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HARP: A Practical Projected
Clustering Algorithm

Kevin Y. Yip, David W. Cheung, Member, IEEE Computer Society, and Michael K. Ng

Abstract—In high-dimensional data, clusters can exist in subspaces that hide themselves from traditional clustering methods. A

number of algorithms have been proposed to identify such projected clusters, but most of them rely on some user parameters to guide

the clustering process. The clustering accuracy can be seriously degraded if incorrect values are used. Unfortunately, in real situations,

it is rarely possible for users to supply the parameter values accurately, which causes practical difficulties in applying these algorithms

to real data. In this paper, we analyze the major challenges of projected clustering and suggest why these algorithms need to depend

heavily on user parameters. Based on the analysis, we propose a new algorithm that exploits the clustering status to adjust the internal

thresholds dynamically without the assistance of user parameters. According to the results of extensive experiments on real and

synthetic data, the new method has excellent accuracy and usability. It outperformed the other algorithms even when correct

parameter values were artificially supplied to them. The encouraging results suggest that projected clustering can be a practical tool for

various kinds of real applications.

Index Terms—Data mining, mining methods and algorithms, clustering, bioinformatics.
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1 INTRODUCTION

DATA mining is a process to discover unobserved object
relationships. Clustering is one of the most well-

studied techniques, which concerns the partitioning of
similar objects into clusters such that objects in the same
cluster share some unique properties. Although some
clustering algorithms have been proposed for 30 years [1],
clustering remains a hot research topic and new algorithms
emerge from time to time. This is mainly due to the ever-
increasing variety, complexity, and size of data sets. The
need for faster and more specialized algorithms grows with
the production of huge amount of data with diverse data
characteristics.

In recent years, a special branch of clustering called
projected clustering has been receiving a lot of attention
from various communities. In projected clustering, clusters
exist in subspaces of the input space defined by the
dimensions1 of the data set. The similarity between different
members of a cluster can only be recognized in the specific
subspace. A data set can contain a number of projected
clusters, each forms in a possibly distinct subspace.

1.1 Projected Clusters

To illustrate the idea of projected clusters, consider the
objects in Fig. 1a. Although the distribution of objects
suggests some underlying structures, it is hard to clearly
define the clusters. The hidden relationships between the

objects are revealed in Fig. 1b, where the members of
different clusters are given different shapes. By projecting
the objects onto appropriate subspaces (see the shadows on
the axis planes), the cluster structures become apparent.
Should the corresponding subspaces of each cluster be not
identified, the circled objects in Fig. 1b would very likely be
wrongly grouped into the same cluster due to their
closeness in the 3D input space.

Projected clusters can appear in various kinds of data.
Projected clustering has been successful in a computer vision
task [2], and has potential applications in e-commerce [3].We
will also show in Section 4 that it outperforms traditional
clustering methods on a gene expression data set for cancer
study and a food nutrition data set.

For the sake of discussion, let us define a number of
terms and notations. Given a data set with N objects and a
set V of d dimensions, a projected cluster Ci contains Ni

member objects, and is defined in a subspace formed by the
set Vi of di dimensions. di is referred to as the dimensionality
of cluster Ci. As in most other studies (e.g., [4], [2]), we
require each Vi to be a subset of V as the clustering results
are easier to interpret. We will call the dimensions in Vi the
relevant dimensions of Ci, and the ones in V � Vi the irrelevant
dimensions of it. The subspace formed by the two sets of
dimensions will be called the relevant subspace and irrelevant
subspace of Ci, respectively. A dimension can be relevant to
zero, one, or more clusters.

A dimension is relevant to a cluster if it helps distinguish
the members of the cluster from other objects. In other
words, in the relevant subspace of a cluster, the members of
the cluster are similar to each other but dissimilar from
other objects. In this paper, we assume object similarity is
measured by a distance metric, such as Euclidean distance.
When all objects are projected onto a relevant dimension of
a cluster, the projections of its members will be concen-
trated on a small range of values that contains few or no
projections of other objects. The value ranges on the various
relevant dimensions are called the “signature” of the
cluster. For example, in Fig. 1, a possible signature of
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cluster 1 is the axis-parallel rectangle on the x-y plane with
extreme points ð6; 2Þ and ð7; 3Þ. If the projection of an
arbitrary object on the x-y plane falls into this region, it is
likely to be a member of cluster 1. Notice that we cannot
simply conclude that the object is a member of cluster 1
since, in real data sets, errors occur frequently. A cluster
member may not abide by the signature of the cluster on
some relevant dimensions (e.g., a member of cluster 1 may
have the coordinates ð6; 8; 3Þ where the y-coordinate does
not agree with the signature), or a nonmember may have
part of the signature by chance.

1.2 Projected Clustering

The projected clustering problem is to identify a set of
clusters and their relevant dimensions such that intracluster
similarity is maximized while intercluster similarity is
minimized. This is very similar to the traditional (non-
projected) clustering problem [5], but is more general in that
it allows each cluster to have only a subset of dimensions
being relevant to. In this paper, we assume clusters are
disjoint, i.e., each object belongs either to one cluster or the
set of outliers.

We assume that there is a set of real clusters that best
matches the domain knowledge. The relevant dimensions
of the real clusters are called the real relevant dimensions of
them. Although the real clusters are rarely known to users,
we will assume the existence of them for the sake of
discussion. As clustering is an unsupervised-learning
problem, all clustering algorithms studied in this paper do
not make use of the information about real clusters.

In the remainder of this paper, the term cluster alone will
mean a cluster produced by a clustering algorithm. The
relevant dimensions of a cluster determined by an algo-
rithm will be called its selected dimensions and the subspace
formed by the dimensions the selected subspace. A cluster is
correct if it contains objects all from the same real cluster,
and incorrect otherwise.

