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Error Analysis and Planning Accuracy
for Dimensional Measurement
In Active Vision Inspection

Christopher C. YangMember, IEEE ,Michael M. Marefat,Senior Member, IEEE,
and Frank W. CiaralloMember, |IEEE

Abstract—Spatial quantization error and displacement error The errors resulting from motion and parallax can be
are inherent in automated visual inspection systems. This paper minimized to a negligible level by careful design and control of
discusses the effect of spatial quantization errors and displace- yo enyironment. However, the errors due to the displacement
ment errors on the precision dimensional measurements for an . L .
edge segment. Probabilistic analysis in terms of the resolution of Of the sensor, quantization errors in image digitization, and
the image is deve|0ped for two-dimensional (2_D) quantization illumination errors can not be avoided and always prOdUCG a
errors. Expressions for the mean and variance of these errors significant effect on the measurement. Therefore, it is impor-
are developed. The probability density function (pdf) of the tant that these errors be analyzed. The effect of these errors

quantization error is derived. The position and orientation errors on the measurements can be minimized by carefully modeling
of the active head are assumed to be normally distributed. .
the process leading to the errors.

A probabilistic analysis in terms of these errors is developed
for the displacement errors. Through integrating the spatial . .
quantization errors and the displacement errors, we can compute B. Review of Previous Work

the total error in the acj[ive vis.ion inspection system. .Based Previous research has introduced some results on spatial
on the developed analysis, we investigate whether a given sety, 5 4i7ation errors. Kamgar-Parsi [15] developed the mathe-

of sensor setting parameters in an active system is suitable to tical tools f ting th due t
obtain a desired accuracy for specific dimensional measurements. Matical tools for computng the average error due o quan-

In addition, based on this approach, one can determine sensor tization, Blostein [2] analyzed the effect of image plane
positions and view directions which meet the necessary tolerance quantization on the three-dimensional (3-D) point position
and accuracy of inspection. error obtained by triangulation from two quantized image

Index Terms—Active vision, computer integrated inspection, planes.in a stereo sgtup. Ho [11_] expressed the Qigitizing error
dimensional inspection, displacement error, error analysis, im- fOr various geometric features in terms of the dimensionless
age understanding, quantization error, scene analysis, three- perimeter of the object, and Griffin [9] discussed an approach
dimensional vision. to integrate the errors inherent in the visual inspection.

In addition to quantization errors, in active vision inspection,
the uncertainty arising from robot motion and sensory informa-
tion is also important. Set al. [30] presented a methodology
A. Background for manipulating and propagating spatial uncertainties in a

In machine vision inspection, the geometric features m t;,j(ln_botlc assembly system for generating executable actions

sured are those that are not changed with the environmen Qg accomplishing a desired task. Meeqal. [21] presented

the set up of the vision system (the position and orientati(?r?ﬁamework to chargcterize the distribution of the position

of the camera). Examples of such invariant features are t Lors of _robot_manlpulators_ over the work space _and to
length, width, area and volume of a pocket. Errors in measw%Ejdy their stapstlcal properties. Chet al _[4] identified .
ment of invariant features by an automated, computer visigﬂd parameterized the sources that contribute to the posi-

inspection system are inevitable. The sources of uncertain@jﬂ'n?1 error tanld 3elst|mated tthde vall:%s tc_)f th? pqtrﬁm?ters.
that lead to these errors include: eitscheggeret al. [31] presented a calibration algorithm for

. . .. finding the values of the independent kinematic errors by
1) dlspla_cement of th_e camera (_p(_)_szltlo_n gnd direction); measuring the end-effector Cartesian positions and proposed
2) guan_uza_non error in image digitization; . .. .. two compensation algorithms: a differential error transform
3) lllunj|nat|?nherrot:. (poor Cﬁntrast and low |r.1tenS|ty), compensation algorithm and a Newton—Raphson compensation
g; g]aorgtljlgxo(c:bjicc; t]c()acctacr)r:etr; dﬁg{gﬁ{g ?gtt)ugr’nall) algorithm. Bryson [3] discussed methods for the measurement
' and characterization of the static distortion of the position
Manuscript received July_ 12,_ 1996; revisgd February 5, 1998. This papgata from 3-D trackers including Ieast-squares polynomial
was recommended for publication by Associate Editor K. M. Lee and Edlt?lrt calibration, linear Iookup calibration, and bump Iookup

S. Salcudean upon evaluation of the reviewers’ comments. ) ; . A
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The previous research work has neither provided an analysis I r
of the spatial quantization error for line segments in one and - >
two dimensions nor has it investigated the effect of position
and orientation errors in camera placement on the dimensional ] s
measurement of the object features. In addition, no analysis I r
of expected accuracy in the dimensional measurements is
provided.

