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On-Line Adaptation of the SCHMM Parameters 
Based on the Segmental Quasi-Bayes 

Learning for Speech Recognition 

Qiang Huo, Chorkin Chan, and Chin-Hui Lee 

Abstract- In this correspondence, on-line quasi-Bayes adaptation of 
the mixture coefficients and mean vectors in semicontinuous hidden 
Markov model (SCHMM) is studied. The viability of the proposed 
algorithm is confirmed and the related practical issues are addressed 
in a specific application of on-line speaker adaptation using a 26-word 
English alphabet vocabulary. 

I. INTRODUCTION 
In many speech recognition systems, there usually exists a per- 

formance gap between the recognition accuracies on training and on 
testing data. One major reason lies in the possible mismatch between 
the underlying acoustic characteristics associated with the training and 
testing conditions. This mismatch may arise from inter- and intra- 
speaker variabilities, transducer, channel and other environmental 
variabilities, and many other phonetic and linguistic effects due to a 
task mismatch problem. To bridge this performance gap, one possible 
solution is to design a speech recognition system that are robust to the 
above types of acoustic mismatch, and this has been a long standing 
objective of many researchers over the past 20 years. Another way 
to reduce the possible acoustic mismatch between the training and 
testing conditions is to adopt the so called adaptive learning approach. 
The scenario is like this: starting from a pretrained (e.g., speaker- 
independent) speech recognition system, for a new user (or a group 
of users) to use the system for a specific task, a small number 
of adaptation data is collected from the user, and these data are 
used to construct a speaker adaptive system for the speaker in the 
particular environment for that specific application. By doing so, the 
mismatch between training and testing can generally be reduced. The 
most fascinating adaptation scheme with great practical value is the 
so called on-line (or incremental, sequential) adaptation, and this 
scheme makes the recognition system continuously adapted to the 
new adaptation data (possibly derived from actual test utterances) 
without the requirement of the storage of previous training data. It is 
this kind of approach that this correspondence focuses on. 

Recently, Bayesian adaptive learning of Hidden Markov Model 
(HMM) parameters has been proposed and adopted in a number of 
speech recognition applications. A theoretical framework of Bayesian 
learning was first proposed by Lee et al. [8] for estimating the mean 
and covariance matrix parameters of a continuous density HMM 
(CDHMM) with a multivariate Gaussian state observation density. 
It was then extended to handle all the parameters of a CDHMM with 
mixture Gaussian state observation densities [l], [7], [2] as well as 
the parameters of discrete HMM's (DHMM's) and semicontinuous 
HMM's (SCHMM's, also called tied-mixture HMM's) [3]-[6]. It 
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was shown that, for HMM-based speech recognition applications, the 
MAP framework provides an effective way for combining adaptation 
data and the prior knowledge, and then creating a set of adaptive 
HMh4's to cope with the new acoustic conditions in the test data. 
The prior knowledge, which is embodied in a set of seed HMM's as 
well as in the assumed distributions of the model parameters being 
adapted, is made use of to mitigate the effect of adaptation data 
shortage to improve the system robustness. This approach works in a 
block (or batch) adaptation mode using a history of all the adaptation 
data. It finds applications such as fast adaptation to new speaker(s) 
and/or new speaking environments where only a small amount of 
adaptation data is needed. In order to consider the long-term and 
short-term adaptations simultaneously, an ideal adaptation approach 
should work in an incremental adaptation mode. A related work is 
conducted by Matsuoka and Lee in [9]. They used the segmental 
MAP algorithm to conduct the so called on-line adaptation. Due to its 
missing mechanism of updating the hyperparameters of the prior dis- 
tribution incrementally, all the previously seen adaptation data need 
to be stored. A full-scale on-line adaptation approach should be able 
to update both thie hyperparameters of the prior distribution and the 
HMM parameters themselves simultaneously upon the presentation 
of the latest adaptation data. An on-line adaptation approach of this 
nature for SCHMM parameters is presented in this correspondence. 
It is based on the segmental quasi-Bayes estimation algorithm for the 
mixture coefficients of SCHMM recently developed in [5] and [6]. 

The rest of the correspondence is organized as follows. In Section 
11, the theoretical formulation of segmental quasi-Bayes learning of 
mixture coefficients in SCHMM is briefly presented and discussed. 
Two on-line adaptation procedures are presented in Section 111. In 
Section IV, practical issues of on-line Bayesian adaptation of the 
SCHMM parameters are investigated in the context of a speaker adap- 
tation application, and the related experimental results are presented 
and discussed. Finally, concluding remarks are given in Section V. 