In Fig. 1, cluster 1 has a perfect signature along every
relevant dimension in that no objects in other clusters are
projected onto the signature range. Selecting a single
relevant dimension (either x or y) for the cluster is enough
to unambiguously identify all its members. In real data sets,
due to the presence of errors, it is usually needed to select
multiple relevant dimensions in order to identify all the
members correctly. A clustering algorithm may assign a
relevance value to each dimension of a cluster to indicate
how well it helps identify the members of the cluster.

There are two major challenges in projected clustering
that make it distinctive from the traditional clustering

problem. The first challenge is the simultaneous determina-
tion of both cluster members and selected dimensions.
Cluster members are determined by calculating object
distances in the selected subspace, while the selected
dimensions are determined by measuring the projected
distances between cluster members. One common approach
to tackling this chicken-and-egg problem is to form some
tentative clusters according to some heuristics, determine
their selected dimensions, and then refine the cluster
members based on the selected dimensions. The heuristics
being used are critical to the effectiveness of the algorithm.
For instance, some existing algorithms make use of object
distances in the input space to predict the members of a
cluster, which could be quite inaccurate should the
dimensionalities of the real clusters be small relative to
the data set dimensionality.

The second challenge is the evaluation of cluster quality,
which is in turn related to the determination of the
dimensionality of each cluster. Traditionally, objective
functions are used to evaluate the quality of clusters. For
example, k-means [1] assumes that each cluster is composed
of objects distributed closely around the centroid. The
objective of k-means is thus to minimize the average
squared distance between each object and the centroid of
its cluster. Some projected clustering algorithms [4], [6]
generalize the function for projected clustering by consider-
ing only the selected dimensions in distance calculations. A
weakness of this generalized function is that a better
objective score can always be obtained by selecting fewer
dimensions [7]. This could be a problem if the cluster
signatures are not perfect, when each cluster will be
tempted to select only one best dimension, which is not
enough to identify all member objects correctly.

Some algorithms require users to supply the average
cluster dimensionality as a constraint on the number of
selected dimensions. This is a simple solution to the
problem, but it in turn creates a usability problem as users
are rarely able to supply the value accurately in real
situations.

Another solution is to design a new objective function for
projected clustering. Summarizing the proposals of some
previous studies [4], [6], [2], a projected cluster is likely to
be correct if

1. Its selected dimensions have high relevance.
2. It has a large number of selected dimensions.
3. It contains a large number of objects.

The reason for the first criterion is trivial, and the other
two criteria ensure that the high relevance of the selected
dimensions is not due to random chance [7]. It is favorable
for a cluster to have all three properties, but in reality,
optimizing one property would usually sacrifice the other.
Suppose a dimension is selected for a cluster if the average
distance between the projected values is below a certain
threshold, then when the threshold is fixed, adding more
objects to a cluster will probably decrease the number of
relevant dimensions qualified for selection. In the same
manner, if the members of a cluster are fixed, raising the
threshold will probably reduce the number of dimensions
qualified for selection. Again, a simple way to deal with the
problem is to combine the criteria into a single score, and let
users decide the relative importance of each criterion, which
would also introduce a usability problem.

In summary, tentative clusters formation, clusters eva-
luation, and the determination of cluster dimensionalities
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Fig. 1. An example of projected clusters. (a) A set of 3D objects. (b) 2D

projected clusters.



are the major difficulties of projected clustering. In the next
section, we will study in more detail some proposed
projected clustering algorithms and discuss their potential
weaknesses. In Section 3, we will introduce a new algorithm
that 1) avoids the formation of incorrect clusters by
allowing only the clusters with the highest chance of being
correct to be formed, and 2) determines the dimensionality
of clusters by dynamically adjusting its internal thresholds
without relying on user inputs.

2 RELATED WORK

The partitional approach PROCLUS [4] is based on the
k-medoidsmethod [8]. As in traditional k-medoidsmethods,
some objects are initially chosen as the medoids. But, before
assigning every object in the data set to the nearest medoid,
eachmedoid is first assigned a set of neighboring objects that
are close to it in the input space to form a tentative cluster. For
each tentative cluster, all dimensions are sorted according to
the average distance between the projections of the medoid
and the neighboring objects. On average, l dimensions with
the smallest average distances are selected as the relevant
dimensions for each cluster, where l is a user parameter.
Normal object assignment then resumes, but the distance
between an object and a medoid is computed using only the
selected dimensions. Medoids with too few assigned objects
are replaced by some other objects to start a new iteration.

The user parameter l may introduce a usability problem
since its correct value is hard to determine. Another
potential problem arises when the real clusters have few
relevant dimensions, in which case different members of a
cluster may not be close to each other in the full input space.
As a result, when a member of a real cluster is chosen as a
medoid, the neighboring objects assigned to it may not
come from the same real cluster. Subsequently, the
dimensions selected would not be the real relevant
dimensions and the resulting cluster would be mixed of
objects from different real clusters.

Another partitional algorithm ORCLUS [6] was pro-
posed to improve PROCLUS. According to the experimen-
tal results reported in [6], it is more accurate and stable than
PROCLUS. Nevertheless, it still relies on user-supplied
values in deciding the number of dimensions to select for
each cluster.

In the hypercube approach DOC and its variant FastDOC
[2], each cluster is defined as a hypercube with width 2!,
where ! is a user parameter. The clusters are formed one
after another. To find a cluster, a pivot point is randomly
chosen as the cluster center and a small set of objects is
randomly sampled to form a tentative cluster around the
pivot point. A dimension is selected if and only if the
distance between the projected values of every sample and
the pivot point on the dimension is no more than !. The
tentative cluster is thus bounded by a hypercube with
width 2!. All objects in the data set falling into the
hypercube are grouped to form a candidate cluster. More
random samples and pivot points are then tried to form
more candidate clusters, and a specially designed function
is used to evaluate the quality of them. The candidate
cluster with the best evaluation score is accepted, and the
whole process repeats to find other clusters.