Measurementaccuracy involves the analysis of errors in
the measurement of a manufactured product using a specific
inspection strategy (for example, visual inspection, coordinate /-
measurement machine, etc.). In this case, we analyze the u
accuracy using the measured value obtained in the inspection. - vy
For example, information from an image of a manufactured
part is utilized in visual inspectioflanningaccuracy involves
the study of how the plan for inspection affects the accuracy u, v
of the inspection. In this case, we analyze the accuracy I,
based on the inspection plan. The measured value of the
product dimension(s) is not known because we only have thig- 1. Aline on a 2-D array of pixels. The horizontal length of the line is
inspection plan without the execution of inspection. However, * s T Vs The vertical length of the fine i&ry +uy + vy.
we do have the resolution of the camera and the planned
sensor settings that can be used to inspect the dimensisample indicates itself as part of the object image if and only if
for visual inspection. The error analysis of the dimensionatore than half of it is covered by the edge segment. Significant
measurement is based only on the probability density functiodistortion can be produced by this kind of quantization. A
(pdf's) of the spatial quantization error of the image anpoint in the image can only be located to within one pixel of
the translational and orientational errors of the active visi@tcuracy with traditional edge detection techniques. Recently,
head. This analysis gives us the capability to understand heeweral new edge detection techniques have reported subpixel
to control the parameters of the sensor settings in orderaocuracy [12], [14], [16]—-[18] to improve the precision of mea-
increase the probability of high accuracy. Hence, in this papsgrement on images. Many techniques in this group are based

_mm
_mm

X

we study theplanning accuracyin inspection. on interpolation of the acquired image. Although interpolation-
based techniques increase the resolution of quantization to

C. Contributions obtain sub-pixel accuracy, quantization still remains at some
level.

In this paper, we analyze the spatial quantization error In
two dimensions. The pdf of the spatial quantization error of
a point in one dimension has been modeled as a unifomn Two-Dimensional Quantization Errors
distribution in previous work [9], [11]. Using a similar rep-in Dimensional Measurement

resentation, we analyze the error in the measured dimensioR, 5. spatial quantization error is the combination of

of a line in two dimensions. The mean, the variance, g, o dimensional (1-D) spatial quantization errors. Fig. 1
range and the pdf of the error are derived. We also a”alygﬁows a line on a 2-D array of pixels. The resolution of the
the displacement error in an active vision system. Based age isr, x r, wherer, is the width of a pixel and, is the

normally dlst.rl.buted translational and orientational errors % ngth of a pixel. The horizontal component of the line length,
the active vision head [21], we analyze how these err%se

. - . %, 1S [z + u, + v, The vertical component of the length
propagate to the displacement of the projected points from the line, L,. is 1,7, + u, + v,. The actual dimensiorL,
3-D model to a two-dimensional (2-D) image plane. The pdf ye—y¥ ’

2 2
for the errors in dimensional measurement of linear segmefstherefore, /L3 + Lj.
resulting from displacement errors is derived. The total error The quantized lengthL, = ng + L(21 , where L,

in the active vision inspection is then characterized based 98y 7 are the horizontal and vertical quantized lengths
. . . . . q 1
the integration of the quantization error and the dlsplacemerggpec,é‘ivew. There are four random variables, two for the

error. The expected accuracy in inspection of a set of entitig§yi;ontal lengtha, andw,, and two for the vertical length,
by a given sensor setting is then analyzed. Using the predicied,q,, Al four are assumed to be uniformly distributed

length, we can find the expected accuracy of the dimensiondl
measurement in terms of the ideal dimension, the projected
distance from the sensor to the line, and the angle of view. Fu () = fo, (vs) = £ for 0 < w, < 7y

x

Il. QUANTIZATION ERRORS IN INSPECTION or0s vy <7

1
The spatial quantization error is important in inspection, Ju, (uy) = fo,(vy) = - for 0 <wy <7y
especially when the size of a pixel is significant compared to Y
the allowable tolerances in the object dimension. A quantized or0 < vy <y
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For the y-direction

1 1
75(19 + E’ —Ty S €q, S 0
j {7 1
wE) =y Lo 1 o <, @
Ty 7’y )
0, otherwise.

The approximate 2-D spatial quantization eréyg,using (1)
is in terms of two variables,, ande,,. The pdf is expressed
in terms ofé, and the joint statistics of,, ande,,

&g — sinyeg,
——————",&q, | deg, .
cos y

axis+ and the quantized line with length, and parallel to the original line.
(Figure is not shown in scale,. ands, are much smaller than the length
of the line in actual case.)

Fig. 2. Original line with lengthL. and angle between itself and horizontal N 1 oo
()= ——
Jl80) = eoss] /_oof<

If ¢4, and €q, are ind.ep.endentf(sqw £q,) = feqm (€q.) _
fe,, (€¢,)- Substituting this into the above equation, we obtain

We will use ageometric approximatiomo characterize the . L
g PP the pdf of the spatial quantization error

2-D guantization error. Fig. 2 shows a line with lendthrand

lying at an angle ofy to the horizontal axis. (Note: The figure 1 +o0 1
is not drawn to scalez,, is much smaller thai.,, ande,, is fe,(6g) = m/ feo <tan'y<sin,y€q - T))
— o0

much smaller thad.,,.) If (e,, +L.)/(eq, +Ly) = Lz/L,, the

guantized line is parallel to the original line. In this case, the Jea (r)dr . (3)
length of the quantized linel,,, is L + ¢, cosy + &4, sinvy
as shown in Fig. 2. The 2-D spatial quantized eregy,(= [Il. DISPLACEMENT ERROR

L, — L), is g4, cosy 4 ¢4, siny in this case.