II. SEGMENTAL QUASI-BAYES ESTLMATE 
Consider an N-state SCHMM with parameter vector X = 

(T ,  A,  e) ,  where T is the initial state distribution, A is the state 
transition matrix, and 0 is the parameter vector composed of mixture 
parameters 8, = { W , k , m h , r k } h = 1 , 2 ,  ,K for each state i with the 
state observation probability density function (PDF) being a mixture 
of a common set of IC Gaussian PDF's shared by all the HMM 
states. For state i ,  its observation PDF has the form of 

where "(zlmk, ~ k )  is the kth normal mix and, with m k  being the 
D-dimensional imean vector and T k  being the D x D precision 
(inverse covariance) matrix. Each state observation density differs 
from another by its corresponding mixture coefficients, w,k, which 
satisfy the constraint C:=',,wzk = 1. 

For an observation sequence x = (21,~2,...,zT), let s = 
(SI ,  s2, . . . , ST) be the unobserved associated state sequence. By 
maximizing the joint posterior density of the parameters X and state 
sequence s ,  p(X, SIX), one has 

X = argmaxmaxp(X,slx) = argmaxmaxp(x,sJX)g(X) (2) 

where g(X) is the prior density for parameter X and is called the 
segmental MAP estimate of X [8]. It can be shown that by starting 

A s  A s  
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with any estimate A(')), alternate maximization over s and X gives 
a sequence of estimates with nondecreasing values of p(X, SIX), i.e. 
p(A("+1), S('++1)1X) > - p ( ~ ( ' ) ) ,  s(') IX) with 

(3 )  

The most likely state sequence s(')  is decoded by means of the Viterbi 
algorithm. The maximization over X in (4) is usually accomplished 
with an EM algorithm which itself is an iterative algorithm and 
very time consuming [8,2,6]. We have proposed previously [5,6] and 
summarize here an approximate but efficient solution which is called 
the quasi-Bayes method which estimates the mixture coefficients 
alone. 

By applying the Viterbi algorithm to the training data, sets of 
observations (e.g., 1 ~ 1 ,  z2, . . . , ZT) associated with each HMM state 
can be identified. Conditional on w, = ( w , ~ ,  w , ~ ,  ..., w , ~ )  and 
density functions fl , f2, . . . , $I( ,  each x, is assumed independently 
observed with the PDF as shown in (1). Assuming that the prior 
density for wt has the form of a Dirichlet density 

k = l  

where v$) > 0, for IC = 1,. . . , K ,  and " c( " denotes propor- 
tionality. Given the sequence of observations, the maximization with 
respect to { w z ~ }  in (4) can be solved by using the following quasi- 
Bayes recursive updating formula for one pass of the adaptation 
data: 

or 

where 

and 

17) 

(9) 

Both (6) and f7) ,can serve as the updating formula for the mixture 
coefficients in the segmental quasi-Bayes learning for SCHMM's. 
Equation (8) is used as the updating formula of the hyperparameters. 
In the sense that the approximate posterior distribution has a mean 
identical to that of the true distribution, the convergence properties 
of the quasi-Bayes method can be established [IO]. 

Note that apart from its computational efficiency, another advan- 
tage of the segmental quasi-Bayes method over the segmental MAP 
one is due to its sequential nature in updating both the hyperpa- 
rameters of the prior distribution and the SCHMM parameters. This 
makes the so-called on-line adaptation of the mixture coefficients 
very natural under the framework of the quasi-Bayes method. 

IU. ON-LINEADAFTATION PROCEDURES 
As is well known, mixture coefficients are very important pa- 

rameters in modeling speech units in SCHMM. By using the above 
quasi-Bayes method, the on-line adaptation procedure for the mixture 
coefficients only can be readily obtained as follows: 

Given seed models, the initial hyperparameters of the mixture 
coefficients are computed. 
Obtain new adaptation token(s). 
Conduct state labeling to identify sets of observations associ- 
ated with each HMM state. 
Conduct quasi-Bayes estimation of the mixture coefficients. 
Repeat 3) and 4) several times, and then update the hyperpa- 
rameters of the prior distributions of the mixture coefficients. 
Go to Step 2). 