As with PROCLUS and ORCLUS, the selected dimen-
sions of DOC and FastDOC are determined by a user
parameter. In addition, they also restrict each cluster to be a
hypercube with equal width along all relevant dimensions,

which is unlikely to be true in real data. Tentative clusters
are formed by random sampling, which avoids direct
distance calculations in the input space. However, the
number of tentative clusters required to try can become so
large that seriously affects the speed performance.

There are some other proposed algorithms that deter-
mine object similarity based on the likeliness of the rise and
fall patterns of projected values across the relevant
dimensions instead of the absolute distance between the
objects in the relevant subspace. We refer to this problem as
pattern-based, as opposed to the distance-based clustering
problem studied in this paper. Some pattern-based methods
include pCluster [3] and MaPle [9]. The pattern-based
approach has special values in some application domains
such as bioinformatics and time-series data analysis. An
interesting proposal for performing pattern-based cluster-
ing using a distance-based projected clustering algorithm
can be found in [7].

There are also two computational problems closely
related to projected clustering: subspace clustering [10]
and biclustering [11]. The goal of the former problem is to
search for all high-density regions in all subspaces (as
opposed to returning only a small set of best clusters in
projected clustering), and that of the latter is to search for
possibly nondisjoint data submatrices that optimize certain
(usually pattern-based) objective functions. Since the main
focus of this paper is on projected clustering, we refer
interested readers to the thorough survey of the three
problems in [7].

In the next section, we will introduce a new algorithm
HARP (a Hierarchical approach with Automatic Relevant
dimension selection for Projected clustering), which is
based on the traditional agglomerative hierarchical ap-
proach [12]. At the beginning, each object is treated as a
cluster, which are subsequently merged to form larger
clusters. The other stream of hierarchical algorithms is the
divisive methods, which put all objects into a single cluster
at the beginning, and iteratively divide a cluster into
smaller clusters. Some classical hierarchical algorithms can
be found in [1], [12]. A brief introduction to some important
concepts of hierarchical algorithms, such as linkage and
object/cluster similarity can be found in [7]. Some recent
developments of hierarchical clustering algorithms on
handling irregular-shaped clusters and categorical attri-
butes can be found in [13] and [14], respectively.

3 THE NEW APPROACH

3.1 Relevance Index, Cluster Quality, and
Merge Score

We first define a function for measuring the relevance of a
dimension to a cluster. In many previous studies [4], [6], [2],
relevance is directly measured by the distance between
projected values. This may not be appropriate if the input
dimensions have different ranges of values. Consider an
example relation shown in Table 1, where objects 1 and 2
form a real cluster. If relevance is measured by the average
within-cluster distance, dimension D is most relevant to the
cluster as the within-cluster distance between projected
values is smallest along the dimension. Similarly, if the
measurement is based on average between-cluster distance,
dimension C is most relevant to the cluster. Clearly, both
proposals are problematic as they do not satisfy the
fundamental property of relevant dimensions: helping the
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distinguishing of cluster members. In comparison, dimen-
sions A and B are actually more relevant to the cluster.

It is observed that for a dimension to be relevant to a
cluster, not only should the projections of the cluster
members be close to each other, the closeness should also
be uncommon among the distance between the projections
of any two objects. This can be captured by a comparison of

the variance within the cluster (the local variance) and in the
whole data set (the global variance). Suppose the variance of
projected values on dimension vj in cluster Ci and in the
whole data set are �2ij and �2

j , respectively, the relevance

index of vj for Ci is defined as follows:

Rij ¼ 1�
�2
ij

�2
j

: ð1Þ

The index gives a high value when the local variance is
small compared to the global variance. This refers to the
situation where the projections of the cluster members on
the dimension are close, and the closeness is not due to a
small average distance between the projected values in the
whole data set. A dimension receives an index value close
to the maximum value (one) if the local variance is
extremely small, which means the projections form an
excellent signature for identifying the cluster members.
Alternatively, if the local variance is only as large as the
global variance, the dimension will receive an index value
of zero. This suggests a baseline for dimension selection: A
negative R value indicates a dimension is not more relevant
to a cluster than to a random sample of objects. The
dimension should therefore not be selected. We will discuss
later how this baseline is used to define a stopping criterion
of HARP.

To prevent the index from being undefined in some
degenerating situations, we assume there does not exist any
dimension with zero global variance. If such a dimension
does exist, it is not useful at all and can be safely removed
before the clustering process. Also, if a cluster contains only
one object, the index values of all dimensions are set to one.

In Table 1, the R values of the four dimensions for the
cluster that contains objects 1 and 2 are 0.97, 0.97, -0.2, and
-0.2, respectively, which match the intuitive relevance of the
dimensions.

Based on the relevance index, the quality of a cluster Ci

can be measured as the sum of the index values of all the
selected dimensions:

Qi ¼
X

vj2Vi

Rij: ð2Þ

In general, the more selected dimensions a cluster has and
the larger are their respective R values, the larger will be the

value of Q. We will discuss how HARP determines the
relevant dimensions of each cluster later. At this point, it
can be assumed that each cluster has a reasonable set of
selected dimensions.

Similarly, a score can be defined to evaluate the merge of
two clusters. Basically, if two clusters can be merged to
form a cluster with high quality, the merge is a potentially
good one, i.e., the two clusters probably contain objects
from the same real cluster. However, in case the two
merging clusters have a large size difference, an unfavor-
able situation called mutual disagreement can occur. Consider
a large cluster with a thousand objects and a small one with
only five objects. If they are merged to form a new cluster,
the mean and variance of projected values will highly
resemble the original values of the large cluster, which will
dominate the choice of the dimensions to be selected. If a
dimension is originally selected by the large cluster, it will
probably be selected by the new cluster also no matter the
projected values of the small cluster are close to those of the
large cluster or not. The resulting cluster can have a high Q
score, even though the two clusters have a strong mutual
disagreement on the signatures of the resulting cluster.

