
Title The mutated subsequence problem and locating conserved
genes

Author(s) Chan, HL; Lam, TW; Sung, WK; Wong, PWH; Yiu, SM; Fan, X

Citation Bioinformatics, 2005, v. 21 n. 10, p. 2271-2278

Issued Date 2005

URL http://hdl.handle.net/10722/43621

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 10 2005, pages 2271–2278
doi:10.1093/bioinformatics/bti371

Sequence analysis

The mutated subsequence problem and locating conserved
genes
H. L. Chan1,∗, T. W. Lam1, W. K. Sung2, Prudence W. H. Wong3, S. M. Yiu1 and
X. Fan1

1Department of Computer Science, University of Hong Kong, Hong Kong, China, 2Department of Computer
Science, National University of Singapore, Singapore and 3Department of Computer Science, University of
Liverpool, UK

Received on December 16, 2004; revised on February 21, 2005; accepted on March 1, 2005

Advance Access publication March 3, 2005

ABSTRACT
Motivation: For the purpose of locating conserved genes in a whole
genome scale, this paper proposes a new structural optimization
problem called the Mutated Subsequence Problem, which gives con-
sideration to possible mutations between two species (in the form of
reversals and transpositions) when comparing the genomes.
Results: A practical algorithm called mutated subsequence algorithm
(MSS) is devised to solve this optimization problem, and it has been
evaluated using different pairs of human and mouse chromosomes,
and different pairs of virus genomes of Baculoviridae. MSS is found
to be effective and efficient; in particular, MSS can reveal >90% of
the conserved genes of human and mouse that have been reported
in the literature. When compared with existing softwares MUMmer
and MaxMinCluster, MSS uncovers 14 and 7% more genes on aver-
age, respectively. Furthermore, this paper shows a hybrid approach
to integrate MUMmer or MaxMinCluster with MSS, which has better
performance and reliability.
Availability: http://www.cs.hku.hk/∼mss/
Contact: hlchan@cs.hku.hk

1 INTRODUCTION
As more and more genomes have been sequenced, there is a great
desire to study and compare related species in a whole genome scale.
Given the genomes of two related species, one important task is to
uncover and locate the conserved genes, i.e. genes sharing similar
functions (Baillie and Rose, 2000; Schwartz et al., 2000; Vincens
et al., 1998). This task is non-trivial as most parts of a genome are
non-coding areas and the locations of genes in each genome is often
not available. Alignment software developed in an early stage, e.g.
BLAST (Altschul et al., 1990) and FASTA (Pearson and Lipman,
1988), are not able to accomplish this task. In this paper, we propose
an effective algorithm for identifying locations on the genomes that
correspond to conserved genes.

MUMmer-1 (Delcher et al., 1999) is one of the earliest soft-
ware that could perform genome comparisons in a whole genome
scale. Since then, several other programs have been developed
for large-scale genome comparison, e.g. ASSIRC (Vincens et al.,
1998), PipMaker (Schwartz et al., 2000) and WABA (Baillie and

∗To whom correspondence should be addressed.

Rose, 2000). In the process of uncovering conserved genes, most
of these software are based on a very useful observation made
by Delcher et al. (1999): A conserved gene rarely comprises the
same entire sequence in the two genomes, yet there are usually a lot
of short common substrings and some of these substrings are indeed
unique to this conserved gene. Thus, the first step to locate con-
served genes is to identify pairs of matched substrings that appear
uniquely in both genomes. This can be done in linear time using a
suffix tree (Delcher et al., 1999). Such pairs of matched segments
are called the MUM pairs. However, not every MUM pair corres-
ponds to a conserved gene; there are often a lot of noisy MUM pairs,
originating from intergenic regions as well as from unrelated genes.
The key step is how to select the right MUM pairs.

Different approaches have been proposed to select the right MUM
pairs. MUMmer-1 (Delcher et al., 1999) simply selects the largest
subset of MUM pairs that have the same ordering in both genomes.
This is based on the assumption that two related species should
preserve the ordering of most conserved genes. It is commented
in a recent survey (Chain et al., 2003) that all the software men-
tioned above are based on this assumption. MUMmer-2 (Delcher
et al., 2002) and MUMmer-3 (Kurtz et al., 2004) adopt a different
approach; they select MUM pairs that are close together, i.e. forming
a cluster. Intuitively, a conserved gene should introduce a group of
MUM pairs that are close together, while noisy MUM pairs are ran-
dom in nature and tend to be separated. In practice, MUMmer-2 and
MUMmer-3 show significant improvement over their predecessor.
MaxMinCluster (Wong et al., 2004) refines the clustering approach
by allowing a small degree of noise.

From the biological point of view, the conserved genes of two
related genomes would not occur in a random ordering in each gen-
ome. The difference in the orderings is most likely caused by the
mutations that have occurred between the two concerned species dur-
ing evolution. In other words, for the MUM pairs introduced by the
conserved genes, the difference in the orderings in the two genomes
should be related to the mutations that have occurred. For related
species, the number of such mutations would be small. Thus, one
should select those MUM pairs whose difference in orderings can
be explained by a few mutations. Using this idea, we propose a new
approach to select MUM pairs based on the structural optimization.
Our approach has been shown to be significantly more effective than
the previous ones when tested with real data.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 2271

http://www.cs.hku.hk/


H.L.Chan et al.

