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On-Line Adaptive Learning of the
Correlated Continuous Density Hidden
Markov Models for Speech Recognition

Qiang Huo,Member, IEEE,and Chin-Hui Lee Fellow, IEEE

Abstract—We extend our previously proposed quasi-Bayes use, and is incorporated into the system using adaptive learning
adaptive learning framework to cope with the correlated con- algorithm.

tinuous density hidden Markov models (HMM'’s) with Gaussian Recently, Bayesian learning of hidden Markov model
mixture state observation densities in which all mean vectors are '

assumed to be correlated and have a joint prior distribution. A (HMM) parameters has been proposed and adopted in a

successive approximation algorithm is proposed to implement the Number of adaptive speech recognition applications (e.g.,
correlated mean vectors’ updating. As an example, by applying [10], [12]-[14], [20]). A theoretical framework of Bayesian

the method to on-line speaker adaptation application, the algo- |earning was first proposed by Lest al. [20] for estimating
rithm is experimentally shown to be asymptotically convergent as the mean and covariance matrix parameters of a continuous

well as being able to enhance the efficiency and the effectiveness . . . .
of the Bayes learning by taking into account the correlation d€nsity HMM (CDHMM) with a multivariate Gaussian state

information between different model parameters. The technique Observation density. It was then extended to handle all
can be used to cope with the time-varying nature of some acoustic the parameters of a CDHMM with Gaussian mixture state
and environmental variabilities, including mismatches caused by gpservation densities (e.g., [10]) as well as the parameters
changing speakers, channels, transducers, environments, and SOf discrete HMM'’s (DHMM's) and semicontinuous HMM'’s
on. . .

(SCHMM'’s, also calledtied-mixture HMM’s) (e.g., [12]).
_Index Terms—Automatic speech recognition, continuous den- |t was shown that, for HMM-based speech recognition
sity hldQen Markov models,. EM algorithm, recursive Bayesian applications, the maximum a posteriori (MAP) framework
estimation, speaker adaptation. . . .. .

provides an effective way for combining adaptation data and

the prior knowledge, and then creating a set of adaptive

|. INTRODUCTION HMM’s to cope with the new acoustic conditions in the test

N THE LAST decade, many advances have been maded@ta. This approach works in a batch adaptation mode using a
I the area of automatic speech recognition (ASR) (see e]@ig,tory of all the adaptation data. A more attractive adaptation
[26] and other articles in [21]). However, it is also apparerﬁCheme is the so called on-line (or incremental, sequential)
that the performance of a speech recognizer often degra@égptation, which is able to update both the parameters of the
drastically when acoustic mismatch between the testing aRdor and/or posterior distributions (called hyperparameters)
training conditions exists (see reviews, e.g., [9], [17], [22]pnd the HMM parameters themselves simultaneously upon the
Most current recognition systems rely on a static design strafesentation of the latest adaptation data. This scheme makes
egy in that all the knowledge sources needed in a system Hi@ recognition system capable of continuously adapting to
acquired at the design phase and remain fixed during use. Sifit® new adaptation data (possibly derived from actual test
the design samples are often limited and the real conditions dfterances) without the requirement of storing a large set
always changing, this will inevitably result in some mismatcff previously used training data. One such approach, called
problems, and thus deteriorate the recognition performanéglasi-Bayes(QB) learning, was recently developed in [12]
A better way is to acquire the knowledge dynamically. Ne@nd [13] for adapting the mixture coefficients of SCHMM

information is constantly collected during development arRrameters and then extended to incremental adaptive learning
of all of the CDHMM parameters in [14]. Based on the

theory of recursive Bayesian inference, the QB algorithm

_ , _ is designed to incrementally update the hyperparameters
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to include the batch and/or block mode MAP/ML learning athe initial state distributionA(® = [a§g>] is the transition

special cases [14]. probability matrix, and?@ is the parameter vector composed
In the above-mentioned HMM-based Bayesian adaptatigh mixture parameter!? = {w'? m® £©} for statei.

framework, HMM parameters of different speech units arene state observation probability density function (pdf) is

usually assumed independent. Therefore, each model gaQumed to be a mixture of multivariate Gaussian pdf's, as
only be adapted if the corresponding speech unit has bggfows:

observed in the current adaptation data. Consequently, only i

after all units have been observed enough times, all of the (@ X (2) (@) w(2)
HMM parameters can thus be effectively adapted. To enhance px | 0;7) = Y wil N (x [ mi, 2)
the efficiency and the effectiveness of the Bayes adaptive
learning, it is desirable to introdu_ce some constraints Qhere the mixture coefficientsJEZ)'s satisfy the constraint
HMM parameters based on all possible sources of knowled K@ 1 and Nix | m(({),E(?)) is the kth normal
Therefore, all the model parameters can be adjusted at thé&=1"" ) ik 1 ik ) _

same time in a consistent and systematic way even thoUgiture component withr;;” being theD-dimensional mean
some units are not seen in adaptation data. A simple way\@ctor and-(?) being theD x D covariance matrix with itith
achieve the above objective is to introduce the parameter tyigagonal element beingi(,z)Q(d). For notational convenience,
Consequently, the formulation in [14] can be straightforwardiy is assumed that all the state observation pdf's have the same
modified to accommodate the on-line adjustment of the tigdimber of mixture components.

