques, such as CPM, are also effective for
testing object-oriented programs and, hence, soft-
ware developers do not need new testing methods in
the object-oriented paradigm.

6. Grochtmann and Grimm [11] propose a classification-
tree method to help construct test cases from
functional specifications. In this method, a classifica-
tion tree, which is in the form of a hierarchical
structure, organizes classifications and classes at
alternate levels.4 The basic approach of the classifi-
cation-tree method is very similiar to that of CPM,

namely, to build a model of the constraints in the
input domain with a view to generating all the valid
test frames while suppressing invalid ones as far as
possible. Chen et al. [7] further study how to
improve on the tree structure to facilitate the
construction of test frames.

7. Previous work has also been done on test case
prioritization. For example, Avritzer and Weyuker
[3] develop load testing strategies to generate test
suites to check the resource allocation behavior of
software systems according to operational profiles.
Elbaum et al. [9] study version-specific test case
prioritization techniques in regression testing, with a
view to improving the rate of fault detection.

The major difference between approaches 1-3 and ours is
that the former are based on formal specifications. In our
project, rather than formalizing the specification language,
we attempt to improve on CPM by proposing a rigorous and
systematic framework. On the other hand, both approach 3
and ours provide a formal framework to systematically
define test suites for specification-based testing.

In 3 and 4, the notion of refinement has been used to
derive test cases. Our framework can also support the
generation of test cases via refinement, such as by splitting
choices or imposing additional constraints on choices. It
will be interesting to investigate, as future research, how the
concept of refinement can be used to enhance the choice
relation framework so as to further facilitate the construc-
tion of test cases from test frames.

With regard to 5, we note that discussions on the testing
of object-oriented software are beyond the scope of the
current paper. Readers may refer to [5], [6] for our
perspective on this topic.

CPM and 6 differ in how invalid test frames are modeled
and suppressed. CPM achieves this by capturing constraints
in textual form, whereas 6 represents constraints in the form
of tree structures. It has been found that the latter approach
may not be applicable to every scenario.

Finally, the work highlighted in 7 studies the generation
of test suites to cover states in proportion to their use [3], or
the prioritization of existing tests in regression testing [9].
On the other hand, our work addresses prioritization from
the perspective of the specification-based CPM.

5 CONCLUSION

In this paper, we have developed a choice relation frame-
work for supporting category-partition test case generation.
The major merits of the framework are:

1. We capture the constraints among choices in a
rigorous and systematic manner via the introduction
of various relations.

2. We improve on the effectiveness and efficiency of
complete test frame construction by means of
consistency checks and automatic deductions of
relations.

3. We provide a means of removing only the incor-
rectly defined relations and any related ones, there-
by saving the effort of repeating the entire
construction process for the choice relation table.

4. We provide a direct way to control the maximum
number of generated test frames.
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3. Note that the term “test case” used by Zeil and Wild corresponds to
“test frame” in our choice relation framework, while their term “test data”
corresponds to “test case” in our terminology.

4. Classifications and classes in the classification-tree method correspond
to categories and choices in CPM, respectively.



5. We enable the software tester to specify the relative
priorities for choices that are used for the subsequent
formation of complete test frames.

We have applied our approach to real-life situations and

reported on the effectiveness of consistency checks and

automatic deductions of choice relations.

APPENDIX A

ALGORITHM FOR CONSTRUCTING THE

CHOICE RELATION TABLE

Procedure build tableðT Þ

1. Initialization of Buffer of Manually Defined Rela-
tions BR and List of Previously Defined and
Deduced Relations LR

a. Initialize BR as an empty linked list. It will be
used for storing temporarily the choice relations
defined manually by users.

b. Initialize LR as an empty linked list. Each

element of LR is a linked list that captures the

contents of the choice relation table T immedi-

ately before the system carries out a correction

of erroneous choice relations.
2. Initialization of Element Relation Table E
3. Initialization of Diagonal Elements
4. Initialization of Elements for Different Choices of

the Same Category. For every element tði; jÞ in T
such that i 6¼ j and the corresponding pair of
choices belong to the same category, initialize
tði; jÞ and update the relevant entries and deduc-
tion linked lists in E using the procedure
update deduction detailsði; jÞ.