To cope with this problem, we modify the relevance
index to take into account the mutual disagreement effect.
Suppose Ci3 is the resulting cluster formed by merging Ci1

and Ci2 , the mutual-disagreement-sensitive relevance index
of Ci3 on dimension vj is defined as follows:

R�
i3j

¼
Ri1jji2 þRi2jji1

2
ð3Þ

Ri1jji2 ¼ 1�
�2
i1j

þ ð�i1j � �i2jÞ
2

�2j

¼ 1�
P

x2Ci1
ðxj � �i2jÞ

2=Ni

�2
j

; ð4Þ;

�i1j and �i2j are the mean projected values on vj of the two

clusters, respectively. The numerator of the second term of

Ri1jji2 is the average squared distance between the projected

values of Ci1 on vj from the mean projected value of Ci2 .

Ri2jji1 is defined similarly. The penalty term ð�i1j � �i2jÞ
2

ensures that the two clusters agree on the resulting

signature. When mutual disagreement occurs, the penalty

term will have a large value and the relevance index value

will be attenuated. On the other hand, if the two mean

values are equal, the relevance index will depend only on

the local variance of the two clusters. The original R index is

used to determine the quality of a cluster, while the

modified index R� is used to determine the merge score

between two clusters. When Ci1 and Ci2 are merged to form

Ci3 , the merge score is as follows:

MSðCi1 ; Ci2Þ
¼

X

vj2Vi3

R�
i3j

¼
X

vj2Vi3

Ri1jji2 þRi2jji1
2

¼
X

vj2Vi3

1�
�2i1j þ �2

i2j
þ 2ð�i1j � �i2jÞ

2

�2j
:

ð5Þ
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3.2 Validation of Similarity Scores

The MS function concerns both the quality and number of
selected dimensions. As discussed in Section 1.2, a third
criterion for evaluating cluster quality is the cluster size.
Suppose there is a set C of objects all belong to real clusters
with dimension vj being irrelevant to them. If the size of C
is small, it is common to find the objects in C being close to
each other along vj by chance. If C is large, the chance for
the same phenomenon to occur is small. Looking in another
way, if a cluster has a high relevance index value at a
dimension, the more objects the cluster contains, the less
likely the high index value is merely by chance.

Since HARP is a hierarchical algorithm with each initial
cluster containing a single object, it is not meaningful to
incorporate cluster size into the merge score. However, it is
possible to utilize the potential cluster size, which can be
obtained from the distribution of projected values. Fig. 2
shows the histogram built from such a distribution of a
typical dimension that is relevant to some real clusters. The
peaks correspond to the signatures of the real clusters. The
base level at the troughs is likely due to random values.
Suppose a cluster contains members with projected values
within the interval ½a; b�, it has a high potential to be merged
with other clusters to become a cluster with a significant
size and a high concentration of projected values around the
½a; b� region. On the other hand, if a cluster contains
members with projected values within the interval ½c; d�,
although the cluster may receive a high R value at the
dimension, the cluster is unable to keep the high R value if
it is to grow to a significant size. The corresponding R value
should therefore be invalidated in order to prevent more
objects to be attracted to the cluster by the fake signature.

Based on the observation, a histogram-based validation
mechanism is developed to avoid the formation of incorrect
clusters due to the above problem. The idea is that if a
dimension is relevant to a cluster, the corresponding
histogram should contain a peak around the signature
values (see regions A and B in Fig. 2). The width and height
of the peak depend on the properties of the cluster, but
provided the cluster has a significant size, the peak should
exceed the random noise level, which corresponds to the
mean frequency in case of a uniform distribution (shown by
the dotted line). Clusters covered by bins that stay below
the noise level are statistically insignificant (region C), and
their relevance index values for the dimension will be
rejected.

The validation mechanism contains two steps. First, the
Kolmogorov-Smirnov goodness of fit test [15] is used to
remove dimensions that are likely irrelevant to all clusters,
i.e., the dimensions whose distributions are essentially
uniform. Each remaining dimension is expected to be
relevant to at least one cluster. If a cluster Ci has mean �ij

and variance �2ij at dimension vj, we check the mean
frequency of the bins covering the range ½maxð�ij � 2�ij;
minijÞ;minð�ij þ 2�ij;maxijÞ�, whereminij andmaxij are the
minimum andmaximumprojected values of themembers of
Ci on vj. The use of a 4-standard deviation range covers
95 percent of the projected values if they follow a Gaussian
distribution and ignore some abnormalities, whileminij and
maxij refine the boundaries of the range for non-Gaussian
cases. When selecting the relevant dimensions of a cluster, if
the mean frequency of the bins is below the mean of all the
bins, Rij will be set to zero. When calculating MS between
twoclustersCi1 andCi2 , if eitherRi1j orRi2j is set to zeroby the
validationmechanism, vj willmake a zero contribution to the
MS score. An empirical evaluation of the effectiveness of the
validation mechanism will be given in Section 4.4.2.

3.3 Dynamic Threshold Loosening

When we introduced the MS function in Section 3.1, we
assumed that there is a way to determine the relevant
dimensions of each cluster. In this section, we discuss how
it is made possible by the dynamic threshold loosening
mechanism.

