
Title Internet scheduling environment with market-driven agents

Author(s) Yen, BPC; Wu, OQ

Citation Ieee Transactions On Systems, Man, And Cybernetics Part
A:Systems And Humans., 2004, v. 34 n. 2, p. 281-289

Issued Date 2004

URL http://hdl.handle.net/10722/43544

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004 281

[10] D. D. Chamberlain and R. F. Boyce, “SEQUEL: A structured english
query language,” in Proc. ACM SIGMOD Workshop Data Description,
Access, Control, Ann Arbor, MI, 1974.

[11] D. Greenblatt and J. Waxman, “A study of three database query lan-
guages,” in Databases: Improving Usability and Representativeness, B.
Shneiderman, Ed. New York: Academic, 1978, pp. 76–87.

[12] C.Welty andD.W. Stemple, “Human factors comparison of a procedural
and nonprocedural query language,” ACM Trans. Database Syst., vol. 6,
no. 4, pp. 626–649, 1981.

[13] H. J. Kim, H. F. Korth, and A. Silberschatz, “PICASSO: A graphical
query language,” Softw.—Pract. Exp., vol. 18, no. 3, pp. 169–203,
1988.

[14] M. M. Zloof, “Query-By-Example: A data base language,” IBM Syst. J.,
vol. 16, no. 4, pp. 324–343, 1977.

[15] V. M. Markowitz and A. Shoshani, “Abbreviated query interpretation
in entity-relationship oriented databases,” in Proc. 8th Int. Conf. Entity-
Relationship Approach, F.H Lochovsky, Ed., 1989, pp. 40–58.

[16] H. C. Chan, K. K. Wei, and K. L. Siau, “User-Database interface: The
effect of abstraction levels on query performance,” MIS Quart., vol. 17,
no. 4, pp. 441–464, 1993.

[17] W. J. Jih, D. A. Bradbard, C. A. Snyder, and N. G. A. Thompson, “The
effects of relational and entity-relationship data models on query per-
formance of end-users,” Int. J. Man-Mach. Stud., vol. 31, pp. 257–267,
1989.

[18] J. S. Davis, “Experimental investigation of the utility of data structure
and ER diagrams in database query,” Int. J. Man-Mach. Stud., vol. 32,
pp. 449–459, 1990.

[19] D. Batra, J. A. Hoffer, and R. P. Bostrom, “Comparing representations
with relational and EER models,” Commun. ACM, vol. 33, no. 2, pp.
126–139, 1990.

[20] S. L. Jarvenpaa and J. J. Machesky, “Data analysis and learning: an ex-
perimental study of data modeling tools,” Int. J. Man-Mach. Stud., vol.
31, pp. 367–391, 1989.

[21] D. Batra, “A framework for studying human error behavior in conceptual
database modeling,” Inform. Manage., vol. 25, pp. 121–131, 1993.

[22] D. Batra and M. K. Sein, “Improving conceptual database design
through feedback,” Int. J. Human-Comput. Stud., vol. 40, pp. 653–676,
1994.

[23] P. Reisner, “Human factors studies of database query languages, a survey
and assessment,” Comput. Surv., vol. 13, no. 1, pp. 13–31, 1981.

[24] H.C. Chan, K.K. Wei, and K. Siau, “The effect of a database feedback
system on user performance,” Behav. Inf. Technol., vol. 14, no. 3, pp.
152–162, May–June 1995.

[25] , “A system for query comprehension,” Inf. Softw. Technol., vol. 39,
pp. 141–148, 1997.

[26] H. Chan, K. Siau, and K.Wei, “The effect of data model, system and task
characteristics on user query performance—An empirical study,” DATA
BASE Advances Inform. Syst., vol. 29, no. 1, pp. 31–49, Winter 1998.

[27] K. L. Siau, K. P. Tan, and H. C. Chan, “A CASE tool for conceptual
database design,” Inform. Softw. Technol., vol. 34, no. 12, pp. 779–786,
December 1992.

[28] K. L. Siau, H. C. Chan, and K. P. Tan, “Visual knowledge query lan-
guage,” IEICE Trans. Inform. Syst., vol. E75-D, no. 5, pp. 697–703,
1992.