In modeling mutations, the random breakage model (Nadeau and
Taylor, 1984; Ohno, 1973) has been widely accepted, which assumes
a random (i.e. uniform and independent) distribution of mutations.
Yet, a recent conflicting result (Pevzner and Tesler, 2003b) sug-
gests that mutations might be dependent on genomic features and
are not uniformly distributed. This new observation reiterates that
uncovering conserved genes with the presence of mutations is a
non-trivial task.

In fact, the study of mutations between two related species is not
a new topic. A closely related problem is the genome rearrange-
ment problem (Bafna and Pevzner, 1996; Hannenhalli and Pevzner,
1999; Kaplan et al., 1999; Bafna and Pevzner, 1998; Gu et al., 1999;
Eriksen, 2002). We consider the signed version of this problem: the
conserved genes and their locations in the two genomes are given
in advance. Each conserved gene is represented by a unique signed
integer, and the orderings of the genes in the two genomes are rep-
resented by two permutations of signed integers π1 and π2. Given
π1 and π2, the problem asks for the smallest number of mutations
needed to transform π1 to π2. The genome rearrangement problem
has been studied intensively. There are several results on mutations
restricted to reversals only (Bafna and Pevzner, 1996; Hannenhalli
and Pevzner, 1999; Kaplan et al., 1999), while in some other studies,
transpositions and reversed-transpositions are also included (Bafna
and Pevzner, 1998; Gu et al., 1999; Eriksen, 2002). The genome
rearrangement problem is solvable in polynomial time when the
reversals only mutations are (Hannenhalli and Pevzner, 1999). Yet
when transpositions and reversed-transpositions are also allowed,
the complexity of the problem is unknown. It is believed that the
problem is NP-hard, and approximation algorithms have been pro-
posed (Bafna and Pevzner, 1998; Eriksen, 2002; Gu et al., 1999).
As for the unsigned version of the genome rearrangement prob-
lem, refer to Pevzner (2000) for a more complete discussion of the
problem.

Let us switch the context back to our problem of selecting the right
MUM pairs that correspond to conserved genes. Our problem can be
regarded as a generalization of the genome rearrangement problem.
Note that a subset of MUM pairs induces two signed permutations
σ1 and σ2, according to the orderings of the MUM pairs in the two
given genomes. To select the right MUM pairs, we try to find a subset
of MUM pairs with maximum total length, such that the induced
permutations can be transformed to each other by a few mutations. In
this paper, a mutation is considered to be a reversal, transposition or
reversed-transposition. We limit the number of mutations to a small
constant k because for related species, there should only be a few
mutations undertaken, leading to the positional difference between
the MUM pairs. Obviously, if we make no restriction on the number
of mutations, all the MUM pairs will be selected. By restricting
the number of mutations, we can effectively filter the MUM pairs
that are noise, while preserving those that correspond to conserved
genes. We call this problem the Mutated Subsequence Problem. (The
definition is given in Section 2.) The genome rearrangement problem
involving reversals, transpositions and reversed-transpositions can
be reduced to the Mutated Subsequence Problem. As the former is
believed to be NP-hard, the Mutated Subsequence Problem is likely
to be even more NP-hard.

1.1 Main results
This paper gives an efficient algorithm called mutated subsequence
algorithm (MSS) which, given a set of MUM pairs and an

Table 1. Average coverage (and sensitivity) of different algorithms in
locating conserved genes

Mouse/ Intergenus Intergenus
human Baculoviridae Baculoviridae
(%) (%) (%)

MUMmer-3 77 (27) 66 (71) 43 (62)
MaxMinCluster 84 (27) 69 (75) 45 (59)
MSS 91 (29) 78 (87) 36 (53)
MUMmer-3 + MSS 91 (28) 79 (75) 48 (43)
MaxMinCluster + MSS 91 (27) 79 (82) 51 (53)

integer k ≥ 0, selects a subset of MUM pairs such that the induced
permutation σ1 can be transformed to σ2 by a sequence of at most k

mutations. The subset of MUM pairs reported by this algorithm often
has a total length very close to the maximum possible length. In fact,
from a theoretical viewpoint, we are able to prove that even in the
worst case, the subset selected by MSS has a total length of at least
1/(3k + 1) times the maximum weighted subset.

Based on MSS, we have implemented two software for locating
conserved genes. The first one simply applies MSS directly to a
given set of MUM pairs. It performs very well for species that are
closely related and involve only a few mutations. We have tested the
software using the DNA sequences of 15 pairs of mouse and human
chromosomes, as well as the translated protein sequences of Bacu-
loviridae genomes that are in the same genus (specifically, either
pairs of Nucleopolyhedrovirus genomes or pairs of Granulovirus
genomes). The performance is compared with that of MUMmer-3
and MaxMinCluster; the average figures are shown in the first two
columns of Table 1. It is encouraging to see that MSS consistently
achieves better coverage while preserving the sensitivity (coverage
refers to the percentage of published genes that are reported by
the software and sensitivity refers to the percentage of the repor-
ted MUM pairs that are known to reside in a conserved gene; note
that sensitivity is an estimate as not all conserved genes have been
identified).