: L . . . In active vision inspection, different sensor settings are
However, if the original line and the quantized line are n

: Used to position the active head to obtain and inspect various
parallel((eq, +Ll‘2)/(5(19 JTLy) i L“JQ/Ly)’ and the erorgq is - yinensions of interest. If the sensor location and orientation
V(Lcosy+eq,)? +(Lsiny +¢,)?— L. Although the lines 50 gifferent from the planned sensor setting (i.e., there is
may not be exactly parallel, they are approximately paraligl,so, gisplacementthe same entities may be observable,

becauser, ande, are very small compared to the length of,;+ 45 4 result of the displacement, the dimensions derived

the line L. Therefore from the image will be inaccurate. The difference between the
£4 = coSYeq, + sin ey, . (1) qbserved dimensions and thg gctuql dimepsions is defined as
displacement errarThe analysis in this section yields a better
Using this geometric approximation, we can compute thénderstanding of dimensional measurement incorporating error
mean and the variance of the 2-D quantization error. The meduie to displacement of the active sensor.
of the quantization error in two dimensions is

Ele,] = Elcosve,, +sinvey,] A. Translati.onal and Orientational Errors
in Perspective Images

= cosyE[e,, | +sinyEle,, ] =0
In active vision inspection, the desired positions and orien-
becauseE|e,, ] and Efe,,] are both zero [34]. The variancetations of the head are provided to the servo control which
of the quantization error in two dimensions is accomplishes the sensor placement task by a sequence of
movements. The horizontal and vertical displacements of the
projected points on the 2-D image are in terms of the six
because the variances ef, ande,, are1/6r2 and1/6r2, oOrientation and translation parameters of the sensor setting, the

Var [e,] & Var [cosvey, +sinve,, ] = £ (cos? yr2 +sin® ’77’2)

respectively. focal length of the sensor, the translational and orientational
errors, and the 3-D coordinates of the model.
B. Probability Density Function of Quantization Error Given the orientation and location of the sensor and the

In this section, we derive the pdf of the 2-D quantizatior(%oordmat?ES of the object, we can compute the projected image
. . . , of the object as
error based on the geometric approximation. The pdf's of the

errors in the horizontal and vertical directions are the following 7 Tow
triangle distributions. Yr Yo
For the z-direction a | = per @ Zw @)
1 1 ) c 1
E€q$+a, e S8 £0 u=zr/c and v=yr/c (5)
faqw (5(11-) = 1 1

- — 0< <r . . .
72 Co0 T Tw = fa =T where [z, 1, 20]* are the coordinates of the object in the

0, otherwise. world coordinate systemu(v) are the projected coordinates
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in the image planep,.. is the matrix for perspective projec-The horizontal and vertical displacement errarg, andeg,,
tion, and @ is the transformation matrix between the worldire shown as (7) and (8), shown at the bottom of the page,

coordinates and the image coordinate system where
1 0 0 0O . . .
01 0 o i Tz 713 fe A =fC1C2 Ay = f((f — C3)C3 - C12)
P — 1] o= 721 To2 T2z 1ty
per = g o 1 —=|[3 = |rsy ra9 7as L. A3 = fC2(C3 - f)
0 0 0 1 0 0 0 0 )\4:f(f—03) )\5:0 )\GIfC].

2

f is the focal length of the sensofy;;]zx3 is the rotation Ar=0 As = (027 = ([ = C3)C3) Ay =—fC1C2
submatrix in terms of the orientation parameters gpf 1 is Ao =fOLS=C3) =0 Aiz=f(f-C3)
the translation submatrix in terms of the translation parametersdiz = fC2 A =0 A5 = —-C2(f — C3)

If the sensor is displaced, the correct coordinates of they,; = C1(f - C3) A7 =0 Ag=0
projected points must be computed with modification of the _ _ _ 2
@ matrix because the rotation and translation parameters arée*’ =0 Ao =f=03 da=(f-C3)
distorted due to displacement. Thus, a matf}k must be

substituted for) in (4) to compensatey’ is in terms of the h Inf(8) lalnd Eﬁ) ;hteh d|splacemtehnt ngrDors alrgz n tzr_mst of
three translational errorsiz, dy, dz, and three orientational € focal fength of the sensor, the s-D world coordinates,

errors, §z,6y, and 6z, and the original translational and(xw,yw,zw), the translation and orientation parameters of the

orientational parameters. The perspective matrix is unchangsee 1Sor, and the translational and orientational errors of the
because its only parametef, is fixed active head dx, dy, dz, 6z, by, 6z]. As a result, for different