5. Updating of Choice Relation Table T . Repeat the
following until all the elements tði; jÞ in T have been
defined or deduced:

a. Choose an element tði; jÞ with the largest counter
value of eði; jÞ. If there is more than one such
tði; jÞ, then arbitrarily choose one of them.

. If the relational operator for tði; jÞ appears
in the buffer BR, then move it to T .

. Otherwise, prompt the user to define the
relational operator for tði; jÞ and store it in T .

b. Set the type and the counter of eði; jÞ to ÿ1.
c. Update the relevant counters and deduction

linked lists in E using the procedure

update deduction detailsði; jÞ:

d. Suppose tði; jÞ in Step 5.a corresponds to the

choice relation x 7! y, where y ð6¼ xÞ is under

the category Y . If, for every choice y0 ð6¼ yÞ
under Y , the choice relation x 7! y0 is not
found in T and BR, then confirm with the

user whether the relational operator for tði; jÞ
should also be applied to all such x 7! y0. If so,

store the relational operators for all x 7! y0 into

the buffer BR.

e. Perform consistency checks for all the defined
and deduced elements in T using the proposi-
tions and corollaries of Section 3.1.2. If no
inconsistency is detected, then proceed to
Step 5f. Otherwise, check whether the combina-
tion of defined and deduced elements in T exists
in the linked list LR. If so, alert the users that
they have encountered this problem before and
prompt them to define another relational opera-
tor for tði; jÞ. Otherwise, perform the following:

. Append a copy of the contents of T to the
linked list LR.

. For any set of inconsistent elements S ¼
ftðm1; n1Þ; tðm2; n2Þ; . . . ; tðmk; nkÞg in T , alert
the users about the following:

i. every element in S that is manually
defined,

ii. every element in S that is automatically
initialized in Step 4 of this procedure,
and

iii. the manually defined ancestor(s) of
every element in S that is automatically
deduced in Step 5f of this procedure.

Then, prompt the user to select the erro-

neous ones from i and iii above.
. Correct the selected elements using the

procedure correct operatorð Þ.
Repeat Step e until no inconsistency is

detected.
f. Whenever possible, perform automatic deduc-

tions for yet-to-be-defined elements, using Pro-
positions 1, 2.1, 3.1, and 4.1, and Corollary 2.1.
For every element tðp; qÞ whose relational
operator has been deduced:

. Set the type of eðp; qÞ to 1 and the corre-
sponding counter to ÿ1.

. Update the relevant counters and deduction
linked lists in E using the procedure
update deduction detailsðp; qÞ.

. Initialize PLp;q as an empty linked list, and
store its header address in the parent-
pointer of eðp; qÞ.

. Append each parent element of tðp; qÞ to
PLp;q.

Procedure update deduction detailsði; jÞ

1. Initialize DLi;j as an empty linked list and store its
header address in the deduction-pointer of eði; jÞ.

2. Identify all the elements tðm;nÞ of T such that the
system deduction rules in Section 3.1.3 can be
applied. For every such tðm;nÞ:

a. If the counter in the corresponding eðm;nÞ is
smaller than the largest integer value supported
by the system, then increase it by one and

b. Append a node “ðm;nÞ” to DLi;j.
3. For every defined or deduced element tðp; qÞ in T ,

delete the node “ði; jÞ,” if any, from the correspond-
ing DLp;q.
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Procedure correct operatorðm;nÞ

1. Delete the following from T :

a. the manually defined element tðm;nÞ and
b. all the deduced elements, if any, that have

tðm;nÞ as an ancestor.

Note that the ancestor information of an element can

be obtained from its parent linked list.
To delete an element tðp; qÞ from T :

i. Set the type of the corresponding eðp; qÞ to 0 and
its parent-pointer to null.

ii. Set the counter of the corresponding eðp; qÞ to
the largest integer value supported by the
system. This ensures that tðp; qÞ has the highest
priority for the next manual definition.

iii. For every element tðx; yÞ of T corresponding to
an element ðx; yÞ of the deduction linked list
DLp;q, decrease the counter of eðx; yÞ by one.

iv. Set the deduction-pointer of eðp; qÞ to null.
2. Prompt the user to define the relational operator for

tðm;nÞ and store it in the buffer BR.

