-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

An optimal algorithm for global termination detection in shared-

it memory asynchronous multiprocessor systems

Author(s) Leung, HF; Ting, HF

Citation leee Transactions On Parallel And Distributed Systems, 1997, v.
8n.5, p. 538-543

Issued Date | 1997

URL http://hdl.handle.net/10722/43635

Rights Creative Commons: Attribution 3.0 Hong Kong License

https://core.ac.uk/display/37882926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

538

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 5, MAY 1997

An Optimal Algorithm for Global Termination
Detection in Shared-Memory Asynchronous
Multiprocessor Systems

Ho-fung Leung and Hing-fung Ting, Member, IEEE

Abstract —In the literature, the problem of global termination detection in parallel systems is usually solved by message passing. In
shared-memory systems, this problem can also be solved by using exclusively accessible variables with locking mechanisms. In this
paper, we present an algorithm that solves the problem of global termination detection in shared-memory asynchronous
multiprocessor systems without using locking. We assume a reasonable computation model in which concurrent reading does not
require locking and concurrent writing different values without locking results in an arbitrary one of the values being actually written.
For a system of n processors, the algorithm allocates a working space of 2n + 1 bits. The worst case time complexity of the
algorithmis n + 24/n + 1, which we prove is the lower bound under a reasonable model of computation.

Index Terms —Termination detect, shared-memory multiprocessor systems, optimality.

1 INTRODUCTION

ONSIDER a system of asynchronous processors which
C communicate through shared-memory. In such a system,
the processors cooperate to perform a task. A processor can
send jobs to other processors at any time. Global termination of
an execution refers to a situation in which all processors are
either sleeping or about to sleep, and there is no job in the
system. The detection of global termination of execution in
such systems is nontrivial. Jobs could be sent when the termi-
nation detection algorithm is being executed. It is possible that
global termination is wrongly reported if the algorithm is not
designed to cater for all possible event sequences.

In the literature, global termination detection is achieved by
message or token passing [1], [2], [3], [4], [5]. While these
schemes are suitable for distributed systems, they incur over-
head in shared-memory systems, in which message or token
passing is not necessarily the most efficient means of infor-
mation exchange among the processors. For shared-memory
systems, a scheme for termination detection may depend on
one or more exclusively accessible variables [6], [7], [8]. An
example of such a scheme can be found in Crammond’s paper
[9], in which a garbage collection algorithm for an asyn-
chronous multiprocessor system is described. In the system,
each processor manages some private memory cells. A mem-
ory cell is considered to be garbage if it is not accessed by any
processor. The garbage collection algorithm consists of two
phases. In the first phase, nongarbage cells are marked. In the
second phase, garbage cells are collected. Note that if a non-

e H. Leung is with the Department of Computer Science and Engineering, the
Chinese University of Hong Kong, Shatin, Hong Kong.
E-mail: Ihf@cse.cuhk.edu.hk.

* H. Ting is with the Department of Computer Science, the University of
Hong Kong, Pokfulam, Hong Kong. E-mail: hfting@cs.hku.hk.

Manuscript received Nov. 23, 1994.
For information on obtaining reprints of this article, please send e-mail to:
transpds@computer.org, and reference IEEECS Log Number D95271.

garbage cell contains a pointer, then the cell(s) pointed to
should also be marked. If the pointer points to another proces-
sor’s private memory, then that other processor should be in-
formed to mark the cell(s) pointed to. Effectively, job is sent
from a processor to another. The marking phase terminates
when all the nongarbage cells are marked. Hence, a mecha-
nism is needed to detect the completion of the first phase so
that the second phase can start. To detect the termination of
the marking phase, the algorithm explicitly makes use of a
single global variable (called “a global counter of indirect
pointers to mark”). This global counter is initialized to zero.
Every time a processor sends job to another processor, this
global counter is increased. Similarly, a processor decreases
the value of the global counter when it finishes a job received
from other processors. Termination is detected if every proc-
essor stops and the value of this global counter returns to zero.
Obviously, frequent locking of this global counter is needed.
This reduces the efficiency of the system as a processor needs
to wait for the lock to be released.