Apart from the mixture coefficients, the adaptation of the mean 
vectors of the Gaussian mixture components is also very important 
[4], [6]. However, the previously proposed algorithm can only be 
theoretically justified in the case of fixed mixture components. On 
the other hand, it has been shown in [4] and [6] that the mean 
vectors of the common Gaussian densities in SCHMM can be rapidly 
and effectively estimated even with a limited amount of training 
data by the conventional ML (maximum likelihood) training. Thus 
a pragmatic on-line adaptation procedure which combines the quasi- 
Bayes adaptation of the mixture coefficients and the adaptation of 
the mean vectors can be as follows: 

Given seed models, the initial hyperparameters of the mixture 
coefficients are computed. 
Obtain new adaptation token(s) and push it (them) into the 
"history data buffer."Conduct state labeling to identify sets of 
observations associated with each HMM state. 
Conduct quasi-Bayes estimation of the mixture coefficients. 
Fix the other parameters and ML-train the mean vectors of the 
mixture components with the adaptation data in the "history 
data buffer." 
Repeat 3 t 5 )  several times, and then update the hyperparame- 
ters of the prior distributions of the mixture coefficients. 
Go to 2). 

W.  SPEAKER ADAPTATION EXPERIMENTS 

A. Experimental Setup 
We will compare the so-called batch adaptation scheme and the 

on-line adaptation scheme in this section using a senes of speaker 
adaptation experiments to substantiate the viability of the proposed 
techniques. The 26 letters of the English alphabet are chosen to 
form the vocabulary for all experiments. Two severely mismatched 
databases are used for evaluating the adaptation algorithms. For 
speaker independent (SI) training and prior density estimation, the 
OGI ISOLET database produced by 150 speakers (75 females and 
75 males) is used. Each speaker utters each of the letters twice. For 
speaker dependent (SD) or adaptive (SA) training and testing, the 
TI46 isolated word corpus produced by 12 speakers (eight females 
and four males) is used. Each person utters each of the letters 26 
times, 10 of them used for SD/SA training and the remaining 16 
tokens for testing. Readers are referred to [3]-[6] for further details. 

B. Experimental Results 
To examine the viability and effect of the above procedure for 

on-line adapting the mixture coefficients of SCHMM only, a series 
of comparative experiments are conducted. The first experiment 
is to recognize the English alphabet subset of TI46 with the SI 
system trained with speech tokens from OGI ISOLET. The average 
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SEG-ML 
63.6 
70.4 
74.2 
76.2 

143 

OL-1 OL-2 OL-3 
66.8 66.8 66.8 
71.5 72.4 72.4 
72.3 73.2 73.9 
73.7 73.9 75.0 

TABLE I 
PERFORMANCE COMPARISON (% CORRECT) OF SEVERAL SEGMENTAL 

ADAPTATION SCHEMES FOR THE MIXTURE COEFFICIENTS 
OF SCHMMS ONLY (SI RECOCNI~ON RATE: 47.8%) 

4 
5 

TABLE I1 
PEFWORMANCE COMPARISON (% CORRECT) OF SEVERAL ADAPTATION 

SCHEMES FOR THE MIXTURE COEFFICIENTS AND THE MEAN 
VECTORS OF SCHMMS (SI RECOGNITION RATE 47.8%) 

67.0 68.0 67.8 68.2 
68.4 69.1 69.0 69.1 

I o k e n s  1 SEG-ML I SEG-MAP I QB-BL I QB-OL I 

76.1 
77.1 

I 1 I 56.3 I 61.5 I 62.0 I 62.0 I 

73.6 74.9 75.6 
75.9 76.1 76.2 

I 2 I 62.5 I 65.1 I 65.0 I 65.4 1 

7 
8 

I 3 I 65.9 I 67.2 1 66.8 I 67.4 1 

68.6 69.4 69.3 69.5 
69.4 69.7 70.0 69.9 

I 6 1 68.3 I 68.9 I 69.0 I 69.3 I 

I 9 1 70.3 1 70.5 I 70.1 I 70.1 I 
~~ 1 10 I 70.7 ~ I 70.8 1 70.4 I 70.6 I 

recognition rate is 47.8%. For simplicity, in SNSD training, Gaussian 
mixture component PDF’s and the transition probabilities are fixed 
to that of the SI system.’ In SA training, the hyperparameters of the 
prior distribution of the mixture coefficients are estimated with the 
ad hoc method discussed in [3]. The remaining experimental setups 
are as follows: “SEG-ML” stands for SD segmental ML (IC-means) 
training of the mixture coefficients and “SEG-MAP” corresponds to 
its MAP counterpart. “QB-BL” stands for SA segmental quasi-Bayes 
block adaptation of the mixture coefficients, and “QB-OL” refers to 
its on-line adaptation counterpart. The average word recognition rates 
for the 12 speakers are summarized in Table I. The rows in Table I 
correspond to the numbers of training tokens used for each SD and 
SA cases. 