As discussed before, a cluster is likely to be correct if it
contains a large number of selected dimensions, and the
selected dimensions have high relevance index values. This
means merges that form resulting clusters with both
properties should be performed earlier. This is achieved
by two internal thresholds Rmin and dmin. Two clusters are
allowed to be merged if and only if the resulting cluster has
dmin or more selected dimensions, and a dimension vj is
selected for a potential cluster Ci if and only if R�

ij � Rmin.
At any time, the two thresholds define a set of allowed
merges where the actual merging order within the set is
determined by the MS scores.

At the beginning, Rmin and dmin are initialized to the
tightest (i.e., highest) values 1 and d (data set dimension-
ality), respectively. All allowed merges produce clusters
that contain identical objects, which must be correct.
Whenever all qualified merges have been performed, the
thresholds will be slightly loosened. As clustering proceeds,
the clusters grow bigger in size. The projections of the
cluster members on the real relevant dimensions remain
close to each other, but the chance of having similar
closeness of projections on other dimensions drops, so as
their relevance index values. This allows the real relevant
dimensions to be differentiated from the irrelevant ones,
which in turn ensures the formation of correct clusters.

In order to guarantee the quality of clusters, the two
thresholds are associated with baseline values such that
when the baselines are reached, no further loosening is
allowed. As mentioned in Section 3.1, a negative R value
means that a dimension is very unlikely to be relevant to a
cluster. The baseline of Rmin is thus set to zero. For dmin, the
baseline is set to one, which is the minimum value for a
cluster to be defined as a projected cluster. We will see later
that the HARP algorithm allows users to specify an optional
target number of clusters. According to our experience, if
such a value is specified, the algorithm usually finishes the
clustering process well before the thresholds reach their
baselines. The clusters produced thus contain selected
dimensions with R values much better than that of a
random set of projected values.

There are many possible ways to loosen the threshold
values. From our empirical study, a simple linear loosening
scheme is found to be very adaptive and performed well. In
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this scheme, there is a fixed number of threshold levels such
that whenever no more qualified merges remain, the values
of the two thresholds are updated using a linear interpola-
tion toward the baseline values (see Section 3.4 for details).
By default, we set the number of threshold levels to the data
set dimensionality d such that after each loosening, dmin is
reduced by 1. In general, using a larger number of levels
will lead to a better accuracy but a longer execution time.
We will show in Section 4 that the clustering accuracy is
insensitive to small changes to the number of levels.

3.4 The Algorithm

With the core building blocks explained, we now present
the complete algorithm, which is described by the pseudo-
codes in Table 2.

At the beginning of the clustering process, each object is
a separate cluster. The two thresholds dmin and Rmin are set
to their tightest values. For each cluster, the dimensions that
satisfy the threshold requirements are selected. The merge
score between each pair of clusters is then calculated. All
merges that form a resulting cluster with less than dmin

selected dimensions are not allowed to perform.
The algorithm repeatedly performs the best merge

according to the merge scores of the qualified merges. In
order to efficiently determine the next best merge, merge
scores are stored in a cache. After each merge, the scores
related to the merged clusters are removed from the cache,
and the best scores of the qualified merges that involve the

new cluster are inserted. The selected dimensions of the
new cluster are determined by its members according to
Rmin. Due to the definition of R, if a dimension is originally
not selected by both merged clusters, it must not be selected
by the new cluster. But, if a dimension is originally selected
by one or both of the merging clusters, it may or may not be
selected by the new cluster.

Whenever the cache becomes empty, no more qualified
merges exist at the current threshold level. The thresholds
will be loosened linearly as explained before (lines 2-3 of
Table 2). Further rounds of merging and threshold loosen-
ing are carried out until a target number of clusters remain,
or the thresholds reach their baseline values and no more
merging is possible.

To further improve clustering accuracy, an optional
object reassignment step can be performed after the
completion of the hierarchical part. The MS score between
each clustered object and each cluster is computed based on
the final threshold values when the hierarchical part ends.
After computing all the scores, each of the objects is
assigned to the cluster with the highest MS score. The
process repeats until convergence or a maximum number of
iterations is reached.

Finally, we describe the outlier handling mechanism of
HARP. It is similar to the one used by CURE [13] with two
phases of outlier removal. Phase one is performed when the
number of clusters remained reaches a fraction of the data
set size. Clusters with very few objects are removed. Phase
two is performed near the end of clustering to prevent the
merge of different real clusters due to the existence of noise
clusters. As pointed out in [13], the time to perform phase
one outlier removal is critical. Performing too early may
remove many nonoutlier objects, while performing too late
may have some outliers already merged into clusters.
HARP performs phase one relatively earlier so that most
outliers are removed, possibly together with some other
objects. Before phase two starts, each removed object is
filled back to the most similar cluster subject to the current
threshold requirements. Due to the thresholds, real outliers
are unlikely to be filled back. From experimental results, the
fill back process usually improves the accuracy.

3.5 Complexity Analysis

Suppose each cache access (insertion or deletion of all the
merge scores that involve a cluster) takes OðfðNÞÞ time, it
can be shown that the whole algorithm takes OðN2d2 þ
NfðNÞÞ time [7]. We implemented three kinds of cache
structures: priority queue (similar to the one used in [14]),
quad tree, and Conga line [16], with fðNÞ ranges from N to
N log2 N .

There are many ways to improve the speed performance
of HARP. For two clusters to be qualified for merging, the
number of common dimensions that pass the histogram-
based validation must exceed dmin. By checking the
maximum number of such common dimensions of all
cluster pairs, many threshold levels can be skipped if they
contain no possible merges. This optimization is most
useful when the dimensionalities of the clusters are low
relative to the data set dimensionality. Similarly, when
determining the merge score between two clusters, the R�

value of each dimension of the resulting cluster is computed
in turn. Once the number of selected dimensions is
confirmed to be lower than dmin, the R� values of the
remaining dimensions do not need to be computed.
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When the data set size is very large, it is also possible to
perform clustering on a random sample only. Upon
completion, each unsampled object is filled back to the
most similar cluster subject to the restriction of the final
threshold values. Similarly, when the data set dimension-
ality is very high, a constant number of threshold levels can
be used (line 2 of Table 2), so that the quadratic term with
respect to d in the total time complexity becomes linear. We
will show in the next section that these speedup methods
are feasible in practice.