parameters. Another way to achieve the above objective istet A7 = {1, As,---,A,} be n independent sets of

to explicitly consider the correlation of HMM parameterobservation samples that are used to estimate the CDHMM
corresponding to different speech units, and it is this kind garameters\. Our initial knowledge abouf\ is assumed to
approach and strategy on which this work focuses. Howevbg contained in a known joint a priori densityA). Let us

it is too difficult to define a joint prior distribution for all setsassume the sample¥;’s are given successively one by one,
of HMM parameters, if not impossible. A tractable case coulde can obtain (see, e.g., [7]) a recursive expression for the a
be to assume all mean vectors are correlated and have a jpmsteriori pdf ofA, given AT, as

prior distribution [18]. In this paper, we restrict ourselves to el

this special case and extend our QB learning framework to p(A | Xln) _ p(Xn | A) -p(A | A7 ) )

cope with the correlated CDHMM'’s with Gaussian mixture Jop(Xa [ A) -p(A] X7 1) dA

state observation densities in which all mean vectors are as-

sumed to be correlated and have a joint Gaussian distributiéfi€rés2 denotes an admissible region of the CDHMM param-
Considering the difficulties of parameter updating and initi&g{€" SPace. Starting the calculation of posterior pdf fygm),
hyperparameters’ estimation arisen from the introduction BfPeated use of the (2) produces the sequence of densities
correlation between different models, we propose, in thig? | A1), p(A | A7), and so forth. This provides a basis of
paper, a successive approximation algorithm based on pairwfsgking formal recursive Bayesian inference of parameters
correlations to update the mean vectors of CDHMM's as Wéﬂ_owevgr, there are some serious computational difficulties to
as the corresponding hyperparameters. As an example, §€Ctly implement this learning procedure [14]. Consequently,
method is applied to on-line speaker adaptation and its viabilfiyM€ @pproximations are needed in practice.

is confirmed in a series of comparative experiments using an this study, we only consider the case of COHMM's in

26-letter English alphabet vocabulary. which the covariance matrices are specified. We define the

The rest of the paper is organized as follows. After a bri@fArameter vectom to be the collection of the mean vectors
introduction of the concept of the recursive Bayesian inferengl all the Gaussian mixture components of (C)DHMM s and
for CDHMM's, the QB formulation for incremental training denoted simply by an operateecasm = vec{my }- We also
of the correlated CDHMM'’s is presented in Section Il. define another operatdock-diagto denote a block diagonal
successive approximation algorithm is proposed to implemdhgtrix, e.9.,.= = block-diag ={{’}, with each diagonal block
the correlated mean vectors’ updating and the resultant @lement to be also a matrix, e.@,ﬁ,z). Further denote\| =
line adaptation algorithm is described in Section lII. Som@r1§(1>7a§fz>7w§z>)_ Although in principle, any parametric form
important implementation issues are discussed in Section B6uld be adopted for the initial prior pdf &f, a careful choice
In Section V, a series of experimental results along witgf it can lead to a more mathematically tractable solution of the
discussions and analyses for an incremental speaker adaptai@blem. The key is the concept of conjugate prior distribution,
application are reported. Finally, we summarize our findinggd the reader is referred to [3], e.g., for more details on the
in Section VI. idea. It is well known that there exist no natural conjugate
densities for CDHMM because of the nature of the missing-
data problem caused by the underlying hidden processes, i.e.,
the state mixture component label sequence and the state

Consider a collection ot/ CDHMM's A = {A;} _; .., sequence of the Markov chain for an HMM [10], [12], [14].
where \, = (7@, A9 9@) denotes the set of parametersiowever, we still can benefit from assuming our initial prior
of the ¢th N-state CDHMM used to characterize tlgh pdf to have the same parametric form as the conjugate pdf
speech unit, of whichr{®) = [7r§Q),7r§Q), = -,w;@]t represents of the complete-data density as shown in [10], [12], [14] and

1)

k=1

Il. QUASI-BAYES LEARNING OF CORRELATED CDHMM'’ s
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[20]. Similarly here, the initial prior pdf ofA is assumed to be By choosing the initial prior pdf to be the conjugate family
" of the complete-data density, it can be verified that with an ap-
_ / propriate normalization facta®, C - exp{ R(A | A®~Li=1)}
9(A) = g(m) H 9(g) @) belongs to the same distribution family &s), thus is denoted

=t as g(A | ) with the hyperparameterg detailed as the
where following:
W
Al @ 4 [ o A=k (=1 + 14y A7) (8)
9()‘;) > H { [qu)]m ' [ag)]mg Z;‘:l 1 Tl
T - L RSV T DI DI CORNC)
: S ~(a) _ ) (@)
| <H [ 1) @ T =r 0 -+l o
k=1 fi = kE(KZ 4+ UC) 4+ U(k= 4+ CU)'CX (11)
7 — = —1l=
takes the special form of a matrix beta pdf with sets of positive U=U(xE+CU) = (12)
hyperparameters offy{”}, {ni(;?)}, {ui(,f)} [10], [12], [14], and where

g(m) = N'(m | 4, U) 6)  ud) =Pe(s =iy =5 1x0,8) (1)
7" (@) = Pr(s"" =i | x4, A) (14)

has a joint normal pdf with mean vectpr = vec{ugz)} and (am) () - 1) )
covariance matrixU [18]. This class of prior distributions k) = Pr(s™ =i, ;" =k | x99 A) (15)

actually constitutes a conjugate family of the complete-da%d these terms can be computed efficiently by using the

gﬁtr;s“y and is denoted &. In (4), “o” denotes proportion- ¢oyard_hackward algorithm (e.g., [16], [25]). Further
The quasi-Bayes procedure is, at each step of the re- C=b|OCk-diaQ{CEZ) Ipxp} (16)

cursive .Bayes learning, to approximate the trge _po;tenor szec{igz)} (17)

distributionp(A | A7*), by the “closest” tractable distribution

g(A | (™)) within the given classP, under the criterion of with

both distributions having the same (local) mode [14]. Here (@) W, (@r), .