[29] T. Connolly, C. Begg, and A. Strachan, Data Systems—A Practical Ap-
proach to Design, Implementation and Management. Reading, MA:
Addison-Wesley, 1996.

[30] J. Thomas and J. Gould, “A psychological study of query by example,”
in Proc. National Computer Conf., 1975, pp. 439–445.

[31] H. C. Chan, K. K. Wei, and K. L. Siau, “An empirical study on
end-users’ update performance for different abstraction levels,” Int. J.
Human-Comput. Studies, vol. 41, pp. 309–328, 1994.

[32] A. F. Borthick, P. L. Bowen, S. T. Liew, and F. H. Rohde, “The effects
of normalization on end-user query errors: An experimental evaluation,”
Int. J. Accounting Inform. Syst., vol. 2, pp. 195–221, 2001.

[33] J. M. Boyle, K. F. Bury, and R. J. Evey, “Two studies evaluating learning
and use of QBE and SQL,” in Proc. Human Factors Society 27th Annu.
Meeting, 1982, pp. 663–667.

[34] K. S. Suh and A. M. Jenkins, “A comparison of linear keyword and
restricted natural language data base interfaces for novice users,” Inf.
Syst. Res., vol. 3, no. 3, pp. 252–272, 1992.

[35] C. Liao and P. C. Palvia, “The impact of data models and task com-
plexity on end-user performance: An experimental investigation,” Int. J.
Human-Comput. Studies, vol. 52, pp. 831–845, 2000.

[36] K. Siau, “Informational and computational equivalence in comparing
information modeling methods,” J. Database Manage., vol. 15, no. 1,
pp. 73–86, 2004.

[37] D. George and P. Mallery, SPSS for Windows Step by Step. A Simple
Guide and Reference. Boston, MA: Allyn & Bacon, 2001.

[38] K. Siau, “Information modeling and method engineering: A psycholog-
ical perspective,” J. Database Manage., vol. 10, no. 4, pp. 44–50, 1999.

Internet Scheduling Environment
With Market-Driven Agents

Benjamin P.-C. Yen and Owen Q. Wu

Abstract—This paper describes a new generation scheduling paradigm,
the Internet scheduling environment. It is formed by a group of Internet
scheduling agents which share computational resources to solve scheduling
problems in a distributed and collaborative manner. We propose a migra-
tion scheme to transform existing standalone scheduling systems to Internet
scheduling agents that can communicate with each other and solve prob-
lems beyond individual capabilities. To coordinate computational resource
collaboration among agents, we introduce the market-based control mecha-
nism in which self-interested agents initiate or participate in auctions to sell
or buy scheduling problems. Efficient allocation of computational resources
is achieved through the auctions. This paper also describes a prototype In-
ternet scheduling environment named LekiNET, which is migrated from
LEKIN®, a flexible job shop scheduling system. The experiments on the
LekiNET testbed demonstrate that the agent-based market-driven Internet
scheduling environment is feasible and advantageous to future scheduling
research and development.

Index Terms—Agent, distributed resource collaboration, Internet sched-
uling environment, market-based control.

I. INTRODUCTION

A. Needs for Distributed Resource Collaboration

Scheduling problems abound in manufacturing factories, transporta-
tion systems, hospitals, publishing houses, and so on. As demands
on businesses become greater, companies are faced with increasingly
complex tasks.

For example, in British Aerospace’s largest factory in Broughton,
U.K., there are around 2000 staff producing 180 sets of Airbus wings
and 40 sets of Hawker 800 fuselages and wings per year. They are con-
stantly seeking improvement in production schedules that could bring
substantial savings in reducing work-in-process inventories and late
deliveries.

For another example, S&A Food’s Derby center of operations em-
ploys some 1000 staff to produce 1.1 million meals—or 650 tons of
prepared food—per week. The schedules must be dynamically updated
in response to the instant change of demands and priorities. The sched-
ulers must also be able to answer what-if questions to prepare ahead for

Manuscript received January 1, 2000; revised February 13, 2003 and Oc-
tober 12, 2003. This work was supported in part by Hong Kong Government
RGC under Grant 6076/00E. This paper was recommended by Associate Editor
Y. Narahari.