In this paper, we present an algorithm for global termina-
tion detection in shared-memory asynchronous multiprocessor
systems. An important feature of the algorithm is that it re-
quires no locking at all. The memory model we use is a con-
current-read concurrent-write (CRCW) model. In other words,
we make the following assumptions on the shared-memory
architecture: The value of a variable can be read simultane-
ously by more than one processor without having to be locked
first, and if more than one processor simultaneously write
(possibly different) values to a variable, then the actual value
written would be one arbitrarily chosen from these values. For
a system of n processors, the algorithm needs 2n + 1 bits as its
working space. Global termination can be detected with a
worst case time complexity of n + 24/n + 1. We note that a
possible hardware solution to this problem is to make use of

“composite registers” [10], [1 1].1

1045-9219/97$10.00 ©1997 IEEE

LEUNG AND TING: AN OPTIMAL ALGORITHM FOR GLOBAL TERMINATION DETECTION 539

This paper is organized as follows. In Section 2, we present
a simple algorithm to illustrate the basic idea. The worst case
time complexity of this simple algorithm is 2z + 2. In Section
3, we present an improved algorithm, which has a worst case
time complexity of n + 24/n + 1. We prove that this improved
algorithm has achieved the lower bound in terms of time com-
plexity under a reasonable model of computation. Section 4
concludes the paper.

2 THE ofy ALGORITHM

In this section, we describe a simple algorithm for solving the
global termination detection problem. We are not concerned
with how jobs are sent between processors. Instead, we as-
sume that the following procedure and functions are provided
by the system. We consider processors executing the sleep
statement to be sleeping and they are called the sleeping proc-
essors. Processors which are not executing the sleep statement
are said to be awake and they are called awake processors.
However, it should be noted that we also regard a processor as
sleeping even if it is awake but is going to sleep immediately
without executing any other statements. Let JO[i] denote the

job queue of processor P;.

e procedure enqueue(J, JO[i]): Adds the job J into JO[i].

P; will be awakened if it is sleeping. Control will not be
returned to the caller until job J is successfully added to
job queue JOIi].

e function dequeue(JQ[i]): Removes and returns the first
job from job queue JQOJi]. This function can be executed
only by processor P;.

* function empty(JO[i]): Returns true if job queue JO[i]
is empty; false otherwise. This function can be executed
simultaneously by more than one processor.

2.1 The Algorithm

For ease of presentation, we assume throughout the paper that
there is a dedicated processor in the system, called the detector,
which executes the termination detection algorithm. In an actual
implementation, the role of such a detector can be played by any
one of the processors in the system.

Following is a simple strategy for solving the global termi-
nation detection problem. The detector monitors all of the n
processors as well as their job queues constantly. Once it finds
that all processors are sleeping and all of their job queues are
empty, it assumes that no new job would be generated and the
system indeed globally terminates.

However, there is one problem with this strategy. It works
only if the detector can simultaneously inspect all n processors
and their job queues. However, the detector can only check
one processor at a time. It cannot pronounce that the system
globally terminates even if it finds out, at different time, that
all of the n processors are sleeping and their job queues are
empty. This is because a processor which is found to be
sleeping could receive jobs from other processors immedi-
ately after it is checked. In order to arrive at a correct conclu-
sion, the detector must also ensure that no job is sent during

1. Composite register is an array-like hardware device that processes can write
into their component in a composite register and they can read the entire register in
an atomic step.

the time interval it checks these n processors.