©™ denotes the updated hyperparameters after observing  Cik IZ,:th:l (k) (18)

the samplest,,. More specifically, consider at time instant (@) W, T gy, (@) ; (@)

n, we have a training seft, = {x*"} and our prior Xik IZ,:th:l p (k) T e (19)

knowledge aboutt is approximated by(A | ¢("~V). Here and Ip.p is an identity matrix. Note that for notational

ng”) denotes theth training observation sequence of lengtRimplicity, we've dropped the related subscripts and/or su-

T4 associated with theyth speech unit, and each unitperscripts which indicate the iteration index and training

has Wq(") such observation sequences. ¢t = (&, 2,) sample index. The EM reestimation formulas of the CDHMM

denote the associated complete-data &pd= {s{*", 17"} parameters can thus be derived by taking the modg.bf ¢)

be corresponding missing-data, whe#&" denotes the un- @nd are shown as follows:

T(OW)

observed state sequence alf” is the sequence of the 775@ -1
unobserved mixture component labels corresponding to théi ~— <N [.(0) _ 1
: (@r) . Ej:l (77j )
observation sequence;’”’. Given the set of observation @ W, (ar)
sequence$x'?"} and the above prior pdf(A | 1), we __ k- (m* -1+ Eriﬂ} (@) (20)
can get the approximate MAP estimat&é” of A by repeating Zf;l [ - (m@ 1)+ S W lam) ()]
the following EM steps. @) g
E-step: Compute &Z(;!) — 77“#
(n—1,1-1) (n—1) k= (i — 1)
R(A|A AN =k logg(A ] @ ) . ( (@ 1) n qu e ((LT)(i i)
+ Ellogp(Vn | 4) | 4, AT Y] T =N -~ () Tzlw t:1T<Zi> (a 7,’)‘].
(6) Shmt [ (i = 1)+ 2000 k)]
(21)
where0 < x < 1 is a forgetting factor ané = 1 S0 _
; ; ~a) _ Vik
means that there is no forgetting. Wik = SR @
M-step: Choose Ej:l(l‘/ij - 1)
W, Tlem) ROVE
A(n—l,l) = argmax R(A | A(n—l,l—l)) (7) . K- (Vz(l:]) — 1) + 27,=1 =1 t(!] )('L, k‘)
- K W, (g.7) )y -
A Ej;l [Ii ’ (1/78'1) - 1) + Er:l 31:1 t(q )(IL?])]
wherel =1,2,---, L is the iteration index and, (22)

is the total number of iterations performed. = 4. 23)
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By repeating the above EM iteration, we can get a seriegploit the joint correlation structure of all the mean vectors.
of approximate pdj(A | ¢) whose mode is approaching the~urther suppose that we do not consider the correlation be-
modé of the true posterior pdf tween different dimensional elements of the same mean vector

, _ or two different mean vectors. Actually, the second assumption
p(Xn [ A) - g(A ] 7Y (24) is not necessary and the succeeding formulation can be easily
fQP (Xn | A) - g(A | tn=D)dA extended to cope with the more general cases. We use this
assumption in the following discussion i) for the simplicity

f the description of the algorithm and ii) because we use
his simple formulation in our experiments. With the above
two assumptions, we can simplify the following discussion to
g(A | ™) o exp{R(A | APTLETYY (25) a one-dimensional (1-D) case. So, every time, we only need
to consider a pair of random variableﬁgzzi and m(,qk?d For

and the CDHMM parameter&™) are updated accordingly. notatlonal simplicity, they are denoted, respectivelyragd)
The above forward-backward type procedure can be easily my(d). We assumen;(d) and my(d) have a joint a

extended to a segmental (or Viterbi) one by replacing (13)— (1[§P|or| normal pdf with meangs;(d) and yp(d), variances
with 2

p(A ] &) =

Thus, the hyperparametegs™ are obtained at the last (ac-
tually Lth) EM iteration by using the equations in (8)—(12
to satisfy

u2(d) and v%(d), and covariancep;y (d) - us(d) - up(d),
’Vt(q 1)( j) = 6(3&”’) _ L)é(sgivl) j) (26) where p;;/(d) is the correlation coefficient. We pretend only
@™ _ of (o) . cr = cg,? observations belonging te:; are obtained and no
(@) = 6(s" — 1) (27)  observations foin are available. Given these observations,

Z(Z)/\/( (@) | mEZ),E(q)) it can be shown by using the (11) and (12) that the joint
K w(q)/\/( (g7) |'m () E(q)) posterior pdf ofm(d) andmy (d) is still a normal one with
J=1 Mg the following hyperparameters:

t((l?)(L k) = (47‘)(i),

- 7(d) 7(d)
d crus(d
) ) (o) (a:m)y 5 i i = ROy el T
wheres(®) = (s, 537", - ") is the mostllkelyjstite fir(d) ra2(d) + el (d) pr(d) + T cfuﬁ(d)xl(d)
sequence corresponding to the observation sequefice = (29)
(x4 x{0) . %%y and §(-) denotes the Kronecker cru3(d)
delta function. = ur(d) chl (z1(d) — pur(d))  (30)

: . . : - ko3 (d) + cru3(d)
Theoretically speaking, this completes the basic QB learning 1 1
algorithm of CDHMM's with jointly correlated mean vectors. ;, (. — .. () + crprr (dui(d)ur (d) (@r(d) — pr(d)

We also expect that this approximate recursive MAP estimate ko3(d) + cru3(d)
will converge asymptotically to its ML (maximum likelihood) (31)
batch counterpart as more and more adaptation data become prr(dyup(d) , .
available. However, in practice, it is very difficult to directly = prr(d) + Tud) (per(d) — pr(d)) (32)
manipulate the updating formulas related to correlated mean 2
. o . . -2 o3(d) 2
vectors. The first difficulty comes from the estimation of #7(d) = T () + ¢ ug(d)ul(d) (33)
the covariance matrix of the initial joint prior distribution of é 1 é )
means due to the huge size of matrix. For example, in tqg _ “Ul(d) +erui(d) (1 - pip(d)) 2,(d) (34)
above general formulation, covariance matfik is of size /a;(/w,(d) —i—c;u,(d)) g
M x M matrix M = M - N - K - D). This means we _ (d)
N prr (35)

need at leastM + 1 sets of samples of mean vectors tgrr(d) =

get an estimation of a nonsingular covariance matfixand \/1 +
this is usually impractical, especially for speech applications.