The space complexity of HARP is OðnÞ when Conga line
is used, and Oðn2Þwhen quad tree or priority queue is used.
Depending on the memory available, HARP chooses the
best cache structure to use but produces identical clustering
results.

4 EXPERIMENTS

In this section, we report various experimental results of
HARP and some other clustering algorithms in comparison.
More results can be found in [7].

4.1 Data Sets

4.1.1 Synthetic Data

Table 3 lists the default parameters used in synthetic data
generation.

When generating a data set, the size of each cluster and
the domain of each dimension were first determined
randomly according to the data parameters. Having
different cluster sizes creates different peak heights at the
distributions, which test the stability of the histogram-based
validation mechanism. The different domain sizes are to
test the effectiveness of the relevance index. Each cluster
then randomly picked its relevant dimensions, where a
single dimension could be relevant to multiple clusters.
Since dimensions that are irrelevant to all clusters can be
removed by feature selection techniques, which are not the
major concern of the current paper, we made each
dimension to be relevant to at least one cluster.

For each relevant dimension of a cluster, the local mean
and standard deviation were chosen randomly from the
domain to construct a Gaussian distribution. Each object in

the cluster determined whether to follow the signature
according to the data error rate e. This was to simulate
experimental and measurement errors. If an object was
chosen to follow the signature, a projected value would be
sampled from the Gaussian distribution. Otherwise, and for
all irrelevant dimensions, the values would be sampled
from a uniform distribution over the whole domain.

4.1.2 Real Data

Lymphoma: It is a gene expression data set used in
studying distinct types of diffuse large B-cell lymphoma
(Fig. 1 of [17]). It contains 96 samples, each with 4,026 ex-
pression values of genes. The samples are categorized into
nine classes according to the category of mRNA sample
studied. We clustered the samples with the genes as the
input dimensions, and used the class labels to evaluate the
clustering performance. Each selected dimension of a
cluster represents a gene that has similar expressions in
the member samples. If a cluster contains mainly one type
of tumor samples, the genes are the potential signatures for
identifying the presence of the specific type of tumor.

Food: It contains the weight and six attributes (Fat, Food
Energy, Carbohydrate, Protein, Cholesterol, and Saturated
Fat) of 961 food items.2 We followed [18] to divide the
attribute values by the weight, and standardize each
column to have unit standard deviation. Since the data set
contains no class labels, we treat the clustering as an
exploratory task and report some interesting findings.

4.2 Comparing Algorithms

To demonstrate the capability ofHARP,we compared it with
various projected and nonprojected algorithms. For the
projected side, we chose PROCLUS [4], ORCLUS [6], and
FastDOC [2] as they have reasonable worst-case time and are
able to produce disjoint clusters, which makes it easy to
compare the clustering results. FastDOC creates clusters one
at a time.We used it to produce disjoint clusters by removing
the clustered objects before forming a new cluster. After
forming the target number of clusters, the unclustered objects
were treated as outliers. For the nonprojected camp,we chose
a simple agglomerative hierarchical algorithm, two parti-
tional algorithms CLARANS [8] and KPrototype [19] (based
on k-medoids and k-means, respectively), and CAST [20], a
popular algorithm for clustering high-dimensional gene
expression profiles. We believe our choice of algorithms
covers a wide spectrum of clustering approaches.

4.3 Other Details

4.3.1 Algorithm Parameters

In all experiments, the target number of clusters was set to
the number of real clusters. For each of the other
parameters, various reasonable values were tried (details
can be found in [7]). CAST and FastDOC produced the
desired number of clusters only at some specific parameter
values. All results that form fewer than the desired number
of clusters were discarded.

4.3.2 Execution

Each experiment was repeated five times to avoid bias due
to randomness (e.g., locations of initial medoids). For each
repeated run, only the result that has the best algorithm-
specific objective score will be considered in the discussions
below.

YIP ET AL.: HARP: A PRACTICAL PROJECTED CLUSTERING ALGORITHM 1393

TABLE 3
Data Parameters of the Synthetic Data Sets

2. We downloaded the data set from http://www.ntwrks.com/~mikev/
chart1.html.



4.3.3 Evaluation Criteria

We used the Adjusted Rand Index (ARI) [21] as the
performance metric for clustering accuracy. It is based on
the Rand Index [22], with the expected index value also
taken into account. It measures how similar are the partition
of objects according to the real clusters (U) and the partition
in a clustering result (V). Denote a, b, c, and d as the number
of object pairs that are in the same cluster in both U and V,
in the same cluster in U but not V, in the same cluster in V
but not U, and in different clusters in both U and V,
respectively, ARI is defined as follows:

ARIðU; V Þ ¼ 2ðad� bcÞ
ðaþ bÞðbþ dÞ þ ðaþ cÞðcþ dÞ : ð6Þ

The more similar the two partitions (larger a and d, smaller
b and c), the larger the ARI value. When U and V are
identical, the index value will be one. When V is only as
good as a random partition, the index value will be zero.

We used precision and recall to evaluate how similar are
the selected dimensions and the real relevant dimensions.
For each cluster, precision is the number of real relevant
dimensions being selected divided by the number of
selected dimensions. Recall is the number of real relevant
dimensions being selected divided by the actual number of
real relevant dimensions. The reported value of a clustering
result is the average of all the clusters.