B. P.-C. Yen is with the Faculty of Business and Economics, University of
Hong Kong, Hong Kong.

O. Q. Wu is with the Sauder School of Business, University of British Co-
lumbia, Vancouver, BC V6T 1Z2 Canada.

Digital Object Identifier 10.1109/TSMCA.2003.822273

1083-4427/04$20.00 © 2004 IEEE

282 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004

extreme situations. This adaptability to dynamic situations is also the
key requirement for transportation and hospital scheduling systems.

Some special scheduling requirements also arise in practice. At
Boots Contract Manufacturing (BCM), for instance, if one product has
a blue fill and another order has a white fill, it is much more efficient
to do the white fill product first, otherwise the vessel would have to
be washed between the two processes. The solution to this problem is
not complex but not every scheduling system has the solution method
built in. Should such needs arise, can we solve the problem without
upgrading or installing a new system?

No scheduling system works equally well in different industrial situ-
ations; selecting the right system for the business is no easy task. More-
over, installation of scheduling systems is costly. According to a recent
vehicle routing software survey [12] covering 24 software used in var-
ious industries, the installation support cost is about $100 to $285 per
hour, and typical time needed for installation ranges from one to ten
days. This amounts to an $8 000 installation cost on average. In addi-
tion, the software alone costs $10 000 or more. Other costs including
maintenance and hardware expenses.

In this paper, we ask the following question: can the existing sched-
uling systems communicate with each other, share computational
resources and solve scheduling problems collaboratively? We try to
demonstrate that efficient computational resource collaboration is
feasible and could be a solution to many of the above issues. For those
small manufacturers or startup companies, computational resource
collaboration also eases their budgets in purchasing and installing the
scheduling systems. For people working on planning and forecasting
tasks, the collaboration of scheduling systems allows them to check
the feasibility of their plans and forecast the expected performance
under new situations.

Scheduling problems have received considerable attention in the area
of operations research [18]. The solution techniques range from cen-
tralized approaches (analytic methods, heuristic search, meta-heuristic
methods, etc.) to various decentralized approaches (agent-based archi-
tecture using contract net protocol, auction protocol, etc.). The potential
value of integrating these approaches has been discussed recently [22].
Distributed resource collaboration can achieve a flexible and scalable
integration without actually modifying the core of existing systems.

B. Feasibility of Distributed Resource Collaboration

The first obvious requirement of distributed resource collaboration is
the existence of such resources. System researchers have created many
scheduling systems over the past decades, e.g., OPAL [1], TOSCA [2],
intelligent scheduling systems [3], SONIA [6], DART [7], current re-
search and development includes interactive scheduling systems [8],
ISIS [9], ReDS [11], mixed-initiative scheduling systems [13], [14],
CUISE [18], OPIS [23], reactive scheduling systems [24], etc.

The second requirement of distributed resource collaboration is to
unify the scheduling problem description and build a common standard
language so that all the existing scheduling systems are able to com-
municate. This paper describes the design and development of a com-
munication environment—the Internet scheduling environment (ISE).

The reader may ask why we focus on the scheduling area, and
whether the distributed resource collaboration is feasible in a more
general sense that we can construct other types of problem-solving
environment. General problem-solving environment could be feasible
provided that systems are highly intelligent so that right resource can
be identified to solve right problems. However, to design the general
communication language and implement advanced agent analysis
ability might cost more than the benefit brought by the environment.
Scheduling problems are well-defined and well-describable. Sched-
uling area has abundant computational resources and human expertise.
Moreover, with the advent of the Internet, some scheduling systems

are already made remotely accessible on the Internet. Resource
collaboration is thus desirable for the scheduling area.

C. Definition of Internet Scheduling Environment

General definition of intelligent agents can be found in Wooldridge
and Jennings [26]. In this paper, we define the ISE as a scheduling
system that can reach out for scheduling resources on the Internet to
solve problems, and can communicate with other Internet scheduling
agents to share resources and solve problems collaboratively. An ISE is
defined as a scalable network of Internet scheduling agents that flexibly
collaborate to solve scheduling problems thatmay be beyond individual
capabilities.