The second difficulty lies in its computational complexityf we define T7(d) = a?(d)/u%(d), the above equations
and memory requirement of algebraic manipulation involvingecome
such a huge-size matrix. Consequently, in practice, some

cru?(d) '
29D (1 g3,(a)

simplifying assumptions should be attempted to make theg;(d) = m’(d) pr(d) + +ff(d) (36)
algorithm useful. We provide one such solution in next section. () +e’ o rrr(d) +cr
= /u(d) + — o (@1(d) — pr(d)) (37)
Iﬁ;T[(d) +cr
lIl. SUCCESSIVE APPROXIMATION "
BASED ON PAIRWISE CORRELATION fip (d) = pp (d) + prov(d) OI'((d)
or

A. Algorithm o y 77(d) cr (@r(d) — pr(d)) (38)

Suppose that we only have the knowledge of pairwise 7p(d) wrr(d) +cr

correlations between different mean vectors instead of trying to o(d) [11(d)
I T -
1strictly speaking, EM algorithm [4] can only guarantee the mode of the = pr(d) + prr(d) or(d) \ 7 (d) (r(d) — pr(d))
approximate pdf to approach a local maximum of the above true posterior

pdf. (39)
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1. Estimate initial hyperparameters (details given in the next section). Set up (initial) top K

prediction tables (explained in the following section).
2. Receive (an) utterance(s) to be recognized.
3. Do acoustic normalization/equalization as required.
4. Do recognition and record results.

5. Do supervised (if permitted) or unsupervised incremental adaptation as follows:

o in case of changeable top K tables, update them based on current correlation coefficients;

otherwise, skip this step.
e do EM-iterations as follows:

- initialize hyperparameters to be the latest history ones.
- for those speech unit having observation data
o update state transition matrices.
o update mixture coefficients.
- update mean vectors with successive approximation algorithm as follows:
o reset temporary hyperparameters.
o choose a mixture component “I” having observation data but not processed

* identify top K mixture components “I’”’s most correlated to mixture com-
ponent /
* for each mixture component I’, update its temporary hyperparameters as in
equations (31), (34) and (35).
* update temporary hyperparameters for mixture component I as in equations
(30) and (33)
o if all the mixture components having observation data have been processed, go

to next substep; otherwise, go back to previous substep.

o update all mean vectors and exit the successive approximation algorithm.

e update all hyperparameters.

6. Go to Step 2.

Fig. 1. On-line adaptation algorithm for correlated CDHMM's.

71(d) = k1 (d) + ¢r (40) Gaussian pdf's in which those mean vectors are assumed
. k(kTr(d) + cr) to have a joint Gaussian prior distribution. They applied
7r(d) = wrr(d) + er(1— pgl,(d))ﬁ’(d) (41) the EMAP method to the dynamic speaker adaptation in a
prr(d) feature-based isolated word recognition application [32]. To
prr(d) = . (42) avoid the difficulty of the initial hyperparameters estimation,
\/1 t @ (1= pin(d)) a classifier with a decision-tree structure is adopted. At each

node of the decision tree, the utterance is classified into a small
By successively changing the role of the mixture componentimber of decision categories, based on a relatively small
and repeating the above steps, we can approximately approaGtber of features that are relevant to the classification in
the updating of the hyperparameters in the (11) and (12). Waestion. Consequently, every time, they only make use of the
then naturally come up with the on-line adaptation algorithgyre|ation information among a small number of classes for
for correlated CDHMM's as shown in Fig. 1. adaptation and thus can afford the memory requirement and the

computational complexity of the related algebraic operations.
B. Discussion To avoid the repeated inversion of a big matrix in the standard

Now, we are ready to compare our approach to other relatef!AP implementation for dynamic speaker adaptation, later,
methods in the literature. In the speech and pattern recognitirihe context of SCHMM, Rozzi and Stern developed a least
area, to our knowledge, it was Lasry and Stern that firgiean square (LMS) algorithm to implement the correlated
proposed a formulation of the MAP estimate (called extend@&teans adaptation, which is supposed to be more computa-
MAP, or EMAP) in [18] for the mean vectors of a set otionally efficient, but at the expense of a finite misadjustment
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[28]. On the other hand, the initial hyperparameters estimatisense of global mapping. The basic idea of both types of
problem still exists. More recently, Zavaliagkesal. applied methods is to bind HMM parameters together (via correlation
EMAP into a large scale CDHMM-based speech recogniti@iructure in our case and some shared transformations among
systems [36], [37]. With a similar motivation as in [18] andlifferent model parameters in the latter case), and then to
[32], they adopted a hierarchical class tying technique to easdjust them globally in a consistent and systematic way. For
the above-mentioned difficulties of the EMAP implementatiorithe transformation-based approaches, in order to achieve a
In this study, we integrate EMAP into our quasi-Bayes learniragtter asymptotic convergence, one has to either dynamically
framework and propose the above successive approximatinorease the number of shared transformations according to
algorithm to ease the implementation. The algorithm does rtbe amount of available adaptation data (e.g., [23]) or just
involve any big matrix operation, thus becomes very compuembined with the Bayesian approach (e.g., [6]), both in a
tationally efficient. On the other hand, even if we can haveeuristic way.
an initial estimate of a nonsingular mat¥, the successive From above discussions, we can see that the Bayesian learn-
approximation algorithm cannot guarantee its nonsingulariityg procedure suggested in this study has a more consistent
after each iteration. However, because the implementatifttimulation as well as an intuitively pleasing behavior (an
of the algorithm does not rely on the assumption of thienproved adaptation efficiency for short adaptation data and a
nonsingularity of the matrisU, this in turn eases the problemgood asymptotic property for increasing number of adaptation
of the initial hyperparameters’ estimation, as discussed in ttlata). By activating the forgetting mechanism, the algorithm
next section. can also be used to cope with the continuously changing
We can also set up the links between our approach aoahditions [14]. In the following sections, we will show by
two other techniques, namely MAP/VFS (e.g., [11], [24]a series of experiments that the proposed algorithm does work
[33]-[35]) and regression-based model prediction (RMRNd converge to a reasonable solution in terms of improving
methods (e.qg., [1], [2], [8]). It is easy to verify that the (32) ispeech recognition rate. Before that, in next section, some
very similar to the so-called interpolation step in MAP/VF$mportant implementation issues will be first discussed.
method [33], [34] except that i) we use a different weighting
coefficient, and ii) every time, we only use the information
from one mixture component to predict the mean vector of the
mixture component without observations. But in our approach,
by successively changing the role of the mixture componen#s, Initial Hyperparameter Estimation