The affyalgorithm is an implementation of the above idea
without using locking. The algorithm allocates 2z + 1 bits in
the shared memory, which are named the oi-, o2-, ..., 0u-, Bi-
, Bo-, ..., Bn- (1 £i < n), and y-bits. The ;- and f; -bits are set
and reset by processor P; only. The intuitive meaning of these
bits are as follows. ¢; is set if and only if there is a job sent to
processor P;. f3; is set if and only if processor P; is awake. The
y-bit is set if and only if job has been sent by one processor to

another since the last time ¥ is reset. The y-bit can be set by
any processor. However, it is reset by the detector only.

When the system needs to perform a task cooperatively, the
detector adds initial jobs to the job queues of the processors,

sets all - and S-bits to 1 and the y-bit to 0, and wakes up all
the n processors. Then, every processor P;, 1 <i < n, executes
the procedure task(i). Processor P; sends a job J to another

processor P; by executing the procedure sendJob(J, j). The job

J will then be added to the job queue of P;. Note that proce-
dure sendJob(J, j) is defined in such a way that it does not
return until J is properly added to JO[;].

Once the system starts, the detector executes the procedure
monitor which checks the system constantly. We say that the
system globally terminates if and only if every processor ei-
ther is executing the sleep statement in task(i), or has com-
pletely finished executing the statement immediately preced-
ing the sleep statement. When the detector detects global ter-
mination, it adds a special job FINISH to the job queues of all
the processors.

The procedures are defined as follows.

procedure fask(i)

{
forever do {
if empty(JO[i]) then {
o; =0;
if empty(JQO[i]) then {
Bi = 0;
sleep;
/* until some other processor executes
enqueue(J’, JO[i]) */
Bi=1;
¥
o =1;
}
J = dequeue(JQ[1));
if /= FINISH then
exit
else
execute J;
}
H
procedure sendJob(J, j)
{

enqueue(J, JO[j);
while (05 = 0 and — empty(JO[j]));

540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 5, MAY 1997

/* At this point, either o5 = 1 or empty(JO[/]) */

y=1
H
procedure monitor()
{
h=1;
while (4 =1) {
h=0;
/* now checks 1, B2, ..., Bn in sequence */
fori=1,2,...,ndoh:=hv B
/* now checks y*/
h:=hvy,;
/* now resets y*/
r=0;
h

/* At this point, it can be sure that the system
globally terminates. */

fori:=1,2, ..., ndo enqueue(FINISH, JO[i]);
}

2.2 The Correctness of the oy Algorithm

In this subsection, we show that the system, indeed, globally
terminates when the procedure monitor executed by the de-
tector exits the while loop and adds FINISH to the job queues
of all the n processors.

Let#, 1 <i<n,and L, denote, respectively, the time when

the B - and y-bits are checked by the detector for the last time
before the procedure monitor terminates. From the definition

of procedure monitor, it follows that t; <t, < --- <t, <t , fi-

bits are equal to 0 at 7, 1 <i<n, and y-bit is equal to O at 7,
(Fig. 1).

3,=0 3=0 3,=0 v=0
} 0 } }
ty 2 tn t,

algorithm stops
Fig. 1. The final round of execution.

In the following lemmas, J is a job generated by P;. Let #(J)
denote the time when J is added to JQJ[{] for some i.

LEMMA 2.1. If (J) < t;, then J will be removed from JQ[i] be-
fore t;.

PROOF. Assume that #(J) < #.To add J to JO[i], Pj executes the
procedure sendJob(J, i). Let ¢ be the time when P; sets
the y-bit in sendJob(J, i). We claim that ¢ <. If £ > 5,
then the is y-bit is set after # and it implies that y =1 at
L. This leads to contradiction.

Note that P; will not set the y-bit until o; = 1 or JO[{]

is empty. If JO[i] is empty at ¢, then J must have been
removed from JQO[i] before #(< ¢;) and the lemma follows

immediately. Otherwise, since o; = 1 implies ;= 1, we
have o; and f; are still set some time between #J) and

#(< t;). Since f; = 0 at ¢;, P; must have reset oy, checked
JO[i] and dequeued J before #,. O

LEMMA 2.2. For any 1<i < j <n, Pjis sleeping and JO[i] is
empty during the time interval t; and t;.