We have also tested MSS with pairs of Baculoviridae genomes that
are not in the same genus. As one may expect, MSS does not perform
well in these cases as the number of mutations between a pair of such
viruses is big. Also, for these genomes, there may be hot spots where
a number of mutations cluster together in the same region. Applying
MSS directly on the MUM pairs may not be appropriate for handling
genomes with large number of mutations and hot spots (details are
given in Section 4).

The second software we have developed adopts a hybrid approach.
Our aim is to obtain a software that can handle genomes that are
closely related as well as those with more mutations and hot spots.
The hybrid approach first applies MaxMinCluster (or MUMmer-3)
to identify some clusters that are obviously conserved genes; these
clusters are each treated as a MUM pair and processed together
with the remaining MUM pairs using MSS. For genomes that are
closely related, the hybrid approach has almost the same perform-
ance as MSS alone; yet for genomes that are farther away, the hybrid
approach differentiates itself from MSS alone and attains a cover-
age even better than MaxMinCluster and MUMmer-3 (see the last
column of Table 1).

2272



Mutated subsequence problem

1.2 Organization of the paper
Section 2 gives the definition of the Mutated Subsequence Problem.
Section 3 presents an algorithm for finding the maximum weight
common subsequence (MWCS), which serves as a subroutine for the
algorithm MSS. Details of MSS is given in Section 4. In Section 5,
we present the new software for locating conserved genes, and the
results of experiments on the real data.

2 THE MUTATED SUBSEQUENCE PROBLEM

2.1 The input
Given two genomes G1 and G2 with n MUM pairs, we represent the
MUM pairs as two sequences of n distinct characters, denoted as A =
a1a2 · · · an and B = b1b2 · · · bn, respectively, where each character
represents the matched substring of a MUM pair, and the orderings
of these n characters follow the way the corresponding substrings
appear in the genomes. For any ai in A, we denote the index of the
character in B that matches ai as δ(i), i.e. (ai , bδ(i)) represents a
MUM pair. Both ai and bδ(i) are associated with the same weight
w(ai), which is the length of the corresponding substring.

Each character in A and B is given a sign as follows. A DNA
sequence is double stranded. When we extract MUM pairs from two
DNA sequences, we consider MUM pairs from two strands of the
same orientation as well as of opposite orientations. That is, given G1

and G2 representing two strands of the same orientation we need to
perform the procedure for finding MUM pairs twice, first with G1 in
the given orientation and then with G1 reversed. For each character ai

in A, ai has a positive sign if the MUM pairs represented by (ai , bδ(i))

are from two strands of the same orientation, and a negative sign
otherwise. A character in B always has a positive sign. Intuitively,
if a certain part of G1 is found to be reversed in G2, we expect
that the MUM pairs extracted from this part have opposite orderings
in A and B, and all the characters ai of these MUM pairs carry a
negative sign.

2.2 Common subsequences
A sequence C = c1c2 · · · cm is a subsequence of A if there exists
indices i1, i2, . . . , im such that i1 < i2 < · · · < im and cj = aij for
1 ≤ j ≤ m. C is said to be an MWCS of A and B if among all
subsequences common to A and B, C is the one with the maximum
total weight. Note that for C to be a common subsequence of A and
B, we require all the involved characters to carry the same sign in
both A and B.

2.3 Mutations
Given a sequence X = x1x2 · · · x�, we consider the following three
types of mutations.

• A reversal r(i, j), where 1 ≤ i ≤ j ≤ �, reverses the ordering
of xixi+1 · · · xj and toggles their signs.

• A transposition t(i, j , d), where 1 ≤ i ≤ j ≤ � and 0 ≤ d ≤ �

with d /∈ [i − 1, j ], moves the substring xixi+1 · · · xj to the
location between xd and xd+1. The signs of the characters are
unchanged.

• A reversed-transposition rt(i, j , d), where 1 ≤ i ≤ j ≤ � and
0 ≤ d ≤ � with d /∈ [i−1, j ], moves the substring xixi+1 · · · xj

to the location between xd and xd+1 and reverses the ordering
of xixi+1 · · · xj . The signs of the characters are toggled.

2.4 The mutated subsequence problem
Given two sequences A and B and an integer k, we call a subsequence
X of A and a subsequence Y of B, a pair of k-mutated subsequences
if X can be transformed to Y by at most k mutations. The Mutated
Subsequence Problem is to find a pair of k-mutated subsequences
such that the weight is maximized. When k = 0, the problem is
equivalent to finding the MWCS.