APPENDIX B

ALGORITHM FOR GENERATING TEST FRAMES

Procedure build test frameðT ;P;KÞ. In this procedure, a

linked list K is used to store all the generated test frames. In

terms of data structures, each element of the linked list K
points to a linked list whose elements are the choices of a

test frame.

1. Initialization

1.1. Input the preferred maximum number of com-
plete test frames M and the minimally achiev-
able priority level m.

1.2. Suppose r denotes the relative priority of a
choice in the choice priority table P. Set the
current priority level (denoted by L) to the
minimum r defined.

1.3. Initialize K as an empty linked list.
2. Construction of Possible Test Frames. Let NðKÞ

denote the total number of test frames stored in K.
While (there exists any unprocessed choice) and
ðL � m or NðKÞ < MÞ, do the following:

2.1. Select an unprocessed choice x with priority
level L.

2.2. If NðKÞ ¼ 0, then store the test frame fxg into K.
Otherwise, perform the following:

a. Initialize Knew as an empty linked list. This
linked list has the same structure as K.

b. Let NðKnewÞ denote the total number of test
frames stored in Knew. While NðKÞ > 0 and
ðL � m or ðNðKÞ þNðKnewÞ < MÞÞ, do the
following:

i. Select any test frame B from K.
ii. Determine B 7! x and/or x 7! B using

Propositions 8, 9, and 10. Then, generate

new test frames for Knew according to
the recommendations in Section 3.3.4.

iii. Store all the newly generated test
frames in Knew. If, according to the
construction rule, B should be retained,
then store it into Knew also.

iv. Delete B from K.
v. Remove all but one duplicated test

frame from Knew.
c. For every Bnew in Knew, move it to K until

NðKnewÞ ¼ 0 or ðL > m and NðKÞ �MÞ.
2.3. Set L to the smallest relative priority of all the

unprocessed choices, if any.

APPENDIX C

ALGORITHM FOR EXTENDING INCOMPLETE

TEST FRAMES

Procedure extend test frameðT ;P;KÞ. For every unpro-
cessed or partially processed choice x in the choice priority
table P, repeat the following for all the test frames B in K:

1. If B consists only of a single choice, determine
B 7! x from the choice relation table. Extend B into
B [ fxg if B u x or B uP x.

2. Otherwise, if there exists some valid choice y 2 B
such that y 6 u x, then take no action.

3. Otherwise, if there exists some valid choice y 2 B
such that y u x, then extend B into B [ fxg.

4. Otherwise, if x u y for every valid choice y 2 B, then
extend B into B [ fxg.

5. Otherwise, prompt the user for B 7! x. Extend B into
B [ fxg if B u x or B uP x.

APPENDIX D

DUAL PROPOSITIONS AND COROLLARIES

Dual Proposition 1 (Symmetry of the Nonembedding of

Test Frames). For any valid test frames B1 and B2, B1 6 u B2

if and only if B2 6 u B1.

Dual Corollary 1 (Reverse of Full and Partial Embedding

of Test Frames). Let B1 and B2 be valid test frames. 1) If
B1 u B2, thenB2 u B1 orB2 uP B1. 2) IfB1 uP B2, thenB2 u B1

or B2 uP B1.

Dual Proposition 2 (Full Embedding of Test Frames). Let
B1,B2, andB3 be valid test frames. 1) IfB1 u B2 andB2 u B3,
then B1 u B3. 2) If B1 u B2 and B1 u B3, then B2 u B3 or
B2 uP B3.

Dual Proposition 3 (Full Embedding and Nonembedding

of Test Frames). Let B1, B2, and B3 be valid test frames. 1) If
B1 u B2 and B2 6 u B3, then B1 6 u B3. 2) If B1 u B2 and
B1 6 u B3, then B2 uP B3 or B2 6 u B3.