PROOF. We prove it by induction on j. From the previous

lemma and by the definition of 71, it is trivial that the
lemma is true for j = 1. Assume that the lemma is true
for j = k < n and consider the case whenj =k + 1. From

the induction hypothesis, we have, for all 1 <i <k, P;is

sleeping and JQJi] is empty between time ¢ and #. All
of these processors remain sleeping in the time interval

[tk tk+1] unless there is some awake processor adding
job to their job queues. However, for any awake proces-
sor P, we must have / > k and from the previous lemma,
any job sent to P; by P; at or before 7+ < # is removed

from JQJi] before # < . Hence, all of these sleeping
processors remain sleeping and their job queues remain

empty between time 7 and #+1.
We claim that JO[k + 1] is also empty at #x+1. For

any job J in JO[k + 1] added by P; at or before #+1,
there are two possible cases

1) I>k+ 1. As «(J) < #;, from the previous lemma, we
have J removed from JO[k + 1] before #x+1. In other
words, at tx+1, there is no job in JO[k + 1] which is

added by Py with /> k+ 1.
2) I<k+1.Lemma 2.1 asserts that all the jobs added

by P; before #; are removed from JQO[k + 1] before
tk+1. From the previous discussion, we know that P;
is asleep during the time interval [#, #%+1] and there is
no job J from P; with # < #(J) < tr+1. Hence, at #j+1,

there is no job in JO[k + 1] which is added by P; with
[<k+1.

Together with the fact that Sr+1 = 0 at #+1, we have Pg+1
is sleeping and JO[k + 1] is empty at #+1. Therefore, the
lemma is true for j = k + 1 and by mathematical induc-
tion, the lemma is proved forall 1 <i<j<n. O
An immediate consequence of the previous lemma is that
all the P;s are sleeping and all the JQO[i]s are empty at #.

Hence, no more jobs will be generated after #, and we have the
following theorem:

THEOREM 2.1. The system globally terminates at time ty.

2.3 The Complexity of the Algorithm

First of all, let us define the measure of complexity in terms of
the number of queries2 made during the execution. For any
query 9, we say @ is fiee if it is made before the system glob-
ally terminates. Otherwise, we say that Q is expensive. The
number of free queries is not our concern here. In fact, it is
unbounded by any function of », the number of processors in

LEUNG AND TING: AN OPTIMAL ALGORITHM FOR GLOBAL TERMINATION DETECTION 541

the system. On the other hand, the number of expensive que-
ries depends on the algorithm. It is essential to minimize the
number of expensive queries so that the detector would detect
global termination as soon as possible. The worst case time
complexity for any global termination detection algorithm is
defined to be the maximum, over all possible executions,
number of expensive queries that the algorithm makes.

THEOREM 2.2. The worst case time complexity of the affy al-
gorithm is 2n + 2.

PROOF. When the system globally terminates, all the B-bits are
reset. However, the y-bit may still be equal to 1. It takes
at most n expensive queries o check the -bits before the

y-bit is checked and reset by the detector. As the y-bit
is equal to 1 when it is checked, the detector makes an-
other n + 1 queries before it can be sure that the system
globally terminates. Hence, the worst case time complex-

ity of the o}y algorithm is 2n + 2. O

3 AN OPTIMAL ALGORITHM FOR DETECTING
GLOBAL TERMINATION

The a8y algorithm has a worst case time complexity of 2n + 2
because it wastes a lot of expensive queries. Even though the

system has globally terminated, the n B-bits are checked all

over again if the y-bit is found to be 1. Intuitively, one can
reduce the waste and design a more efficient algorithm by
checking the y-bit more frequently. In the following subsec-
tion, we present an improved algorithm based on this idea.
We derive a lower bound on the time complexity for solving
the problem under a reasonable model of computation and
the algorithm is optimal under this model.