3-D points projected onto an image plane, the horizontal and
Q =Q+AQ vertical displacement errors on the image are not the same
=Trans (dy, dy, d.) Rot (z, 6z) Rot, (y, 6y) even if the focal length of the sensor, and the translational
Rot (2,62)Q (©) and _or|entat|onal errors of the mampt_;lator are the same.
T For instance, two points on a 3-D object;; (1, 21) and
where Trans (dz, dy, dz) is a transformation representing &2, %2, 22), may have unequal horizontal displacement errors,
translation bydz, dy, and dz. Rot (z,6z),Rot (y,6y), and €d., andea,,, and unequal vertical displacement errarg,,
Rot (z,8z) are transformations representing a differential r@ndea,.. This implies that the distribution of the displacement

tation about the, , andz directions, respectivelyA is given error for each projected point in an image is unique in spite of
as being generated by the same distribution of translational and

0 —62 6y du orientational errors of the sensor.
bz 0 —éx dy

A=
-6y bz 0 dz
0 0 0 0 B. Probability Density Function of Displacement Errors
As a result, the displaced image coordinates ') are Suppose that the uncertainties in translation and orientation
computed using (4)—(6) and are given as errors are all normal distributed with zero mean [21] such that
f(C1+4 C36y — C26z + dzx) 1 2o 2
g - —(a”/20,)
R - (C3 + C26x — Cléy + dz)’ fala) = \ /27raae ©)
and
_ _J(C2+ Cléz — C36x + dy) whereq represents any one of the translation erebrsdy, dz,
f—=(C3+ C2x — Cléy +dz) or the orientation error&z, 6y, 6z. Normal distributions allow

simple propagation of the errors through linear relationships.
If other distributions are used, more complicated propagation
will be required. The normal distribution is also commonly

used in error propagation for robot manipulators [21]. Since

where C1 = ri1zy + T19%w + T13%0w + t2, C2 = 719124 +
T22Yw + 72320 + ty, ANACB = 73124 + T32Y0 + 73320 + ..
The image coordinateg:, v) without the displacement of the

head are the image coordinate erroes;, andey, are in terms of the
w = fC1 v = fe2 six translation and orientation errors, we compute the pdf of
, .
f-03 f-03 these errors as follows.

[)\1 )\2 )\3 )\4 )\5 )\6 )\7] [(537 (5y 6z dx dy dz 1]T
A5 Al Az Ais Ae Az Aaldz by bz dx dy dz 1]T
As Ao Ao Air Az Az Az Sy Sz dr dy dx 1T ®)
Az Ae Atz As Ae Ao Aalldxr by bz dx dy dz 1]T

eq, =u —u=

(7)

!
€d, =V —v=
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If o = a1 +P202+ -+ Pnan+a Whereg; are all normal If Cov({,x) = 0 or Cov(&,x) = 0,7¢, OF 7¢ IS zero,
distributed with zero mean and independentifer 1,2,.--,n  respectively. In this case, the pdf's of the horizontal and

and « is a constant then is normally distributed with vertical errors of image coordinates are then
— : 2 2 2 2
mean ji, = o and variance o; = g7 0a1+/3 + B0 an' b ) ooy exp 12 2,0 o <
. . . Edy du =" X T /- N du
From (7) and (8), the horizontal and vertical displacement ‘ mg1(ea.) 2g1(ea.) o3
errors, 4. and g4, are rational functions where both the
" v ; . ) NXO—Q /“Lxgd
numerator and the denominator are in terms of three rotational + oz 372 © “ai(e
errors and three translational errors of the active head and a m91(ea.) g1(a,
constant.
Let cerf | —Hx9¢
c : 2g1(¢q,)
€q. =~ and g4 == (10) oco u2 o2
Ly Ty 2 — X _ X 2 €
fcdv (Edv) Whl(edv) eXp 2h1(5dv) €4, + O_)Q(
where ) )
— HxO¢ HxE4d
=1 A2 A3 M A5 s A +——=————exp | —5
V 27rh1(5d )3/2 P 2h (Edu)
clbx by bz dx dy dz 1] v
E=[As Ao Ao A Az Az A corf [ Fx%¢ )
b by bz dx dy dz 1] 2h1(ea, )
x =[5 A6 A7 As A Az Aai] Otherwise
clbx by bz dx dy dz 1] )
fa &d,
As described above, the numerators and the denominator ‘aré 5
normally distributed wher@;c =X =0, 07 = MoZ, + _ ocoxy /1 =78, (- 12 o g2(ea,)?
)\205;; + AjoF, + Mo, + Aod, + A\joi., e = M = 0, 7g1(€q,) 2g1(eq, )\ " o2
= Moj, +Ajos, + Aoop. + Aiod, + Maog, + Msol, 2,2
Nx = )\21 = (f 03) and02 = A508, +M60F, +Ai707. + + —gQ(Ed I exp | =X du
SmceC £, andx are aII in terms of the same translational
and rotational errors, they are dependent on each other. To find |, o.¢ 92(ed. )“x (11)
the pdf ofe4, andeqy,, the correlation coefficients of and O'X\/2 91 €d,)
x, and ¢ and y are used.
Let fEdU (Edv)
.2
g1(ea,) =0 = 2r¢yocoy€a, +avel, oeox\/1—TE . 1 < 2 h2(5dv)2>
g92(€a,) =0 70 T T, mhi(ea,) P\ 2hea) T o3
hi(ea,) =0F — 2re \OyEq,0¢ + 0% Ed ha(eq, iy oe oo [ el
ha(ea,) =0¢ — ¢\ OxEd, - V2rhi(eq, )32 2h(€a,)
If f=C3, and eitherCov ({,x) =0 or Cov (£, x) =0, then ha(e )u
Tex = Iy = 00r e = p1y, = 0, respectively. The pdf of the -erf do /X . (12)
horizontal and vertical errors of image coordinates are then O'X\/Q 91 €d,)
9¢ox - . . .
fea, (€2,) = m 1) Characteristics of the Probability Density Function of
and giied. Displacement Errors:In order to study the effect of the dis-
Oeoy placement errors on active vision inspection, the characteristics
Jea,(a,) = m of their pdf's must be understood. The last section derived