2.5 Reducing genome rearrangement to Mutated
Subsequence Problem

Given two permutations of signed integers π1 and π2, the gen-
ome rearrangement problem involving reversals, transpositions and
reversed-transpositions asks for the minimum number of mutations
needed to transform π1 to π2. This problem can be polynomial-time
reduced to the Mutated Subsequence Problem as follows. We asso-
ciate a weight of 1 to each integer of π1 and π2. For k = 1, 2, . . . ,
we query the Mutated Subsequence Problem with input π1 and π2

for the pair of maximum weight k-mutated subsequences. Let k′ be
the smallest integer such that the pair of k′-mutated subsequences is
exactly π1 and π2. π1 can be transformed to π2 using k′ mutations
but not k′ − 1 mutations; so k′ is the minimum number of mutations
needed to transform π1 to π2. k′ is the maximum length of π1; so at
most a polynomial number of queries are made.

As the genome rearrangement problem involving reversals, trans-
positions and reversed-transpositions is believed to be NP-hard,
the Mutated Subsequence Problem is likely to be even more
NP-hard.

3 MAXIMUM WEIGHT COMMON SUBSEQUENCE
This section presents an O(n log n) time algorithm which, given two
sequences of n distinct characters, finds the MWCS, or equivalently,
solves the Mutated Subsequence Problem for the special case of
k = 0 (i.e. no mutation is allowed). This algorithm also serves as
a subroutine for the algorithm MSS given in the next section. The
algorithm makes use of the techniques in the work of Cole et al.
(2000) to compute the maximum agreement subtree.

Lemma 1. Given two sequences A[1..n] = a1a2 · · · an and
B[1..n] = b1b2 · · · bn of n distinct characters, we can find the MWCS
in O(n log n) time. Furthermore, by the end of the algorithm, a
data structure is built such that for any pair of prefixes A[1..i] and
B[1..j ], 1 ≤ i, j ≤ n, the weight of their MWCS can be retrieved in
O(log n) time.

We denote MWCS (A, B) as the weight of the MWCS of A and
B. Let C�[k] be MWCS (A[1..�], B[1..k]). Note that C�[k] = 0 if
� = 0 or k = 0. For other values of � and k, we have the following
equation. Recall that w(A[i]) is the weight of the character A[i] and
δ(i) is the index of the character in B that matches A[i].

C�[k] = max

{
C�−1[k]
w(A[�]) + C�−1[δ(�) − 1] if k ≥ δ(�)

. (1)

By computing the function C� for � = 1, 2, . . . , n incrementally, we
can eventually compute MWCS (A, B), which equals Cn[n]. This
simple approach takes O(n2) time.

We observe that the values in C�[1..n] are increasing, i.e. C�[1] ≤
C�[2] ≤ · · · ≤ C�[n]. Instead of storing the values in C� explicitly,

2273



H.L.Chan et al.

we store only the boundaries at which the values change. Precisely,
C�[1..n] can be represented by the pairs (i, C�[i]) where C�[i] >

C�[i − 1]. Furthermore, we store these tuples in a binary search tree,
denoted as T�, which allows us to efficiently retrieve the value of
C�[i] for any i.

Given T1, . . . , T�−1, we can make use of Equation (1) to com-
pute C�[δ(�)] in O(log n) time. Then we can build T� from
T�−1 as follows. Notice that C�[δ(�)] ≥ C�−1[δ(�)], so either
C�[δ(l)] = C�−1[δ(�)] or C�[δ(�)] > C�−1[δ(�)]. Lemma 2 shows
that in either case, all the values in the array C� can be computed
easily.

Lemma 2. (a) If C�[δ(�)] = C�−1[δ(�)], then C�[k] = C�−1[k]
for all k = 1, 2, . . . , n.
(b) If C�[δ(�)] > C�−1[δ(�)], let k0 be the smallest integer greater
than δ(�) such that C�[δ(�)] < C�−1[k0]. Then, (i)C�[k] = C�−1[k]
for all k < δ(�) and k ≥ k0; and (ii), C�[k] = C�[δ(�)] for δ(�) ≤
k < k0.

Hence, we can build T� from T�−1 as follows. If C�[δ(�)] =
C�−1[δ(�)], then by Lemma 2(a), T� is same as T�−1. Otherwise,
by Lemma 2(b), we can construct T� from T�−1 by deleting all tuples
(i, C�−1[i]) where i ≥ δ(�) and C�−1[i] ≤ C�[δ(�)], followed by
inserting the tuple (δ(�), C�[δ(�)]). Denote α� as the number of pairs
being deleted. The time for computing T� is O((α� + 1) log n).

Apparently, the above method implies that T�−1 is erased once
T� is obtained. Nonetheless, by exploiting a persistent data struc-
ture (Sarnak and Tarjan, 1986), both T� and T�−1 can coexist after
the insert and delete operations, while retaining the same time
complexity for construction and accession. In summary, the total
time for constructing T1, . . . , Tn is O

(∑n
�=1(log n + α� log n)

)
. As

we insert at most n pairs into these trees, we can delete at most
n pairs, and

∑n
�=1 α� ≤ n. Hence, T1, . . . , Tn can all be com-

puted in O(n log n) time. The weight of the MWCS of A and
B is given by Cn[n]. The required subsequence can be found in
O(n log n) time using the standard backtracking method. Also, for
any pair of prefixes A[1..i] and B[1..j ], where 1 ≤ i, j ≤ n, the
weight of their MWCS is given by Ci[j ], which can be accessed
in O(log n) time.