3.1 An Improved Algorithm

The improved algorithm is very similar to the o3y algorithm
except that the y-bit is checked whenever the detector has
checked +/n B-bits. The procedures for checking and updating

the o~ and B-bits are exactly the same as those in the afBy
algorithm. In other words, the procedures task and sendJob are
unchanged. However, the procedure monitor for detecting
global termination is modified as follows.

procedure new_monitor()

{
h=1;
while (h=1) {
h=0i=1;
while (i < n) {
h:=Bivh
i=itl;
if i mod +/n =0 then {
h=hvy,

if 7=1then {h :=0; y:=0;i:=1};
¥
H

2. i.e., the checking of f -bits and the y-bit.

h:=hvy,;
7:=0;
}
/* At this point, it can be sure that the system
globally teminates. */
fori:=1,2, ..., ndo enqueu(FINISH, JO[i]);
H

The correctness of the improved algorithm follows directly
from Theorem 2.1. To find the number of expensive queries
made in the worst case, we observe that when the system
globally terminates, the y-bit will be checked and reset after at
most +/nexpensive B-queries. Then, all the n B-bits and the y-
bit will be equal to 0. Then, the detector needs to check all
the 3-bits all over again and all these n queries are expen-
sive. In addition, it still needs to check the y-bit whenever it
has checked +/n S-bits, there are v/n expensive queries for
checking the y-bit. Adding the number of these queries to-
gether, we have the following theorem:

THEOREM 3.1. The worst case time complexity of the improved
algorithm is n + 24n + 1.

3.2 A Lower Bound

Any algorithm which solves the global termination detec-
tion problem has to check whether a processor is sleeping
and whether there is job sent in a particular time interval.
To abstract all the implementation details, we assume that
there are two kinds of queries in our model of computation:

1) B-query. When the detector makes a -query Qg (i), the

system responds with a “1” if processor P; has not fin-
ished all the jobs on hand. Otherwise, it responds with a
460'7’

2) y-query. When the detector makes a y-query €, at time
t, the system responds with a “1” if there is a new job
generated during the time interval [7;, £], where 7 is the

time when the previous y-query was made.’ Otherwise,
it responds with a”0.”

In this subsection, we show that any global termination
detection algorithm has to made at least n + 24/n + 1 expen-
sive queries in the worst case to arrive at a correct conclusion.
This shows that the improved algorithm is optimal under this
model of computation.

We derive a lower bound on the worst case time complex-
ity for solving the problem by adversary arguments (see the
book by Horowitz and Sahni [12]). First, we construct an ora-
cle Fwhich answers all the queries made by the detector.
Then, we show that there exists a scenario in which the system
responds to the queries in exactly the same way as the oracle
does. Finally, we prove that answering these queries in such a
way would force any global termination detection algorithm to
make at least n + 24/n + 1 expensive queries.

First of all, let us have some definitions. For any query 9,

we say Q is active if ‘F responds with a to the query. Oth-

“1”

3. If the detector has not made any y-query before ¢, then ¢/ is the time when the
algorithm starts.

4. B] is defined to be the set of S-queries made before the detector makes the
first y-query.

542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 5, MAY 1997

. e . .) PROOF. We prove the lemma by induction. Assume that there
erwise, we say it is inactive. For any i 2 1, let QW- be the ith y p y

-query made by the detector and B; be the set of all -
queries made between Q,; | and Q. .4 Let#1 and ;2 be the
time when the detector makes the first and the last B-query in B;,
respectively. We say B; is active if Q% ; 1S an active query.

Otherwise, B; is inactive (Fig. 2).

tzl
! | 1
T T T
Qi Qo o« Qi Q5 Q

Fig. 2. The definition of B; .

The oracle F responds to the queries as follows.

1) All the B-queries are inactive, i.e., F always responds
with a “0” to any B-query.