~ the pdf's for the horizontal and vertical errors in the image
If f = C3,p, = 0. The pdfs of the horizontal and verticalcoordinates of a point based on the displacement errors. The

errors of image coordinates are then parameters in these functions are the focal length of the
. \/ﬁ camera,f, and the coordinates of the ideal projection point in
Fou (a)) = ¢x ¢ the camera coordinate systend;1( C2,C3). In this section,
T T wg1(eq,) the sensitivity of the pdf's to those parameters is explored
and through several examples.
oeoy, /1 — 7,52 The pdf’s of the horiz_ontal and vertical displacemeqts errors,
fea, (€a,) ~ (11) and (12), are derived based on the mean, variance, and

whi(ea,) correlation coefficients of the numerator and denominator of
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feq &dy) or fﬂdv(sdv) fedu(edu) or fedv(ﬁdv)

-3 -2 -1 3 Eduor Edy v . &4, or &,
Fig. 3. The pdfs of the displacement errors due to displacement of the
end-effectors in horizontal or vertical directionjssdu (g4, oOF fgdv(edv).
where ¢ = 1.0, 5.0, 10.0, or 20.0g¢; = o = oy = 2.0, and feqfed,) o feafed,)
rex = rex = 05
the errors given in (7) and (8). Both the numerator and
denominator of (7) and (8) are normally distributed. The
means fic, i, i), variances(o?,0?,02), and correlation
coefficients(r¢y, r¢ o) all depend onf,C1,C2,C3, and the
variance of the translational and orientational errors of the
active head. Given the pdf's of the translational and orien-
tational errors of the active head, the focal length, and the e
projection of the model point in the sensor coordinates, one can - L
determine the mean, variance and the correlation coefficients (b)
of the numerator and the denominator. Considering one g 4. The pdfs of the displacement errors affected by the displacement of
these parameters at a time the end-effectors in horizontal or vertical directioffs, (cq, or f-, (€4,
: . (a) wherepry, = 2.0,0 = ¢ = 1.0,0, = 1.0, andr; , = r¢ = 0.0,
) g, e, i 0.2, 0.4, 0.6, 0.8, 0.9, (b) whepe, = 2.0,6 = ¢ = 1.0, = 1.0, and
) 7¢x:Tex re = rey = —0.9,-0.8,-0.6,—0.4,—0.2,0.0.
we will explore and analyze the properties of the pdf of the
horizontal displacement errors. the numerator and denominator measure their dependence. Let
o} = 03, = 0, = 03, ando; = o, = 0, = 0. because
D) pec, pre, and gy the variances of the orientational errors about three orthogonal

Since A, and A, are zero, the means of the numeratdiXis are approximately equal and the variances of the transla-
for the errors,uc and yie, are’ both zero. The mean of thetional errors along each direction are als_o approximately equal.
denominators for the errorsy,, is equal toAy which is 1he covariance of andx and the covariance af andy are

(f — C3)2. 1, increases agf — O3 increases.f is the calculated as

focal length of the camera and3 is the distance between Cov (¢, x) = fC1(f — C3)((fC3 — C1% — C2% — C3?)
the model point and the image plangis based on the lens 0?4+ 0?) (13)
of the sensor and it may be assumed to be fixed, howé&&er, ! ! 9 9 5
depends on the distance between the object and the sensofv (€ x) = fOAf = C3)((fO3 - C1° = C2° = OF)
Thus, 1, increases as the orthogonal distance between the .07 +0']2»). (14)
inspected object and the sensor increases. Fig. 3 shows ik
pdf of the horizontal and vertical displacement errors with
equal to 1.0, 5.0, 10.0, and 20.0. The varianegsg?, o3, are
2.0, and the correlation coefficients; ,,r¢ ,, are 0.5. This

h80v (¢, x) >0, ¢ andy are positively correlated, otherwise,
they are negatively correlated. A similar situation holds &or
and x. Fig. 4(a) and (b) show the effects of the correlation