Dual Corollary 2 (Full Embedding and Nonembedding of

Test Frames). Let B1, B2, and B3 be valid test frames. 1) If
B1 u B3 and B2 6 u B3, then B1 6 u B2. 2) If B2 u B3 and
B1 6 u B2, then B3 uP B1 or B3 6 u B1.

Dual Proposition 4 (Full and Partial Embedding of Test

Frames). Let B1, B2, and B3 be valid test frames. 1) If B1 u

B2 and B1 uP B3, then B2 uP B3. 2) If B1 u B3 and B2 uP B3,
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then B2 uP B1 or B2 6 u B1. 3) If B2 u B3 and B1 uP B2, then
B3 u B1 or B3 uP B1.

Dual Proposition 5 (Partial Embedding and Nonembed-
ding of Test Frames). Let B1, B2, and B3 be valid test
frames. 1) If B1 uP B2 and B2 6 u B3, then B1 uP B3 or B1 6 u B3.
2) If B1 uP B2 and B1 6 u B3, then B2 uP B3 or B2 6 u B3.

Dual Corollary 3 (Partial Embedding and Nonembedding
of Test Frames). Let B1, B2, and B3 be valid test frames. 1) If
B1 uP B3 and B2 6 u B3, then B1 uP B2 or B1 6 u B2. 2) If B2 uP B3

and B1 6 u B2, then B3 uP B1 or B3 6 u B1.

APPENDIX E

PROOFS AND DISCUSSIONS OF

LEMMA, PROPOSITIONS, AND COROLLARY

Proof of Proposition 1 (Symmetry of the Nonembedding
of Choices). This proposition follows directly from the
definition of “6 u .” tu

Discussions on Corollary (Reverse of Full and Partial
Embedding of Choices). Given x u y, the set of possible
complete test frames may be divided into the following
three disjoint partitions:

. P ðx ^ yÞ: Its complete test frames must contain x, y,
and possibly other choices.

. P ðy ^ :xÞ: Its complete test frames must contain y
and possibly some other choices, but not x.

. P ð:x ^ :yÞ: Its complete test frames contain neither
x nor y.

Partition P ðx ^ yÞ cannot be empty because x is a valid
choice and x u y. On the other hand, P ðy ^ :xÞ or P ð:x ^
:yÞ may be empty. If P ðy ^ :xÞ is empty, we have y u x.
Otherwise, we have y uP x.

Now, suppose x uP y. In this case, the set of possible
complete test frames may be divided into the following four
disjoint partitions:

. P ðx ^ yÞ: Its complete test frames must contain x, y,
and possibly other choices.

. P ðx ^ :yÞ: Its complete test frames must contain x
and possibly some other choices, but not y.

. P ðy ^ :xÞ: Its complete test frames must contain y
and possibly some other choices, but not x.

. P ð:x ^ :yÞ: Its complete test frames contain neither
x nor y.

Partitions P ðx ^ yÞ and P ðx ^ :yÞ cannot be empty
because x is a valid choice and x uP y. On the other hand,
P ðy ^ :xÞ or P ð:x ^ :yÞ may be empty. If P ðy ^ :xÞ is
empty, we have y u x. Otherwise, we have y uP x.

Proof of Proposition 2 (Full Embedding of Choices).

1. The proof follows directly from the definition of
“ u .”

2. Suppose x u y and x u z. By Definition 3, TF ðxÞ �
TF ðyÞ and TF ðxÞ � TF ðzÞ. Hence, any complete
test frame B 2 TF ðxÞ is also in TF ðyÞ and TF ðzÞ.
Since x is valid, TF ðxÞ is nonempty. Thus,
TF ðyÞ \ TF ðzÞ 6¼ ;, which means that y 6 u z can-
not be true. In other words, y u z or y uP z. tu

Proof of Proposition 3 (Full Embedding and Nonembed-

ding of Choices).