4 A PRACTICAL ALGORITHM FOR SELECTING
MUM PAIRS

In this section, we present an efficient algorithm MSS, for find-
ing a pair of k-mutated subsequences with weight very close to (if
not equal to) the largest possible weight. The time complexity is
O(n2(log n + k)). This algorithm has been implemented and used
in our new software for locating conserved genes. We will show, in
the next section, that MSS performs well in all test cases of closely
related genomes.

To find a pair of k-mutated subsequences of two sequences A

and B that have a large weight, we first find the MWCS of A and
B, which we call the backbone. Then we attempt to identify which
parts of the backbone should be replaced with other shorter com-
mon subsequences corresponding to different mutations so as to
increase the overall weight. Roughly speaking, a good candidate
should be heavy-weight common subsequence outside the backbone
and should replace only a small portion of the backbone. Details are
as follows.

Step 1. Backbone. Find the MWCS of A and B. We call this
subsequence as the backbone, based on which we want to add k

subsequences corresponding to some mutations that are likely to
maximize the overall weight.

Definition 1. An interval A[i, j ], where i ≤ j , is said to be sign-
consistent at its endpoints or simply sign-consistent if either both
A[i] and A[j ] have positive signs and δ(i) ≤ δ(j) or both A[i] and
A[j ] have negative signs and δ(i) ≥ δ(j).

Step 2. Score of an interval. For every interval A[i, j ] that
is sign-consistent, we calculate a score reflecting the gain if
(A[i, j ], B[δ(i), δ(j)]) is considered to include a common sub-
sequence corresponding to a mutation that involves the endpoints.
More precisely, if A[i] and A[j ] both carry a positive sign, the gain
is defined as the weight of the MWCS of A[i, j ] and B[δ(i), δ(j)]
minus the total weight of characters in the backbone that fall into
A[i, j ] or B[δ(i), δ(j)]. If A[i] and A[j ] both carry a negative sign,
we consider the reversal of B[δ(i), δ(j)] instead.

Step 3. Maximum score of k intervals. Among all intervals
A[i, j ] that are sign-consistent, find k intervals that are mutually dis-
joint in A and maximize the total score. This step can be very time
consuming if one simply examines every k interval; fortunately, we
can take advantage of the structural relationship and use dynamic
programming to report the best k pairs in only O(kn2) time.

Step 4. Refinement. Consider any two of the k intervals selec-
ted in Step 3, say, A[i, j ] and A[i ′, j ′]. Note that A[i, j ] and
A[i ′, j ′] are disjoint, but B[δ(i), δ(j)] and B[δ(i ′), δ(j ′)] may not
be disjoint. If this is the case, we examine all possible ways to
shrink the intervals A[i, j ] and A[i ′, j ′] so that the resultant inter-
vals on B no longer overlap, and we select the two shrunk intervals
that maximize the total score to replace A[i, j ] and A[i ′, j ′]. We
repeat such refinement until no more problematic pairs of intervals
are left.

Step 5. Output. We report a pair of k-mutated subsequences
(X, Y ) for A and B as follows: X can be constructed from A by
first including all characters in the backbone except those enclosed
in the k intervals reported in Step 4, and then inserting, for each
interval A[i, j ] reported in Step 4, the MWCS between A[i, j ] and
B[δ(i), δ(j)] (or its reversal if the sign is negative). Y can be obtained
in a similar manner.

Remark. Note that the above algorithm considers only the genes
that have been moved at most once and thus it searches for mutations
that involve non-overlapping regions. This assumption is reason-
able for closely related species. In fact, the experimental results also
show that MSS outperforms the others for closely related species,
but it does not work very well for Baculoviridae genomes that are
not in the same genus. It is expected that there could be more muta-
tions involved in these genomes and some of these mutations may
cluster on the same region, called hot spots, which degrade the per-
formance of MSS. In Section 5.4, we will show that it is easy to
integrate MUMmer-3 or MaxMinCluster with MSS to obtain a bet-
ter software which can handle genomes with more mutations and
hot spots.

4.1 Implementation details of MSS
Step 1 takes O(n log n) time by applying the algorithm presented
in Section 3. A brute force way to implement Step 2 would require
executing the MWCS algorithm n2 times, using O(n3 log n) time.

2274



Mutated subsequence problem

The following shows how to perform Step 2 in O(n2 log n) time.
First, we perform the following preprocessing.

For all 1 ≤ i ≤ j ≤ n, compute the MWCS of A[i, j ] and
B[δ(i), δ(j)], as well as of A[i, j ] and the reversal of
B[δ(i), δ(j)].

To compute the above values in O(n2 log n) time, we divide the pre-
processing into n phases; in Phase i, we apply the MWCS algorithm
to process A[i, n] and B[δ(i), n]; this gives us not only the weight of
the MWCS of A[i, n] and B[δ(i), n], but also a data structure (pre-
cisely, a persistent binary tree) allowing us to retrieve the weight of
the MWCS of A[i, h] and B[δ(i), �] for any combination of h and
� in O(log n) time. Thus we can retrieve the weight of the MWCS
of A[i, j ] and B[δ(i), δ(j)] for all j ≥ i in O(n log n) time. After
we have performed the O(n2 log n) time preprocessing, the score of
each interval A[i, j ] can be computed in O(1) time. Step 2 takes at
most O(n2 log n) time.