. .coefficient of the numerator and denominator on the pdf

B horizontal and vertical displacement errors of projected

dehnsny v_alue mcreazes, and Itth(tahshapebofbftlr_le leJ:\rie is n_arr@g/fihts withrc., 7c . varying from—0.9—+0.9, u,, = 2.0, and
whenyi, INCrEases. As a resuft, the probabiiity oTIne projec O’C,O'E,O'Q = 1.0. These figures show that the mode is positive
point on the 2-D image having large horizontal or vertlc% X

displ i q it the | ted obiect is f hen the correlation coefficient is positive and the mode
frlc?raat%eem:enns%rrrors ecreases 1t the inspected object Is tar eﬁegative when the correlation coefficient is negative. The

mode is zero when the correlation coefficient is zero. As the
correlation coefficient increases from zero, the mode increases
and the probability density value of the mode increases.

The distributions of the numeratorg, and £, and the Similarly, as the correlation coefficient decreases from zero,
denominators;y, of the displacement errors are normal anthe mode decreases and the probability density value of the
dependent as discussed in Section IlI-B. The covariancesnodde increases. The absolute value of the probability density

i) 7¢ andre
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value of the mode is minimum when the correlation coefficienf independence between, , andegy, , andey, , andey,,

is zero. Thus, the likelihood of having more positive errors arauses an overestimation of the variance in the errors. The

more negative errors depends on the sigrCof (¢, x) and pdf's of ¢4, and ¢4,, obtained by assuming independence

Cov (¢, x) and the probability of having large errors dependsetweeney, , andegy,,, andeq, , andeq,, are computed

on the absolute value dfov (¢, x) and Cov (&, x). by the convolution of the pdf’'s Ozfd ., and—eq, , andegy,
Since the correlation coefficient is equal to the covarianemd —¢,,_, respectively

between the numerator and denominator divided by the prod- oo

uct of their standard deviations, the sign of the correlation feu, (e4.) :/ f% (q, +T)f% (r)dr and

coefficient and the mode of the pdf depends on the sign of

the covariance between the numerator and the denominator. I3 / Fer (6d, +T)fer, (T)dr (15)

From (13) and (14)Cov (C, x) andCov (£, x) are in terms of =0, (54,) Fduy oy T

f,C1,C2,C3,02, and aj Indeed,Cov ({,x) = Cov (£, x)

when Cl= 02 for all values ofC3. f and C3 are positive

and f is small compared ta’3, therefore,(f — C3) and

(fC3 —C1? — €22 — C3?) are always negative. As a result

if (fC3—C1%2—C2?2 — C3?)0? +0]2 < 0,Cov (¢, x) is an

increasing function of”'1 and is 0 whenC'1 = 0. Similarly,

if (fC3—C12 - 022 — O32)07 + 07 < 0,Cov(£,x) is an

increasing function ofC2 and is 0 whenC2 = 0. (fC3 —

ug ! vy ? vg ?

U27

Althoughegy, , andegy,, , andey, , ande,y,, are notindepen-

dent, the density function obtained by this assumption bounds

the variability of the actual density function and is easy to
mpute.

Similar to the geometric approximation used for the spatial
guantization error, the 2-D displacement errey, in the
dimension of a linear segment with an angle~obetween

. . the segment and the horizontal axis of the image can be
1% - 02 - C3%)o + 0]2» < 0 Is typically true because’s expresged in terms of the horizontal and vertical cgmponents

is much larger thawr; and ;. This analysis shows that the ;" . o )
. . . . of dimensioning errors due to displacement and the angle
probability of large horizontal displacement errors increases

when the horizontal distance between the inspected object and &4 = coseq, +sinvyeq,. (16)
the optical axis of the sensor increases. A similar situation _ o _
holds for the vertical displacement errors. The pdf of the dimensioning error due to the displacement

of the sensor can be expressed in terms of the pdf's of
the component dimensioning error and the anglejn the

C. Displacement Errors in Dimensional Measurement following open form:
The displacement errors in projected points result in errors N 1 e 1
in the measured area of a surface, the measured curvature of an/%(€a) = | cos ] / Jea, | bany ST
arc or the measured length of a line segment. These features ey (T)dr (17)
Ed .