2) Qy | is an active query. For any query Qy i» 1> 1, response
of Fdepends on the size of Bj, Bj+1, ..
the largest integer such that j <i and Bj is active. More

., Bi-1 where j is

precisely, ‘Fresponds with a “1” to % ;if and only if
Bj‘ < |Bi|, and
* |B|<n+2Jn,and

© 3, Bl<n
j<k<i

We now describe a scenario such that the system will re-
spond to the queries exactly the same as F does. For any

query Qﬂ (7) made at time ¢, if processor P; is still awake just
before ¢, it finishes all the jobs on hand and goes to sleep be-
fore ¢. This is possible because of the asynchronous nature of

the problem. For query wa" there is no problem if it is inac-
tive. The processors simply do not generate any job in the

time interval the detector makes the queries Qy .1 and Qy i

However, if Qy i is active, then we must be sure that there is at
least one processor awake just before #; 1, the time when the

first B-query in B; is made. Otherwise, no new job can be gen-

erated and the response to Qy,- cannot possibly be “1.” Intui-
tively, any awake processor should constantly send jobs to all
the other processors whenever it is possible, i.e., not in a time
interval corresponding to an inactive B;.> Assume that the
system behaves in this way. The following lemma shows that
there is always an awake processor just before # 1.

LEMMA 3.1. Q% i Is an active query, then there is at least one

awake processor just before t; 1, the time when the first 3-
query in B; is made.

5. Of course, any awake processor should go to sleep immediately before any -
query is made about it.

are totally m active y-queries and let Qy i be the jth ac-
"

tive y-queries. We prove the lemma by induction on ;.
From the construction of F, we have i1 = 1 and the lemma

is true because the processors are awakened before the
detector makes any queries. Assume that the lemma is true

for all j with 1 <j <k < m and consider the query QM . Let
ir—1 =s and i =t (Fig. 3).

By mathematical induction, there is at least one
awake processor just before #, 1, the time when the first
B-query in Bs is made. By the nature of the system, this

processor will wake up all the other n — 1 processors
and, since the system is asynchronous, we can assume

that it is done before #;,1. After that, there may be proc-
essors which are forced to sleep because of the -
queries. However, the sleeping processors could be

awakened by other processors immediately after the 3-
queries are made. Hence, we can assume that all the

processors are awake immediately after 5 2. By the con-
struction of F, there are at most n — 1 S-queries being
made between #52 and #,1. Therefore, at most n — 1
processors would be forced to sleep and there is at least

one processor awake just before #,1. Hence, it is also
true for j = k and, by mathematical induction, the lemma

istrue forall 1 <j <m. O

(2% . i1

Qi1 Qs . Qs QO

1 |
1
Qs .. Qs Qrs Dysnt

at most n — 1 B-queries

Fig. 3. The B and y queries.

THEOREM 3.2. Any global termination detection algorithm has
to make at least n + 2+/n + 1 expensive queries.

PROOF. Without loss of generality, we assume that there is no
inactive B; with size greater than n + 2/n . Otherwise,

the theorem is obviously true. Let Qy ; be the last active

7/-query.6 From the proof of the previous lemma, there
is a scenario in which all the n processors are awake

when an active y-query is made. Hence, there must be

at least n B-queries after Q ;. Otherwise, we cannot be
sure that the system has globally terminated. In other
words, there must be a j(> /) such that By is active, Bj+1,
..., Bj are inactive and Zkksj |Bk| > n. We can assume

that the system globally terminates before #+1,1, the time
when the first S-query in B+1 is made, and thus all the

6. There is at least one active y-query, € 1.

LEUNG AND TING: AN OPTIMAL ALGORITHM FOR GLOBAL TERMINATION DETECTION 543

queries made after #+1,1 are expensive. From the con-
struction of ‘F, we have |B,| > |Bk|, I < k < j. Hence, there

are at leastj — /> ﬁ expensive y-queries. Totally, there

are at least n + ﬁ expensive queries being made after
1

t1+1,1. However, observe that the behavior of the sys-
tem can be changed a little so that it will answer the
queries exactly the same way as before but there are
even more expensive queries. In the new scenario, the
system globally terminates immediately before 77,1, the

time when the first S-query in By is made. As B is ac-
tive, from the previous lemma, there is still an awake

processor and a new job is generated before #71. So,
even if the system globally terminates just before #,1,