Step 3 is the most non-trivial step; it makes use of dynamic
programming so as to improve the time required. Details are as
follows.

DefineOPT[c, j ] as the maximum total weight for at most c disjoint
intervals of A, subject to the requirement that all intervals end at or
before A[j ]. Denote the score of the interval A[i, j ] calculated in
Step 2 as Score[i, j ]. The dynamic programming is based on the
following recurrence.

Proposition 1. If c = 0 or j = 0, OPT[c, j ] = 0. Otherwise,

OPT[c, j ] =max

{
OPT[c, j − 1]
maxi=1,··· ,n{OPT[c − 1, i − 1] + Score[i, j ]} .

Notice that OPT[k, n] is the total weight of the k intervals that
maximize the total score. We can use a two-level for loop to compute
OPT[k, n] in O(kn2) time, and recover the positions of the k intervals
in the same time complexity. Steps 4 and 5 are straightforward, using
at most O(kn2) and O(n2) time, respectively. Thus, the overall time
complexity of the algorithm is O(n2 log n + kn2).

The space complexity (memory requirement) of this algorithm is
dominated by the preprocessing, which requires O(n2) space.

4.2 Performance guarantee
When tested with real data, the subset of MUM pairs reported by
MSS often has a total length very close to the maximum possible
length. From a theoretical viewpoint, we are also able to prove that
even in the worst case, MSS has a bounded performance.

Lemma 3. Given two sequences A and B and an integer k, the
weight of the pair of k-mutated subsequences found by MSS is at
least 1/(3k + 1) times that of any k-mutated subsequences.

5 EXPERIMENTAL RESULTS
In this section, we show how to exploit the algorithm MSS to develop
two software for locating conserved genes of two given genomes. We
test the software on 15 pairs of human and mouse chromosomes and
also on 36 pairs of virus genomes (from the family Baculoviridae).
The results are compared with two existing software MUMmer-3
(Kurtz et al., 2004) and MaxMinCluster (Wong et al., 2004). Table 1
gives a summary of the comparison, showing that our new software
is more effective.

5.1 A simple software
The first software we have implemented simply applies MSS directly
to find out which MUM pairs are likely to be a part of some conserved
genes. Details are as follows:

The input is two DNA sequences. Depending on the user’s choice,
the software can generate MUM pairs from the DNA sequences or
from the translated protein sequences. By using a suffix tree, we can
identify in linear time all MUM pairs of length of at least �, where
the default value of � is 20 for DNA sequences and 7 for translated
protein sequences. After generating the MUM pairs, we apply MSS
directly to select the MUM pairs that are likely to correspond to
conserved genes. MSS requires a user parameter k (i.e. the number
of mutations allowed). A user can choose a particular value of k or
let the software determine an appropriate value for the given dataset.
In the latter case, the software will try to estimate the evolutionary
distance between the species based on the located MUM pairs and
detect the effectiveness of allowing more mutations, then set the
value of k accordingly. The software has been implemented on a PC
with 1 G RAM and a 2.4 GHz CPU.

5.1.1 Measurement We compared the software based on MSS
with MUMmer-3 and MaxMinCluster from two perspectives: the
coverage and the sensitivity. For coverage, we count the percentage of
published conserved genes for which some MUM pairs are reported.
We note that high coverage alone may not imply high quality in
the output as one can simply output every MUM pair to achieve
the maximum coverage. Thus, we also consider the percentage of
reported MUM pairs that actually reside in a conserved gene. This
percentage is referred to as the sensitivity of the output. It gives us an
indication of accuracy, yet it may underestimate the actual accuracy
as not all conserved genes have been identified. In other words, we
expect a good algorithm to select a set of MUM pairs with high
coverage and reasonable sensitivity.

5.2 Aligning DNA sequences
We used 15 pairs of human and mouse chromosomes as our test cases.
The size of the chromosomes ranged from 14 to 65 million nucle-
otides. For each pair of chromosomes, the biological community
has already identified a number of conserved genes; details are pub-
lished in GenBank (http://www.ncbi.nlm.nih.gov/Homology). The
set of published genes will be the reference for our evaluation.

We generated the MUM pairs of the DNA sequences and it was
required that each MUM pair had length � of at least 20. MUM
pairs with length <20 are likely to be noise (Delcher et al., 1999).
These MUM pairs served as input data to our algorithm as well
as MUMmer-3 and MaxMinCluster. (Details of the datasets can be
found in our website.)

5.2.1 The findings We let the software determine the value of k

(the number of mutations allowed) automatically and k is found to be
four. In fact, we have also tried other values of k and found that the
coverage and sensitivity are more or less the same when we increased
the value of k (see below for more discussion). Figure 1 shows the
coverage and sensitivity of MUMmer-3, MaxMinCluster and MSS
(k = 4) in the 15 test cases (refer to our website for detailed exper-
imental results). In general, MSS has a better coverage and slightly
higher sensitivity than both MUMmer-3 and MaxMinCluster. Pre-
cisely, MSS has an average coverage of 91%, which is 14 and 7%
higher than that of MUMmer-3 and MaxMinCluster, respectively.