are composed of the projection of the corresponding points
from the 3-D model. In this section, we will investigate th<?3 The Total Error
displacement errors introduced in the dimension measurement
of linear segments. Displacement is independent of the resolution of the sensor
The coordinates of the end- points of a linear segment Wd, Consequently, independent of the quantization error. ThUS,
an image argul,v1) and (u2,42). The length of the line the total inspection errog;, is the sum of the quantization
segment is the distance between the end-points. For fix@dor, e, and the displacement errary
translational and orientational errors of the sensor, the values € =, + ey (18)
of horizontal and vertical displacement errors.df and 2 ’ ¢ '
are not identical; similarly, the displacement errorssdofand The pdf of the quantization error and the displacement error,
v2 are not identical. f=,(gq) @and f. ,(eq), are given in (3) and (17). Based on (18),
Let (u1,v1) correspond to the projection of model pointhe pdf of the total error is computed from the convolution of
(z1,y1,21) and (u2,v2) correspond to the projection ofthe pdf's of the quantization and displacement errors
model point (z2,y2, 22). Using (7) and (8), the horizontal
and vertical displacement errors can be computed. fe (&) / Je (gi = T) fo (7)) dr (19)
The displacement error in the dimension of the line segment
is composed of two components, the horizontal component
€4, and the vertical componenty,. The horizontal com-
ponent, eq,, is equal toey, — eq4,,, and similarly, the
vertical components , is equal toeq, —&q,,. The pdfs of Accuracy in active vision inspection can be improved by
€dy, 1Edy, 1 Ed andsd are givenin (11) and (12). The pdf ofcareful choice of the sensor settings for each inspected di-
€4, andey, can be obtained by integrating the pdf's«f , mension. A sensor setting determines the location and view
andeg,,, and eq, , ande,, _, respectively. The correlationsdirection where an active sensor may be placed to observe one
betweensd uy? and €d., > and €q, , andey,  are investigated or more objects which contain one or more topologic entities
by simulations. The result shows that, , andey,,, andey, , Whose dimensions are to be measured. A sensor arrangement,
andey,, are positively correlated, therefor€pv (eq, ,€4,,) S = {z1,72,---,2,}, hasn sensor settings; to z,,. z; is a
andCov (eq, ,€q,,) are positive. That means, the assumptiosensor setting which is an ordered trite, d;, o;) consisting

IV. PLANNING ACCURACY IN
INSPECTION OFLINEAR DIMENSIONS

ug S dyy

vy ? vy ?
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of a sensor locationy;, a sensor view directioni;, and
a set of observable segments (features)from the given
setting. The same edge segment of a part (model) can be
observed using many sensor settings. Although a dimensional
attribute, such as the width of a slot may be observable from
different sensor settings, the utility of each sensor setting is not
identical. However, because more than one entity (feature) can
be captured on each image, it is usually desirable to perform
several dimensional inspections from a single sensor setting L
in order to minimize the sensing operations and the data
processing. Thus, simplistic techniques based on orthogonal
direction and minimal distance are not viable methods in
this case [11], [23]. Instead, it is necessary to evaluate the
accuracy attainable from the sensor settings, and ensure that
the potential errors in all dimensional measurements from
each setting are acceptable for verification of required (part)
tolerances as indicated in the design. Hence, an analysis of
expected accuracy of dimensional inspections in terms of the
sensor setting parameters and sensor resolution is necessary
in this case.

The inspection accuracy in dimensioning a linear segment Lw
can be defined as

Accuracy=1— % (20)
where L is the image (or projected) length of the segment. (b)

T!’lIS representation _Can be used FO analyze the. _u““ty %E 5. (a) Line of lengthL., is projected onto the camera image plane.
different sensor settings by evaluating the probability for @) The angle between the line and the direction of the camera dsd
dimensioning accuracy to be within a particular tolerante. the translation from the center of the line to the camera in three orthogonal
. iraction ist., t,, andt.. (b) Angle between the line and the direction of the
can b_e fo.und in terms of the :’_;lngle bet\Neen. the segment %E;mcera is3 and the distance from the camera to the center of the line is
the direction of the camera axig, the translational distances
between the camera and the midpoint of the segnign,, ¢.
(wheret,, t, are along the horizontal and vertical image plane
axes, and, is along the sensor view direction), and the model
length of the segment in three dimensioiis, as shown in
Fig. 5(a)

L(vaﬁvtxvtyvtzvf)

wa\/t% cos? 3+ ((f +t.)sinf — t, cos 3)?
(f +1.)2 — 1/4L2 cos? 3 '

(21)

When the camera is pointing at the center of the segment (fo€@l 6. An object with two slots and two steps. The dimension E2 is used
axis meets the midpoint},. andt, are both equal to zero. In ™ the experiment.
this case, the above equation can be simplified to be only in
terms of3, L,,, f, and the distancéd as shown in Fig. 5(b) that the achieved accuracy is within this tolerance range by
A+t f computing Pr {Accuracy > 1 — T'}. For example, if the
. (22) likelihood is greater than a certain thresholdh where 0
(d+ )2+ 1/4L5 cos? < Th < 1, the sensor settin b idered table f
< <1, g may be considered acceptable for
We obtained expressions for the pdf ofin terms of the inspecting the corresponding dimension, and if the probability
sensor and the sensor setting parameters in previous sectiegess, the view direction of the sensor and/or the sensor
With both L and the error pdf expressed in terms of thedecation can be changed [one method for this may be based
parameters, we can compute the likelihood of achievingoam (21) and (22)]. Changing the angte and/or the distance
certain accuracy level from particular sensor settings. Coml-changes the achievable accuracy. As a result, we can
paring the variance of accuracy computed from (20) witinore effectively integrate them in our dimensional inspection
the tolerance specified, we can determine the dimensios#iategy, and better understand their quantitative nature. This
inspection capability for given sensor settings. Thus, givemuld be helpful in determining sensor settings which are better
that the accuracy tolerance is {4I°, 1] where 0< 7' < 1 for capable to dimensionally inspect part (model) attributes with
a dimension to be inspected, we can compute the likelihoaddesired accuracy.