we can achieve the similar effects as those of both interpolationpe yse a modified method of moment to estimate the initial
and smoothing steps in MAP/VFS formulation. Furthermorgorrelation coefficients!? (d) as in (43), shown at the bottom
by updating the correlation coefficient as in (35), the algorithigy o page, whereng) is the ith set of mean vectors;()

can autonomously control the importance of the correlatioQ o corresponding “EM count,” and; is the average of
information and thus make the estimations of the mean vectorsm),S In the following speaker adaptation (SA) experiments,

of CDHMM asymptotically converge to their MAP or ML we use speaker-independent (Sl) trained parameters to replace
estimates without considering correlation. On the other hand )
m7y, andm;’ correspond to the parameters estimated from

in MAP/VES case, to avoid early saturation of the adaptatloqh speaker or speaker group [12]. Apart from correlation

some heuristic methods have to be employed [35]. We can
oefficients, other initial hyperparameters are estimated as
also view (32) as a simple linear regression function Wlt?‘l

one explanatory variablg;(d) and the adaptive regression Ollows (for a detailed discussion, see [14]):

IV. IMPLEMENTATION ISSUES

coefficients. Once again, by successive approximation, we can (o) e (SI)(,~) (44)
achieve the similar effect as that of RMP in [1] and [2].

We also wish to draw the reader’s attention to the work of 771(,0) =l+er- Z ¥ i, (45)
Shahshahani [30], who has a very similar motivation to our ( )14 Z (SI) (46)
work in the sense of exploiting model correlations for efficient bk
Bayesian adaptation where a Gibbs distribution is adopted to <0) - m(SD (47)
serve as the joint prior pdf of the mean vectors of the all
CDHMM'’s. However, in that work, only conventional batch Uf;gg) = %SD [ Z (SI) 4 } (48)
mode adaptation is formulated and it is very difficult to extend
this method for a true on-line adaptive learning. where 0 < ¢; < 1 is a weighting coefficient to control

In the context of efficient adaptation, our method alsthe importance of the prior knowledge or to balance the
shares the similarity with another type of transformatiorcontribution between the SlI training data and the adaptation
based adaptation methods (e.g., [5], [23]) in a more genedalta.

o >, (m ?)(d)—mz(d)) <"><m§9<d>—m<d>)
prr(d (Z)Q @) _ (Z)Q _ 2
¢2 o} ) S 2 () (d) — ()

(43)
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B. TopX Prediction and Possible Constraints speakers were used in this study. Each person uttered each

For each mixture component having observation data, W& the letters 26 times. Ten of them were collected in the
only use its observed information to predict otiémixture S@Me session. The remaining 16 tokens were collected in eight
components which have the highest tép values based different sessions in which two tokens of each letter were

on, among many possibilities, the following two betweerollected in each session. For each person and each letter,
component correlation measures [1], [2]: we divide equally those 16 tokens collected in eight different

L sessions into two parts, one for adaptive training, another for
= , testing.
pil Dz:d=1|pH @) (49) For all the experiments, each letter in the vocabulary was

modeled by a single left-to-right five-state CDHMM with
Prr = o /iZD P2, (d). (50) arbitrary state skipping. Each state had four Gaussian mixture
D &d=1 components with each component having a diagonal covari-

In the following experiments, we only consider the correlatioRNC€ matrix. Each feature vector used in this study consisted
of mixture components between different speech units. If v 12 bandpass-liftered LPC-derived cepstral coefficients with
allow the correlations between the mixture components of tRe30 ms frame length and a 10 ms frame shift [19]. Although
same state, or neighboring states, this will have the similjere are other alternatives (e.g., [29]), only utterance-based
effects of Zhao's so-called context-modulation [38]. We do né€Pstral mean subtraction (CMS) was applied for acoustic
use the correlation between the mixture components belongltymalization. In recognition, the decision rule determined
to the same basic unit to avoid oversmoothing. Based 8 recognized letter as the one which attained the highest
these constraints, we can set up a toprediction table for forward-backward probability.
each mixture component. These tables can be either fixedn the following sections, we study the convergence property
during on-line adaptation or dynamically changed based 6h the algorithm, the effects of tof prediction, the effects
the updated correlation coefficients. Further constraints c@hdifferent initial hyperparameters estimations, the effects of
also be applied to limit the correlated mixture component§ifferent number of EM iterations, and finally the comparison
domain based on some acoustic-phonetic knowledge (e.g., op@fween forward-backward and segmental QB learning. Ex-
consider the correlation between different speech units wiggPt explicitly stated, in most of the experiments, we use the
a similar acoustic nature) and/or some data-driven clusterifjlowing default setup:

results. We will not further investigate these engineering issuesy) injtial hyperparameterg " (d)'s estimated from 150

or

here and leave them for future study. sets of speaker-dependent (SD) models;
2) between-component correlation measure in (49);
V. SPEAKER ADAPTATION EXPERIMENTS 3) forward-backward type QB procedure;
4) three EM iterations for on-line adaptation;
A. Experimental Setup 5) fixed top K prediction tables.