4.3.4 Data Preprocessing

We generated an “easy-to-cluster” data set with lreal ¼ 12
and o ¼ 0 to test the importance of data preprocessing. We
tested the clustering accuracy of the projected algorithms
with and without standardizing the values of each dimen-
sion, using correct user parameter values. The results (see
[7] for details) show that with the global variance taking
into account in the relevance index, the performance of
HARP is invariant to the standardization process. For all the
other methods, the clustering accuracy was improved by
standardization. For fair comparisons, all the synthetic data
sets used in the coming sections were standardized.

4.3.5 Outlier Handling

From some preliminary experiments, we noticed that
FastDOC and PROCLUS tend to discard a large amount
of outliers even the data set contains no or few artificial
outliers. In order to give a fair comparison of the clustering
results, except otherwise specified, the synthetic data sets
used in the coming experiments contain no artificial
outliers, and the outlier removal options of all algorithms
were disabled. For CAST and FastDOC, the unclustered
objects were still discarded as outliers, and we accept only
results with discarding rates not more than 40 percent. To
show the noise-immunity of HARP, there will be a separate
section dedicated to experiments on noisy data.

4.4 Results on Synthetic Data

4.4.1 Clustering Accuracy

The first set of experiments concerns how the clustering
accuracy is affected by cluster dimensionality lreal. We
generated eight data sets with lreal ranging from 4 to 18. For
clarity,wepresent the results in threedifferent charts inFig. 3.
In the charts, and in the other figures to be presented later, a
line labeled “best” and “average” represents the result with
the highest ARI values and the average result after trying all
the parameter values, respectively. Since CLARANS, HARP,

Hierarchical, and KPrototype used only one set of parameter
values, only one line is presented for each of them.

Fig. 3a shows the best results (with the highestARI values)
of the algorithms. Most algorithms were highly accurate at
large lreal values, but for lreal values lower than 50 percent of d,
the performance difference between different algorithms
became apparent. HARP got the highest ARI values among
all algorithms on all data sets, and remained extremely
accurate even each cluster had 80 percent of the dimensions
irrelevant to them. The results of ORCLUS reported in [6] are
better than the results observed in our experiments, which is
likely caused by the small sizes of our synthetic data sets.
ORCLUSworks best on large data sets that contain sufficient
values for performing PCA. In comparison, its performance
on small data sets is less competitive. FastDOC continued to
discard a large amount of nonoutlier objects, with an average
discarding rate of 26.3 percent,which equals the size of one to
two complete clusters.

In general, the projected algorithms outperformed the
nonprojected ones at small lreal values, but some good
results were due to the correct input of parameter values.
Fig. 3b compares the best results of FastDOC, ORCLUS, and
PROCLUS when correct parameter values were used with
their average results when a set of linearly chosen
parameter inputs were used. The average results have
much lower ARI values than the best results, which means,
in reality, if the correct parameter values are unknown, the
optimal results can hardly be obtained. Fig. 3c shows the
typical fluctuation of accuracy of PROCLUS and ORCLUS
with various parameter inputs, taken from the results on the
data set with lreal ¼ 8. Both algorithms achieved their peak
performance when correct inputs were supplied, but the
error rates raised as the inputs moved away from the
correct values. In comparison, the accuracy of HARP is
independent of user inputs.

From Fig. 3b, it is also noted that PROCLUS and
ORCLUS did not perform well when lreal is small even
correct parameter values were used. This is due to the
formation of incorrect tentative clusters caused by object
assignments that depend on distance calculations in the
input space. In contrast, by allowing only merges with
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Fig. 3. Clustering accuracy with different cluster dimensionalities. (a) The
results with the highest ARI values. (b) Comparing the results with the
highest ARI values with the average results using different parameter
values. (c) Clustering accuracy of PROCLUS and ORCLUS when
lreal ¼ 8, with various user parameter inputs.



maximum number of selected dimensions, HARP was able
to prevent from forming incorrect tentative clusters.

Next, we investigate the selected dimensions of the
projected clustering algorithms. Figs. 4a and 4b show the
average precision and recall values of the selected dimen-
sions of the results produced by FastDOC, HARP, and
PROCLUS.

When lreal is large, HARP tended to be conservative in
dimension selection as reflected by the high precision and
relatively low recall values. This means HARP deliberately
avoided selecting irrelevant dimensions when the selected
ones were enough for identifying the cluster members
correctly. However, when lreal is small, HARP tried to
include all relevant dimensions in order not to miss any
useful information, with the expense of also selecting some
irrelevant dimensions. This is not a serious problem as
including a few irrelevant dimensions has only a moderate
effect to the clustering accuracy if the signatures at the
relevant dimensions are clear enough to identify the cluster
members, while missing a single relevant dimension may
mean missing a substantial proportion of information. If the
accuracy of selected dimensions is critical to an application,
a postprocessing step can be carried out to rank all the
dimensions of each cluster based on the R values, and filter
out the unwanted dimensions according to the application-
specific needs. Our argument is supported by the excellent
accuracy of HARP at all lreal values.

The best results of FastDOC are characterized by
excellent precision and fair recall values over the whole
range of lreal values. This means it tends to be parsimonious
in dimension selection, which can be a great problem when
lreal is small. The behavior of the best results of PROCLUS is
similar to HARP, but is relatively less stable. On the other
hand, as expected, the average results of PROCLUS are not
satisfactory except at very large lreal values.

4.4.2 Imperfect Data Sets

Although the above experiments show that HARP is highly
accurate, thedatasetsbeingusedaretoo idealwithnooutliers,
low error rates, and clear signatures. In the coming experi-
ments,wedemonstrate the influenceof thesedataparameters
on the clustering accuracy.We fixed lreal to 6 (30 percent of d)
and generated three sets of data with increasing o, e, and �ij,
respectively. We tested the performance of HARP, using
PROCLUS and ORCLUS (with correct parameter values) as
reference. The results are shown in Fig. 5.