L(Ly,f.d, f) = Ly fsin g
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Fig. 7. (a) imgl acquired by ss1, (b) img2 acquired by ss2, (c) img3 acquired by ss3, (d) img4 acquired by ss4, (c) img5 acquired by ss5, (f) edge map
of imgl, (g) edge map of img2, (h) edge map of img3, (i) edge map of img4, (j) edge map of img5.
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Fig. 8. (a) The pdf of the quantization error for img1, img2, img3, img4 and img5, (b) the pdf of displacement error for ss1, ss2, ss3, ss4, and ss5, (c) the
pdf of the combined error of ss1, ss2, ss3, ss4, and ss5, (d) the accuracy of dimension by ss1, ss2, ss3, ss4, and ss5.

V. EXPERIMENTAL RESULTS appear differently in the image, (the edge segment is shorter
This section describes an experiment to investigate the eff@8Mg1). For ss2 and ss3, the distance between the sensor and

of the choice of sensor setting (sensor orientation and locatidR§ desired entity in ss2 is shorter than in ss3, while ss3 has

on the dimensional inspection accuracy. Given a set of p&ft orthogonal direction of viewH2 is perpendicular to the

dimensions,M, to be inspected, a desirable sensor settinf?tica| axis of ss3). The length of the desired entity in images

ss, in active vision inspection will maximize the cardinality’@M SS2 and ss3 is approximately the same. For ss3, ss4, and
of the subset ofA/ which would be observable and carsSD. the distance betweéi2 and the sensors is approximately
be dimensioned from it. It also provides an acceptably highi® same. However, the object is along the optical axis of
level of dimensioning accuracy for each of the elements #$3. the object is farther away from the optical axis of ss4
this subset. In dealing with different sensor settings, althou#h the horizontal direction of the sensor coordinate system,
some sensor settings may provide observability of a maxinf{}d the object is farther away from the optical axis of ss5 in
set of dimensionS' the (expected) dimensioning accuracy mth horizontal and vertical directions of the sensor coordinate
some dimensions (edge segments) may not be acceptably hi:‘gﬁ.tem. The relative orientation betweg® and the sensors,
In this experiment, the dimensioB2 of the part shown in SS3, ss4, and ss5, are significantly different. The lengthnf
Fig. 6(a) (length of the step) is dimensioned from five differerit these images is approximately the same.
sensor settings. The accuracy of the dimensional inspection&ig. 8(a) shows the pdf of the quantization error. Since the
are analyzed and compared. This analysis clarifies the effgg@ntization error is dependent only on the sensor resolution
of sensor settings on the dimensioning accuracy, and acti@d the orientation of the projected segment in the image, the
vision inspection planning. distributions of the quantization error for ssi, ss2, ss3, ss4,
Fig. 7(a)—(e) shows five of the images (img1l, img2, img3nd ss5 are the same. The pdf's of errors due to displacement
img4, and img5) acquired from the sensor settings 1, 2, 3,f9r ss1, ss2, ss3, ss4, and ss5 are shown in Fig. 8(b). The
and 5 (ss1, ss2, ss3, ss4, and ss5). In each of ss1 and disgensional errors due to displacement are dependent on the
the distance between the desired entity (E2) and the sensglationship of the segment with respect to the image plane
is approximately the same, the relative orientation betweand its coordinate system. Because the relative orientation
the entity and the sensor is also about the same (along HeweenE2 and the sensor coordinate systems of ss1 and
optical axes of the sensors), however, the orientation of the2 is approximately the same, the distribution of the errors
object relative to its center is different, causing the entity tue to displacement for these sensor settings is approximately
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the same as shown in Fig. 8(b). In s982 is farther from view direction, the focal length and the model (part) dimension
the sensor along the optical axis. The distribution of errod the edge segment. Using this approach, we can determine
due to displacement for ss3 is narrower and its peak tise capability for inspecting different dimensions by specific
higher as shown in Fig. 8(b). In ss4 and s#B® is farther sensor settings to ensure that design specifications are satisfied.
away from the optical axes of the sensors, the distributio@ur experimental results suggest that the probabilistic based
of errors due to displacement for ss4 and ss5 are widaodel of uncertainty in measurements gives a close match
and their peaks are lower. Combining the errors due tath real results. This type of analysis should be part of the
guantization and displacement, the pdf of total error for ssdystem design and inspection planning procedures, leading to
ss2, ss3, ss4, and ss5 are shown in Fig. 8(c). Using there accurate inspection.
pdf's in Fig. 8(c), we can compute the expected accuracy for
dimensional inspection from ss1, ss2, and ss3 using (19). The REEERENCES
result of this computation is plotted in Fig. 8(d).
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