To examine its viability, the proposed algorithm is applied to All of the experiments were performed in a supervised mode
on-line speaker adaptation. We report on a series of recognit®td no forgetting mechanism is activated.
experiments using a vocabulary of the 26-letter English alpha-
bet. Two severely mismatched speech data bases were use
for evaluating the adaptation algorithm. These two corpora, theStarting with a set of Sl initial models, we present training
OGI ISOLET and the T146, were recorded at two separate sit@kens for each letter cyclically and perform utterance-based
with a time gap of ten years. The speech data were digitizédpervised on-line adaptation (OLA). After each OLA step,
at sampling rates of 16 KHz with 16-b quantization and 12\8e test the recognizer on a separate testing set to measure
KHz with 12-b quantization, respectively. The ISOLET corputhe performance changes. We plot in Fig. 2(a) and (b) the
was recorded with a Sennheiser HMD 224 close-talking noigeerformance (word accuracy in %) comparison of two OLA
cancelling microphone and the TI46 corpus was recordeétups, averaged over 12 speakers, as a function of total
with an Electro-Voice RE-16 cardoid dynamic microphonsumber of adaptation tokens per speaker. In these figures,
positioned two inches from the speaker’'s mouth. They havecor” stands for the OLA experiment without considering
therefore, very different acoustic characteristics. The speewbrrelation between mixture components. “inil50-top8” refers
data in the two corpora are lowpass-filtered at 3.3 KHz arid the case of considering top eight mixture components pre-
downsampled to 8 KHz so that, hopefully, they will becomdiction. “SD” refers to the recognition performance averaged
more compatible to each other. For Sl training and initial priarver 12 speakers by using SD models trained from eight
density estimation, the OGI ISOLET data base was used.allaptation tokens per letter for each speaker. Fig. 2(a) shows
consists of 150 speakers (75 females and 75 males), etuh fast adaptation effects while Fig. 2(b) checks the asymp-
speaking each of the letters twice. For incremental spealtetic property of the algorithm. The experimental results show
adaptive training and testing, the English alphabet subsettbét the proposed algorithm improves the OLA performance
the TI46 isolated word corpus was used. It was produced fwyther by considering the correlation information and also
16 speakers (eight females and eight males). Among themas a good asymptotic convergence behavior. In the particular
data from four males were incomplete. Therefore, only 1&periments here, the results show that the SA performance

gonvergence Property
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Performance comparison averaged over 12 speakers

TABLE |
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80 R = PERFORMANCE (WORD ACCURACY IN %) COMPARISON AVERAGED OVER 12
————— S— SPEAKERS AS A FUNCTION OF TOTAL NUMBER OF ADAPTATION TOKENS PER
75 { SPEAKER BY USING DIFFERENT BETWEEN-COMPONENT CORRELATION MEASURES
. FOR TorP K PREDICTION TABLE SETUP (THREE EM ITERATIONS, K = 8)
o L 4
; 0 total number of | on-line adaptation methods
e
S oest g 4 adaptation tokens | abs sqr ncor
[=
S N 0 51.10 | 51.10 51.10
2 60 inil50-top8 — 1
& ) neor = 5 59.84 | 59.80 54.31
o]
§ 55 1 1 10 63.28 | 63.89 58.48
50 B J 15 69.70 | 69.50 64.01
20 73.51 | 73.59 67.90
Y S e S S S N SO S S T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 26 78.84 | 78.48 77.19
total number of adaptation utterances per speaker
52 84.53 | 84.65 82.76
(@
) 78 87.78 | 86.86 85.73
Performance compariscn averaged over 12 speakers
94 T T T T T T T 104 88.38 | 88.30 87.25
130 89.78 | 89.34 88.58
156 90.94 | 90.54 89.70
182 91.18 | 90.86 89.50
208 91.10 | 90.66 90.14

recognition rate (%)

other hand, when more adaptation data become available, we
should rely less on the correlation information (a smakigr

and thus a better asymptotic convergence is expected. The
78 b . results shown in Fig. 3 confirmed this expectation. So, in
practice, to achieve a better performance, a possible strategy
total numbes of adastation oeterances per. ooeaker could bg to dynamicall_y redefine and/or to shrink (e.g., via
®) decreas_lng thél) th_e neighborhood _vvhlle the number of total
adaptation tokens increases. We will not go further here about
Fig. 2. Performance (\_/vord accuracy in %) comparison as a'function ﬂfb latter and leave this for future research.
total number of adaptation tokens per speaker. (a) Fast adaptation effect. ( ?I' . . . .
Asymptotic convergence property (three EM iterations, SD recognition rate 10 €xamine the effect of the dynamically defined neigh-
is 92.3%). borhood, we report in Table Il the performance comparison
between fixed (denoted as “fix”) and dynamically defined
denoted as “dynamic”) neighborhood methods. The fixed-
eighborhood method means that the #opprediction table
is derived from the initial correlation coefficients and will
o be fixed during the adaptation process, albeit the correlation
C. Effects of TopC Prediction coefficients are updated. On the other hand, in the dynamically
We will examine experimentally three issues related tefined neighborhood method, we will dynamically update the
top K prediction, namely how to define the neighborhoodop /C prediction table based on the updated correlation coeffi-
how to choose the size (value &) of the neighborhood, cients. Our experimental results show that the former achieves
and finally fixed versus dynamically defined neighborhood. better asymptotic performance. This is not surprising when
In Section IV, we discussed two methods for deriving #6p the following fact is considered. In our simple method to
prediction table. In Table |, we compare the OLA performanagpdate the neighborhood, we rely on the updated correlation
by using those two between-component correlation measuresefficients whose values will decrease while more adaptation
The experimental results show that the measure in (49) [@ta become available and this might lead to a less meaningful
(denoted as “abs”) performs slightly better than the one in (58hd unreliable neighborhood definition. On the other hand,
[1] (denoted as “sqr”) in our specific experimental conditionwe can get a more stable or robust result to use the initial
here. So, in the remaining experiments, we use the figtrrelation coefficients to define the neighborhood. However,
measure. we expect that a better strategy to dynamically define the
In Figs. 3(a) and (b), we compare the effects of differént neighborhood will eventually be helpful to enhance the OLA
on the OLA performance improvement. Intuitively, with lesperformance.
adaptation data, it will be helpful to rely more on correlation The above topX prediction related issues are important
information (a biggerK) to enhance the OLA effect. On thefor efficient on-line adaptation. As a first step, we only use