2275

http://www.ncbi.nlm.nih.gov/Homology


H.L.Chan et al.

Fig. 1. Performance of MUMmer-3, MaxMinCluster and MSS for aligning mouse and human chromosomes.

Fig. 2. Average coverage and sensitivity of MSS for different values of k.

The average sensitivity of MSS is 29%, which is higher than that of
MUMmer-3 and MaxMinCluster by about 3% and 2%, respectively.
The number of conserved genes located by MSS ranges from 19 to
176 and the number of published genes ranges from 22 to 192 in
this set of test cases (refer to our website for more details). It is also
worth mentioning that MSS has a higher average number of MUM
pairs reported for each known conserved gene; the actual statistics
are 23, 25 and 28 for MUMmer-3, MaxMinCluster and MSS,
respectively.

In summary, MSS, using a mutation sensitive approach to select the
MUM pairs, is able to locate the conserved genes more effectively. As
a remark, the average running times for MUMmer-3, MaxMinCluster
and MSS are 1.3, 2.5 and 3.4 min, respectively, which are quite
reasonable.

5.2.2 Different values of k Figure 2 shows the average cover-
age and sensitivity of MSS for different values of k (i.e. number
of mutations allowed). We observe that both the coverage and
the sensitivity converge after k = 4. Biologically, it was suggested
that only 178 ± 39 mutations have occurred between mouse and
human (Nadeau and Taylor, 1984), a more recent work (Pevzner
and Tesler, 2003a) provided evidence for a larger number of muta-
tions (281) than previously known. It is also known that there are
∼100 pairs of human–mouse chromosomes that are related (Mouse
Genome Informatics, 2004, http://www.informatics.jax.org/). The
value of 4 seems to be in line with the number of mutations between

a pair of mouse and human chromosomes that were predicted in some
previous study.

5.3 Aligning translated protein sequences
We used pairs of virus genomes from the family Baculoviridae
as our test cases. The virus genomes are of length 100 000–
200 000 nt and their corresponding conserved genes have been
published in the literature (Herniou et al., 2001, http://www.bio.ic.ac.
uk/research/dor/research/eah). Mutations occur more frequently in
virus and their DNA sequences show much lower degree of simil-
arity than those of mouse and human. Comparison of the translated
protein sequences is more useful in analyzing these distant species.

We generated MUM pairs of length for at least three amino acids.
These MUM pairs served as input to MSS and also as input to
MUMmer-3 and MaxMinCluster. (Details of the datasets can be
found in our website.)

5.3.1 The findings We first used 18 pairs of Baculoviridae gen-
omes that were within the same genus (either Nucleopolyhedrovirus
or Granulovirus). We let the software determine the value of k (the
number of mutations allowed) automatically. The value of k was
found to be 20. This seems to be reasonable as we expect more muta-
tions to exist in viruses. Figure 3 shows the coverage and sensitivity
of MSS in these 18 test cases. MSS achieves the highest coverage in
all except one test case, and it has the highest sensitivity in all the
18 cases. Specifically, the average coverage of MSS is 78%, while

2276

http://www.informatics.jax.org/
http://www.bio.ic.ac


Mutated subsequence problem

Fig. 3. Performance of MUMmer-3, MaxMinCluster and MSS for aligning the translated protein sequences of 18 pairs of Baculoviridae genomes that are in
the same genus.

Fig. 4. Performance of the hybrid approach (MaxMinCluster + MSS) for aligning Baculoviridae genomes that are not in the same genus.

the coverage of MaxMinCluster and MUMmer-3 are 69 and 66%,
respectively. The number of conserved genes located by MSS ranges
from 63 to 134 and the number of published genes ranges from 92
to 134 for these test cases (refer to our website for more details).
The sensitivity of the three software are 87, 75 and 71% for MSS,
MaxMinCluster and MUMmer-3, respectively.

Next, we considered 18 pairs of Baculoviridae genomes that were
not within the same genus. As one may expect, MSS cannot handle
genomes that involve too many mutations and possibly with hot
spots. The performance of MSS is significantly inferior to MaxMin-
Cluster and MUMmer-3. The average coverage of MSS is 36%, while
MaxMinCluster and MUMmer-3 achieve 45 and 43%, respectively.
As a remark, the number of conserved genes located by MSS ranges
from 16 to 38 and the number of published genes ranges from 68 to
77 in these test cases.

5.4 A better software
The second software we have implemented adopts a hybrid approach.
The aim is to obtain a software that can handle genomes that are
closely related as well as those with more mutations and hot spots.
The hybrid approach first applies MaxMinCluster to identify some
clusters that are obviously conserved genes. These clusters are each

treated as a MUM pair with a bigger weight and processed together
with the remaining MUM pairs using the MSS.