The first observation from Table I is that the SD recognition rate 
of only one training token is better than that of the SI system and this 
fact is a good indication of the serious mismatch between the two 
corpora. A second observation is that when using the same amount 
of training data, SA training outperforms SD training in most of the 
cases tested. This implies that SA training utilizes the adaptation data 
more effectively than SD training, especially in cases of insufficient 
training data. A third observation is that the recognizer performance 
with the segmental quasi-Bayes method is not much different from 
that with the segmental MAP method, and this fact also shows the 
viability of the quasi-Bayes approximation in maximizing the right- 
hand side of (4). As a fourth observation, by comparing the results 
of “QB-OL” and that of “QB-BL,” it is noticed that the on-line 
adaptation results are similar to the one based on the batch adaptation 
scheme. This confirms the effectiveness of the on-line adaptation 
scheme of the mixture coefficients. 

To examine the effects of the above pragmatic on-line adaptation 
procedure for mixture coefficients and mean vectors, a series of 
comparative experiments are also conducted. Once again, for sim- 
plicity, the transition probabilities and the covariance matrices of the 
Gaussian mixture components are fixed to that of the SI system. 
In an on-line ML training of mean vectors, different block sizes of 
the “history data buffer” is examined. In the particular experimental 
setup here, the cases with buffer size of 1, 2, and 3 token(s) per letter 
have been tried. The related experimental results (the average word 

‘Since the SD system uses some of the SI-trained parameters, actually It 
can also be treated as a SA system. In the following, we use the term “SD’ 
loosely just for simplicity, since it is not likely to cause confusion. 

Tokens 

I 1 I I 

77.3 I 73.7 I 74.2 I 75.3 I 

1 l: 1 76.9 1 76.0 1 ;&: 1 76.0 1 
77.7 76.4 77.0 
78.5 77.1 77.2 77.4 

recognition rates for 12 speakers) are summarized in Table 11. The 
rows in Table I1 correspond to the numbers of training tokens used 
for each SD and SA cases. “SEG-ML” stands for SD segmental ML 
(IC-means) training of the mixture coefficients and the mean vectors. 
“OL- 1” corresponds to on-line adaptation of the mixture coefficients 
and the mean vectors with the history data buffer size being one. 
Similarly, “OL-2” and “OL-3” refer to, respectively, the cases with 
buffer sizes of two and three. 

Once again, from Table 11, it is observed that the recognizer per- 
formance with on-line adaptation outperforms that with SD training 
when the SD training data is insufficient (one and two tokens). The 
SD performance improves as the number of speaker specific training 
tokens increases, and the on-line adaptation scheme can follow this 
increasing trend, although its absolute recognition rate is inferior to 
the SD one when relatively more SD training tokens (in particular 
here more than lhree tokens) are available. As for the effects of 
the “history data buffer” size, it is observed that the larger the 
buffer size, the better the on-line adaptation performance. On the 
other hand, largeir buffer size also means more storage is required. 
From the practical point of view, there will be a compromise in real 
applications. The on-line adaptation of the mixture coefficients can be 
used to perform a long-term adaptation or a short-term adaptation. By 
using the quasi-Bayes learning framework, one can update both the 
hyperparameters of the prior distribution and the mixture coefficients 
simultaneously upon the presentation of the current adaptation data. 
In this way, with each adaptation utterance presented, its effect 
upon further adaptation is accumulated into the prior distribution. 
Thus previous adaptation data need not be stored explicitly. All 
the historical knowledge is represented by the prior distributions 
and is updated incrementally. The effect of this long-term prior 
knowledge on the adaptation results can be easily controlled through 
some forgetting mechanism, thus it is equally applicable to short-term 
adaptation. This mechanism can be implemented by setting up some 
registers to store the most recent contributions from the adaptation 
data history. When it becomes time to “forget” about the long-term 
prior knowledge, the hyperparameters of the pnor distnbutions can 
be recomputed from the stored recent contributions. The on-line SD 
ML training of mean vectors can be looked upon as a short-term 
(or fast) adaptation process to track the latest variations. This kind 
of on-line adaptation framework will find applications in real world 
adaptive speech recognition systems. 
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C. General Discussions 
The effects of SA training, in the particular setup here, are not 