76 1 2 2 1 I I 1
52 78 104 130 156 182 208

is inferior to the SD performance when enough SD trainin
tokens are available (here eight tokens per letter).
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Performance comparison averaged over 12 speakers TABLE 1l
85 vy r v r r v T rrr T PeRFORMANCE (WORD ACCURACY IN %) COMPARISON AVERAGED
OVER 12 SPEAKERS AS AFUNCTION OF TOTAL NUMBER OF ADAPTATION
80 I TOKENS PERSPEAKER BETWEEN FIXED AND DYNAMICALLY DEFINED
Topr K PrepicTION TABLES (THREE EM ITERATIONS, K = 8)
= 75}
; total number of | on-line adaptation methods
2 70 F
it adaptation tokens | fix | dynamic ncor
2 | d
Sl T 0 51.10 | 51.10 51.10
£ 60 ini150-topls — 5 59.84 | 59.92 | 54.31
8 inil50-top8
3 ss ST el ] 10 63.28 | 6292 | 5848
" neer | 15 69.70 | 69.70 64.01
20 73.51 73.75 67.90
45 1 1 1 1 1 1 1 1 3 L 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
total number of adaptation utterances per speaker 26 78.84 78.12 7719
52 84.53 | 83.49 82.76
@
) 78 87.78 [ 86.85 85.73
Performance comparison averaged over 12 speakers
92 " T T T T e 104 88.38 | 87.81 87.25
s0 | o S 130 89.78 | 89.10 88.58
s es} ] 156 90.94 | 89.98 89.70
® 182 91.18 | 90.66 89.50
s 86 A g
H inils0-toplé —- 208 91.10 | 91.02 90.14
5 +n}150—top8 ------ J
- inil50-top4 -
8 ini150-top2 -
g ncor === 1 . L . - -
S (possibly poor estimations due to the insufficient training data)
& 1 are used for hyperparameters estimation in (43). “ini16” refers
| to the case in which we first cluster 150 speakers into 16
groups [12], then train a set of CDHMM's for each speaker
76 . . L L . . : group, and finally use these 16 sets of models (supposedly
52 78 104 130 156 182 208 . . L
total number of adaptation utterances per speaker better estimations due to more training data for each model) for
(b) hyperparameters estimation in (43). Although only two tokens

. . _ _ for each letter are available in the former case, because we are
Fig. 3. Performance (word accuracy in %) comparison as a function of total

number of adaptation tokens per speaker by using different valuédaftop USing_“EM count” as a Weighti_r?g coefficient to aummatica”y
K prediction. (a) Fast adaptation effect. (b) Asymptotic convergence propetgke into account the reliability of the HMM parameters

(three EM iterations). estimation, we are getting better results by using more samples
(albeit possibly a poor estimation for each sample) in the

the pure data-driven method and very simple constrainfgoment estimate of the correlation coefficients.

We expect that discovering an appropriate acoustic space

configuration and a good definition of an appropriate corr& Effects of Different Number of EM Iterations

lation structure among states and/or phones could be helpfuln Table IV, we compare the effects of different number of
for enhancing the efficiency of the OLA of the correlate@M iterations on the OLA performance improvement. “3-EM”
CDHMM's. It will be interesting to see how it works by stands for the case where three EM iterations are performed for
combining our approach with other techniques such as tregich OLA step, and similarly, “2-EM” and “1-EM” correspond
structured Gaussians to explore acoustic space structure (@gthe cases of two and one EM iterations respectively. We
[31]), phone-dependence tree to explore phonetic dependefisiynd that there is no big difference of the performance by
structure (e.g., [27]), and their combination (e.g., [15]). Wgerforming different number of EM iterations.

believe this is an area that deserves a further research from

both a theoretical and a practical point of view. F. Forward-Backward versus Segmental QB Learning

In Table V, we compare the effects of forward-backward
type and segmental type QB learning on the OLA perfor-

In Table Ill, we compare the effects of different estimamance improvement. “fb” stands for the case where forward-
tions of hyperparameter/sg),(d)’s on the OLA performance backward QB algorithm is used and three EM iterations
improvement. We report the results on two cases of hypare performed for OLA, and “seqg” refers to its segmental
parameters estimation where fixed tgpprediction tables are counterpart. We found that there is no big difference of the
used. “inil50” stands for the case in which a set of CDHMM’'performance between these two procedures. The similar fact
are trained for each speaker, and these 150 sets of SD moitelslso observed in cases with fewer EM iterations (one