1. The proof follows directly from the definition of
“ u ” and “ 6 u .”

2. Suppose x u y and x 6 u z. Let us assume y u z. It
would follow from Proposition 2.1 that x u z,
which would contradict x 6 u z. Hence, we must
have y uP z or y 6 u z. tu

Proof of Proposition 4 (Full and Partial Embedding of

Choices).

1. Suppose x u y and x uP z. If we assumed y u z, then
it would follow from Proposition 2.1 that x u z,
which would contradict x uP z. On the other hand,
if we assumed y 6 u z, then it would follow from
Proposition 3.1 that x 6 u z, which would also
contradict x uP z. Hence, we must have y uP z.

2. Suppose x u z and y uP z. Let us assume y u x. It
would follow from Proposition 2.1 that y u z,
which would contradict y uP z. Hence, we must
have y uP x or y 6 u x.

3. Suppose x uP y and y u z. Let us assume z 6 u x. By
Proposition 3.1, we would have y 6 u x. It would
follow from Proposition 1 that x 6 u y, which would
contradict x uP y. Hence, we must have z u x or
z uP x. tu

Proof of Proposition 5 (Partial Embedding and Non-

embedding of Choices).

1. Suppose x uP y and y 6 u z. Let us assume x u z. It
would follow from Corollary 2.1 that x 6 u y, which
would contradict x uP y. Hence, we must have x uP z
or x 6 u z.

2. Suppose x uP y and x 6 u z. Let us assume y u z. It
would follow from Corollary 2.1 that y 6 u x, which
would contradict x uP y according to Proposition 1.
Hence, we must have y uP z or y 6 u z. tu

The proofs of Dual Propositions 1 to 5 are similar to those
of Propositions 1 to 5.

Proof of Proposition 6 (Generalization Property). Given
any valid choice x, for any B 2 TF , B 2 TF ðfxgÞ ,
fxg � B, x 2 B, B 2 TF ðxÞ. tu

Proof of Lemma 1 (Full Embedding Lemma). Suppose
B1 � B2. For any B 2 TF ðB2Þ, by Definition 4, we must
have B 2 TF ðB1Þ. By Definition 5, therefore, we have
B2 u B1. tu

Proof of Proposition 7 (Mutual Exclusion of Fully

Embedded and NonEmbedded Choices). Assume there
exists a valid choice y 2 B such that y u x. By Lemma 1,
we have B u y. Hence, by Dual Proposition 2.1, we have
B u x. Assume there exists a valid choice z 2 B such that
z 6 u x. By Lemma 1, we have B u z. Hence, by Dual
Proposition 3.1, we have B 6 u x. Thus, we have a
contradiction. tu

Proof of Proposition 8 (Test Frame Containing Non-

embedded Choice). Since y 2 B, by Lemma 1, we have
B u y. Hence, by Dual Proposition 3.1, if y 6 u x, thenB 6 u x.
By Dual Proposition 1, we can also conclude that x 6 u B.tu
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Proof of Proposition 9 (Test Frame Containing Fully

Embedded Choice).

1. Since y 2 B, by Lemma 1, we have B u y. Hence,
by Dual Proposition 2.1, if y u x, then B u x.

2. Suppose there exists some z 2 B such that x uP z.
By Lemma 1, we have B u z. Hence, by Dual
Proposition 4.2, we have x uP B or x 6 u B. Now,
according to part 1 of this proposition, we have
B u x. Hence, by Dual Proposition 1, we cannot
have x 6 u B. Thus, we must have x uP B.

Suppose there is no z 2 B such that x uP z. Since

B u x, by Dual Corollary 1.1, we can only have

x u B or x uP B. Assume that x uP B. From Defini-

tion 5.2, we would have TF ðxÞ 6� TF ðBÞ. By

Definitions 2 and 4, there would exist some B0 2
TF such that x 2 B0 and B 6� B0. In other words,

there would exist some B0 2 TF and z 2 B such

that x 2 B0 and z 62 B0. This would contradict the

nonexistence of z 2 B such that x uP z. Hence, we

must have x u B. tu
Proof of Proposition 10 (Test Frame Containing Fully

Embedding Choices Only). The result follows directly

from Definitions 4 and 5. tu
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