For species that are close, the hybrid approach has the same per-
formance as MSS alone; more specifically, the average coverage is
91% for the case of human–mouse, and 79% for the viruses. For
species that might involve a large number of mutations, the hybrid
approach differentiates itself from MSS alone and attains a perform-
ance even better than MaxMinCluster and MUMmer-3. Figure 4
compares the coverage and sensitivity of this hybrid approach against
other software on those pairs of Baculoviridae genomes that are not
in the same genus. The hybrid approach can achieve an average
coverage of 51% (MUMmer-3, MaxMinCluster and MSS individu-
ally can attain only 43, 45 and 36%, respectively), while maintaining
the sensitivity at a satisfactory level (∼53%). The number of con-
served genes located by the hybrid approach ranges from 29 to 44.
Note that the range using MSS alone is only 16–38 (the number of
published genes ranges from 68 to 77 for these test cases, refer to
our website for more details).

We have also tested the hybrid approach based on MUMmer-3
plus MSS, the performance is slightly worse than MaxMinCluster
plus MSS, achieving an average coverage of 48%. We believe that
the hybrid approach in general performs better because it can exploit

2277



H.L.Chan et al.

the local clustering algorithm (MUMmer-3 or MaxMinCluster) to
handle those mutations that are close together over hot spots. In
other words, the mutations (that are close together) over hot spots
are handled by MUMmer-3 and MaxMinCluster while the muta-
tions involving disjoint regions (that can be far away) are located
by MSS.

In conclusion, we find that the hybrid algorithm (in particular,
MaxMinCluster plus MSS) is the most effective algorithm to locate
conserved genes in all cases.

ACKNOWLEDGEMENT
This work was supported in part by Hong Kong RGC Grant
HKU-7139/04E.

REFERENCES
Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Bafna,V. and Pevzner,P. (1996) Genome rearrangements and sorting by reversals. SIAM

J. Sci. Comput., 25, 272–289.
Bafna,V. and Pevzner,P. (1998) Sorting by transpositions. J. Discrete Mathematics, 11,

224–240.
Baillie,D.L. and Rose,A.M. (2000) WABA success: a tool for sequence comparison

between large genomes. Genome Res., 10, 1071–1073.
Chain,P. et al. (2003) An application-focused review of comparative genomic tools:

capabilities, limitations and future challenges. Brief. Bioinformatics, 4, 105–123.
Cole,R. et al. (2000) An O(n log n) algorithm for the maximum agreement subtree

problem for binary trees. SIAM J. Sci. Comput., 30, 1385–1404.
Delcher,A.L. et al. (1999) Alignment of whole genomes. Nucleic Acids Res., 27,

2369–2376.
Delcher,A.L. et al. (2002) Fast algorithms for large-scale genome alignment and

comparison. Nucleic Acids Res., 30, 2478–2483.

Eriksen,N. (2002) (1 + ε)-approximation of sorting by reversals and transpositions.
Theor. Comput. Sci., 289, 517–529.

Gu,Q.P. et al. (1999) A 2-approximation algorithm for genome rearrangements by
reversals and transpositions. Theor. Comput. Sci., 210, 327–339.

Hannenhalli,S. and Pevzner,P. (1999) Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. J. ACM, 46, 1–27.

Herniou,E.A. et al. (2001) Use of whole genome sequence data to infer baculovirus
phylogeny. J. Virol., 75, 8117–8126.

Kaplan,H. et al. (1999) A faster and simpler algorithm for sorting signed permutations
by reversals. SIAM J. Sci. Comput., 29, 880–892.

Kurtz,S. et al. (2004) Versatile and open software for comparing large genomes. Genome
Biol., 5, R12.

Mouse Genome Informatics (2004) Mammalian orthology and comparative maps.
Nadeau,J.H. and Taylor,B.A. (1984) Lengths of chromosomal segments conserved since

divergence of man and mouse. Proc. Natl Acad. Sci. USA, 81, 814–818.
Ohno,S. (1973) Ancient linkage groups and frozen accidents. Nature, 244,

259–262.
Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological sequence com-

parison. Proc. Natl Acad. Sci. USA, 85, 2444–2448.
Pevzner,P. (2000) Computational Molecular Biology—An Algorithmic Approach. The

MIT Press, Cambridge.
Pevzner,P. and Tesler,G. (2003a) Genome rearrangements in mammalian evolu-

tion: Lessons from human and mouse genomic sequences. Genome Res., 13,
13–26.

Pevzner,P. and Tesler,G. (2003b) Transforming men into mice: the Nadeau–Taylor
chromosal breakage model revisited. In proceedings of RECOMB 2003, Berlin,
Germany, ACM Press, pp. 247–256.

Sarnak,N. and Tarjan,R.E. (1986) Planar point location using persistent search trees.
Commun. ACM, 29, 669–679.

Schwartz,S. et al. (2000) Pipmaker—a web server for aligning two genomic dna
sequences. Genome Res., 10, 577–586.

Vincens,P. et al. (1998) A strategy for finding regions of similarity in complete genome
sequences. Bioinformatics, 14, 715–725.

Wong,P.W.H. et al. (2004) An efficient algorithm for optimizing whole genome
alignment with noise. Bioinformatics, 20, 2676–2684.

2278