D. Effects of Different Initial Hyperparameters Estimations
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TABLE I TABLE V
PERFORMANCE (WORD ACCURACY IN %) COMPARISON AVERAGED OVER 12 PERFORMANCE (WORD ACCURACY IN %) COMPARISON AVERAGED
SPEAKERS AS A FUNCTION OF TOTAL NUMBER OF ADAPTATION OVER 12 SPEAKERS AS AFUNCTION OF TOTAL NUMBER OF
TOKENS PERSPEAKER BY USING DIFFERENT ESTIMATIONS OF ADAPTATION TOKENS PERSPEAKER BETWEEN FORWARD-BACKWARD
HYPERPARAMETERSPJ(},(d)'s (3 EM ITERATIONS, K = 8) AND SEGMENTAL QB LEARNING (THREE EM ITERATIONS, K = 8)
total number of | on-line adaptation methods total number of | on-line adaptation methods
adaptation tokens | ini150 | inil6 ncor adaptation tokens | fb seg ncor
0 51.10 | 51.10 51.10 0 51.10 | 51.10 51.10
5 59.84 | 56.71 5431 5 59.84 | 59.56 54.31
10 63.28 | 59.76 58.48 10 63.28 | 63.08 58.48
15 69.70 | 65.49 64.01 15 69.70 | 69.26 64.01
20 73.51 | 70.30 67.90 20 73.51 | 73.63 67.90
26 78.84 | 78.64 77.19 26 78.84 | 78.84 77.19
52 84.53 | 84.33 82.76 52 84.53 | 84.85 82.76
78 87.78 | 86.85 85.73 78 87.78 | 87.86 85.73
104 88.38 | 88.38 87.25 104 88.38 | 89.02 87.25
130 89.78 | 89.30 88.58 130 89.78 | 89.94 88.58
156 90.94 | 90.70 89.70 156 90.94 | 90.98 89.70
182 91.18 | 90.98 89.50 182 91.18 | 90.94 89.50
208 91.10 | 91.34 90.14 208 91.10 | 91.26 90.14
TABLE IV . . . . .
PERFORMANCE (WORD ACCURACY IN %) COMPARISON AVERAGED each OLA step will provide a satisfactory solution in most of
OVER 12 SPEAKERS AS AFUNCTION OF TOTAL NUMBER OF ADAPTATION the cases.

TOKENS PER SPEAKER BY PERFORMING DIFFERENT NUMBER OF

EM ITERATIONS DURING ON-LINE ADAPTATION (K = 8) VI. DISCUSSION AND CONCLUSION

total number of | on-line adaptation methods In this paper, we extend our previously proposed on-
adaptation tokens | 3-EM | 2EM | 1-EM | ncor line quasi-Bayes adaptive learning framework to handle the
0 51.10 | 51.10 | 51.10 | 51.10 correlated CDHMM parameters in which all mean vectors
p 59.84 | 60.04 | 50.50 | 52.31 are as_sur.ned. to be correla.ted and hgve_a joint Qausgan
prior distribution. A successive approximation algorithm is
10 63.28 | 63.60 | 64.09 | 58.48 proposed to implement the correlated mean vectors’ updat-
15 69.70 | 69.46 | 70.06 | 64.01 ing. To examine the viability of the proposed algorithm,
20 73.51 | 73.39 | 73.35 | 67.90 the QB_Iearning_ fra_mewor_k is applied to an on—I_ine speaker
adaptation application using the 26-letter English alphabet
26 78.84 | 78.96 | 78.32 | 77.19 vocabulary. In a series of comparative experiments, we stud-
52 84.53 | 84.77 | 84.81 | 82.76 ied the convergence property of the algorithm, the effects
78 87.78 | 87.97 | 87.22 | 85.73 of top K prediction, the effects of different initial hyper-
104 8538 | 89.06 | 83.94 | 87.95 para-mete.rs estimatipns, the effects pf different number of
EM iterations, and finally the comparison between forward-
130 89.78 | 90.22 | 90.26 | 88.58 backward and segmental QB learning. We have found the
156 90.94 | 91.06 | 90.82 | 89.70 following.
182 91.18 | 91.26 | 91.02 | 89.50 * The proposed QB and its successive approximation learn-
208 91.10 | 91.34 | 91.38 | 90.14 ing algorithm is capable of enhancing the efficiency

and the effectiveness of the Bayes learning by taking
into account the correlation information between different

i , , ) i models as well as having a good asymptotic convergence
and two). The observations in this and previous subsections papavior.

are especially meaningful for real-time implementation of , A good definition of correlation neighborhood and an
the proposed algorithm in real applications. We can thus appropriate choice of the size of the neighborhood is a
suggest with certain confidence that in applications where key for improving the efficacy of on-line adaptation.
computational complexity is one of the main concerns, thes A good initial prior distribution is crucial for improving
segmental QB learning procedure with one EM iteration for the efficacy of on-line adaptation. Specifically, in method
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of moment estimate, more samples will be helpful for3]
initial correlation coefficients estimation.

The segmental QB learning with one EM iteration fofyy
each OLA step is a good engineering comprise between
computational complexity and the performance degrada-
tion. [15]
are also working in the following areas:

development of techniques to make the current QB Iear[r}-6]
ing framework work equally well under unsupervised
mode; (7]
examining the on-line stochastic acoustic normalizatiofyg;
techniques and their combinations with the on-line model
adaptation; [
formulation and development of the appropriate math
ematical tools for a good intrinsic structural model of
speech in acoustic, phonetic, and linguistic aspects, whiéd!
is believed to be crucial for efficient adaptation;
investigation of new robust decision strategies and thd#l]
combinations with the on-line model adaptation to furthe[EZ]
enhance the on-line recognition performance.

19]

Our ultimate goal will be to easily adapt a set of general

models to new task, new speaker and new environment.

(23]

[24]
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