% ; 1s still active. In the new scenario, the total number
of expensive queries being made would be at least n +
|B[| +1+ ‘?”‘. Minimize the expression and we have

(|

the number of expensive queries being made are greater
than n+ 2/n + 1. O

4 CONCLUSIONS

In this paper, we present the affy algorithm as well as an im-
proved version for global termination detection in a shared-
memory asynchronous multiprocessor system. Unlike those
used in the literature, our algorithms require neither message
passing nor locking of global variables. We show that the
worst case time complexity of the improved version is

n + 24/n + 1. Using the technique of oracle construction, we
proved that this is the lower bound under a reasonable model
of computation.

ACKNOWLEDGMENT

We thank the anonymous referees for their invaluable com-
ments.

REFERENCES
[1] M. Raynal, Distributed Algorithms and Protocol. Chichester: Wiley,
1988.

[2] E.W. Dijkstra, W.H.J. Feijen, and A.J.M. van Gasteren, “Derivation of a
Termination Detection Algorithm for a Distributed Computation,” /n-
formation Processing Letters, vol. 16, no. 5, pp. 217-219, 1983.

[3] F. Mattern, “An Efficient Distributed Termination Test,” Information
Processing Letters, vol. 31, no. 4, pp. 203-208, May 1989.

[4] S. Chandrasekaran and S. Venkatesan, “A Message-Optimal Algorithm
for Distributed Termination Detection,” J. Parallel and Distributed
Computing, vol. 8, no. 3, pp. 245-252, Mar. 1990.

[5] T.-H. Lai, Y.-C. Tseng, and X. Dong, “A More Efficient Message-
Optimal Algorithm for Distributed Termination Detection,” Proc. Sixth
Int’l Parallel Processing Symp., V.K. Prasanna and L.H. Canter, eds.,
Beverly Hills, Calif., pp. 646-649, IEEE CS Press, Mar. 1992.

[6] L.Lamport, “On Interprocess Communication: Part I: Basic Formal-
ism,” Distributed Computing, vol. 1, no. 2, pp. 77-85, 1986.

[71 L. Lamport, “On Interprocess Communication: Part II: Algorithms,”
Distributed Computing, vol. 1, no. 2, pp. 86-101, 1986.

[8] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[9] J.A.Crammond, “A Garbage Collection Algorithm for Shared Memory
Parallel Processors,” Int’l J. Parallel Programming, pp. 497-522, 1990.

[10] J.H. Anderson, “Composite Registers,” Proc. Ninth ACM Symp. Princi-
ples of Distributed Computing, pp. 15-30, 1990.

[11] Y. Afek, H. Attiya, D. Dolev, E. Gafni, and M. Merritt, “Atomic Snap-
shots of Shared Memory,” Proc. Ninth ACM Symp. Principles of Dis-
tributed Computing, pp. 1-14, 1990.

[12] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, 1978.

Ho-fung Leung received his BSc and MPhil
degrees in computer science from the Chinese
University of Hong Kong in 1985 and 1988,
respectively. He did his PhD at Imperial College
of Science, Technology, and Medicine and re-
ceived his PhD degree in computing from the
University of London in 1992. He is currently an
associate professor in the Department of Com-
puter Science and Engineering at the Chinese
University of Hong Kong. His major research
interests include constraint satisfaction prob-
lems, fuzzy set theory, logic programming, and their implementation
and applications.

Hing-fung Ting received his BSc in computer
science from the Chinese University of Hong
Kong in 1985 and his PhD in computer science
from Princeton University in 1992. He is cur-
rently an assistant professor in the Department
of Computer Science at the University of Hong
Kong. His major research interests include com-
putational biology and approximation algorithms.