so significant. This is because of the serious mismatch between the 
two corpora. After more detailed analysis, it is found that the SA 
effects can be very different among different speakers also. Zn the 
Bayesian learning framework, one hopes to use prior distribution of 
HMM parameters to represent the information of the variability of a 
certain model among the different speakers, so the SA effects depend 
heavily on the suitability of the prior distribution to the new speaker. 
To cope with the mismatch problem between the prior distribution 
and the new adaptation data, it will be beneficial if some kind of 
speaker normalization (or signal space equalization) is done first 
in the acoustic (feature) space before the Bayesian framework is 
applied to adapt the model parameters and/or if multiple set of prior 
distributions are adopted in the process of model adaptation provided 
enough training data are available 141, [6]. 

V. SUMMARY 
In this correspondence, in order to cope with the acoustic mismatch 

problem between the training and testing conditions, the issues of on- 
line adaptation of a SCHMM-based speech recognition system are 
addressed. A theoretical formulation of the segmental quasi-Bayes 
learning of the mixture coefficients is presented. A pragmatic on- 
line adaptation approach to combine the long-term adaptation o€ the 
mixture coefficients and the short-term adaptation of the mean vectors 
of the Gaussian mixture components is also proposed. The viability of 
the proposed algorithms is confirmed and the related practical issues 
are studied in a specific application of on-line supervised speaker 
adaptation using a 26-word English alphabet vocabulary. The kind 
of on-line adaptation approach studied in this correspondence is a 
topic of interest both in theory and in practice. Further research is 
needed to develop the on-line adaptation method wh$h can update 
incrementally the hyperparameters of both the mixture coefficients 
and the mean vectors as well as the covariance matrices in CDHMM 
and SCHMM cases. Another research topic may be to explore fast 
adaptation algorithm based on all possible sources of knowledge, 
e.g., by considering the dependency or correlation between HMM’s 
to help adjust those HMM parameters without adaptation data. Our 
ultimate goal will be to easily adapt a general model to new task, 

speaker and new environment. 
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Fast Implementation of MPEG Audio Coder Using 
Recursive Formula with Fast Discrete Cosine Transforms 

Din-Yuen Chan, Jar-Fen Yang, and Chun-Chin Fang 

Abstract-For cosine-modulated multirate subband filtering, we pro- 
pose two implementation algorithms to reduce the computational com- 
plexity. First, we develop a recursive algorithm to further decrease the 
computation of polyphase subband filtering suggested in Nnssbaumer and 
Vetterli. Since the cosine modulation can be implemented by the discrete 
cosine transform (DCT), we combine both fast decimation-in-time (DIT) 
and decimation-in-frequency (DE) DCT methods to further reduce the 
computation. Consequently, the recursive formula with the mixed fast- 
DCT method requires about 13.2% of the multiplications and 41.6% of 
the additions recommended by IS0 Std. ISO-IEC JTCYSC2NVG11. 

I. INTRODUCTION 
Cosine-modulated subband filtering, which has been adopted as 

the MF’EG-1 audio standard, has been recognized as one of best 
coding techmques for achieving high audio quality [4]. The theory 
of the cosine-modulated subband filtering is described in 121. Nuss- 
baumer and Vetterli [I] presented the first efficient polyphase filtering 
implementation of quadrature mirror filters (QMF’s) in multirate 
subband filtering. Beyond this polyphase filtering implementation, we 
first develop a recursive formula to reduce the computational load 
in the polyphase filters. Since the cosine modulation of polyphase 
filtered outputs can be transformed into a DCT-111 [SI after some 
rearrangement, we finally combine fast decimation-in-time (DIT) 
and decimation-in-frequency (DIF) discrete cosine transform (DCT) 
algorithms [6], [7] to reduce further the computational complexity. 

II. MULTIRATE SUBBAND FILTERING 
For multirate cosine-modulated QMF’s [I], [ 2 ] ,  a lowpass pro- 

totype filter with the nominal bandwidth 7r/2M is specified by N 
coefficients A ( k )  €or k = 0,1,2,  . . . , ( N  - 1). The coefficients of 
the ith bandpass filter are formed by modulating these coefficients 
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