Fig. 5a shows the results on the data sets with artificial
outliers. From the figure, the performance of HARP was
less sensitive to outliers than the other two algorithms, and
the histogram-based validation mechanism was effective in
improving the accuracy of HARP. In comparison, ORCLUS
and PROCLUS had unsatisfactory performance. ORCLUS
appears to be very sensitive to outliers, which may due to

the fact that in late iterations it uses the centroids (instead of
medoids) as cluster seeds. When the clustering accuracy is
low, each cluster consists of objects from many different real
clusters and the centroids will contain a mixture of their
signatures. As a result, the centroids will be similar to each
other, but dissimilar to any data objects, which ruin the
outlier removal mechanism of ORCLUS.

Fig. 5b shows the results with increasing amount of data
errors. It shows that the accuracies of all three algorithms
went down as more errors were introduced, but HARP only
had a mild deterioration. Similar results are observed when
the cluster signatures became less concentrated (figures can
be found in [7]).

4.5 Scalability Experiments

In this section, we study the scalability of HARP with
increasing data set size and dimensionality. We tested the
performance of HARP on two sets of data, the first with N
increasing from 1,000 to 500,000 (using Conga line as cache
structure), and the second with d increasing from 100 to 500
and average cluster dimensionality kept at 30 percent of d.

The results with increasing data set size are shown in
Fig. 6a, which confirms that the actual execution time was
boundedby the theoretic time complexity. Formedium-sized
data sets (N � 10; 000), the execution time was usually better
than ORCLUS and FastDOC, and comparable to PROCLUS
when the time used in repeated runs is also included. Fig. 6b
shows the relative execution time and accuracy when the
sample-basedspeeduptechniquedescribed inSection3.5was
applied to the data set with 10,000 objects. For reasonable
sample sizes, the execution time was much improved with
only a little impact on the accuracy.

The results with increasing data set dimensionality are
similar (figures can be found in [7]). The execution time was
shown to be subquadratic with respect to d. When HARP
was sped up by using fewer threshold levels, the execution
time was greatly reduced, but the clustering accuracy
remained excellent.
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Fig. 4. Accuracy of the selected dimensions. (a) Precision of the

selected dimensions. (b) Recall of the selected dimensions.

Fig. 5. Clustering results on imperfect data. (a) Clustering accuracy with
the presence of outliers. (b) Clustering accuracy with the presence of
errors.

Fig. 6. Clustering results of HARP with increasing N. (a) Execution time
with increasing N. (b) Relative accuracy and execution time with various
samples.



4.6 Results on Real Data

For the lymphomadata,weusedHARPandPROCLUSas the
representatives of projected clustering algorithms.HARPgot
anARI value of 0.75,which is higher than the values obtained
by all other algorithms. The samples of different types were
well separated into different clusters, and most samples
(43 out of 46) of themajor class (DLBCL)wereput into a single
cluster. The clusters of HARP have 2,014 to 3,515 selected
dimensions, corresponding to 50 percent to 87 percent of all
dimensions. The selecteddimensionsdisplay somebiological
significance. In [17, Fig. 2], some genes are highlighted as the
signatures of some sample types or biological process. We
ranked the selected genes of each cluster according to their
R values, and found that a large number of relevant signature
geneswereselectedbytheclusterswithveryhighrankingand
Rvalues.Forexample, a subclusterof the largeDLBCLcluster
has all signature genes in the proliferation region selected.
Among the 3,347 selectedgenes of it, all the signature genes in
the region are within the top 700 ranked genes. About
70 percent of them are even within the top 75, with R values
above 0.83.

For the food data, we used HARP to produce 20 clusters.
Some interestingclusters canbe found in [7]. Forexample, one
of themcontainsall 12margarine items in thedataset.Threeof
the dimensions have high relevance index values and were
selected by HARP. However, the index values of the other
three dimensions are low and they were therefore not
selected. This means the margarine items are close in the
selected three-dimensional subspace, but may not be close in
the input space. We verified this by performing 10 rounds of
KPrototype on the data. In all cases, the 12 items were
distributed to two or more clusters, which suggests that the
nonprojected clustering algorithm is unable to produce the
same interesting cluster.

5 DISCUSSIONS AND FUTURE WORK

The dynamic threshold loosening mechanism of HARP is
shown to be successful in eliminating the reliance on user
parameters. We believe the concept of dynamic parameter
tuning has a great potential value in problems where the
algorithms usually rely on user parameters.

The experimental results also reveal that projected cluster-
ing is meaningful only when the dimensionalities of the
clusters are well below the data set dimensionality. We
recommend further studies on projected clustering to focus
on data sets with lreal not more than 30 percent of d. In some
gene expression data sets, the number of relevant genes of
each function group can be lower than 10 percent of the total
number of genes. Most projected clustering algorithms
(including HARP) may not performwell, while the subspace
clustering approaches (such as [10]) introduced in Section 2
may run indefinitely long since the absolute value of lreal can
be very high (e.g., 100). Further improvements of projected
clustering algorithms are called for.

It is also interesting to see if HARP can be modified to
produce pattern-based and nondisjoint clusters, which are
more appropriate in some situations. A preliminary study
can be found in [7].

6 CONCLUSIONS

In this paper, we analyzed the major challenges of the
projected clustering problem, and proposed a new algo-
rithm HARP that does not depend on user inputs in

determining the relevant dimensions of clusters. It makes
use of the relevance index, histogram-based validation, and
dynamic threshold loosening to adaptively adjust the
merging requirements according to the clustering status.
Experimental results on synthetic and real data suggest that

HARP has a higher accuracy and usability than the
projected and nonprojected algorithms being compared,
and it remains highly accurate when handling noisy data.
The interesting clusters discovered in the lymphoma and
food data suggest that HARP could be a practical tool for

real applications.
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