A noteworthy issue is that the agent in this paper does not repre-
sent machine, tool or other physical entity. The latter notion of agent
is widely used in the literature on agent-based scheduling systems (see
[4], [16], and [21] for examples; see also [22] for discussion). We treat
each system as an agent and build the relations between the systems.
The notion of collaboration in this context is thus different from that in
the agent-based scheduling system literature. The latter refers to collab-
oration as the teamwork of different parties solving a single scheduling
problem within an enterprise. This type of collaboration usually con-
tains strongly related parties that team up to solve a particular problem.
Whereas we emphasize the dynamic nature of the collaboration among
scheduling agents:

1) the collaboration is dynamically established for problem-solving
and terminated after it is finished;

2) parties play dynamic roles in collaboration to solve various
scheduling problems rather than one single problem;

3) the whole collaborative community evolves dynamically with
parties entering and leaving continually.

The outline of this paper is as follows. Section II proposes a mi-
gration scheme that transforms existing scheduling systems to Internet
scheduling agents and designs a market mechanism that controls com-
putational resource collaboration. Section III discusses the LekiNET
testbed, an implementation of the ISE. Section IV describes extensive
experimentation to support the feasibility of the ISE. Conclusion fol-
lows in the last section.

II. DESIGN OF INTERNET SCHEDULING AGENTS

AND FORMATION OF THE ISE

A. Migration From Standalone Scheduling Systems to Internet
Scheduling Agents

A typical standalone scheduling system has three main modules:
user interface, scheduling engine, and database [27], [19]. The key to
the migration is to endow the systems with agent features. Genesereth
and Ketchpel [10] discussed three ways to agentify an existing system:
adding an intermediate communication agent, wrapping the system,
and rewriting the system. Considering the fact thatmost scheduling sys-
tems do not have built-in communication infrastructure, our migration
scheme is to wrap the scheduling engine and attach it to a communica-
tion agent, as shown in Fig. 1. The wrapper is thin—it just provides a
communication interface for the engine, while all the agent functional-
ities are implemented outside the wrapper. This structure facilitates mi-
gration of different standalone systems, since only the wrappers need
to be specifically designed for each system, while a single design of
agent internal structure can be adaptable to all.

Users interact directly with the agent. The user interface could be
migrated from the original system or developed separately. The agent
have decision-making features: if the scheduling tasks are within the
local engine’s capability, the agent uses the local engine to solve the
problem, otherwise he reaches out for other computational resources
(see the details in the next section).

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004 283

Fig. 1. Migration to an Internet scheduling agent.

The agent communication ability is based on exchanging mutually
understandable information, among which scheduling problem
description is the most important. Considering both scheduling theory
and practice, we not only describe a scheduling problem from its
mathematical characteristics but also include real-world situations as
problem-solving guidelines. The scheduling problem description can
be written as follows.

scheduling problem
{
problem category
additional constraints
scheduling data
initial solution
maximum allowed computing time (urgency)
priority level (priority)
reward and penalty (cost)
other user requirements and preferences

}

The scheduling problem category (e.g., the �j�j
 notation in
manufacturing scheduling [18]) and additional constraints describe
the basic mathematical characteristics of scheduling problems. User
requirements (e.g., urgency, priority, and cost) are explicitly included
in the description. Initial solution may also be specified if the user
hopes to make improvement on an existing solution.

B. Market-Based Control of Computational Resources Collaboration
in the ISE

Computational resources include executable scheduling algorithms
and hardware for running them. Computational resource collaboration
is to decide who solve what and when. The distributiveness, dynamics,
heterogeneity, and information asymmetry render the centralized con-
trol method extremely difficult. The market-based control approach is
motivated by certain features of markets, including decentralization,
interacting agents, and resource allocation. Clearwater [5] brought to-
gether the research on market-based control from diverse fields and
addressed that market-based control is a paradigm for controlling com-
plex systems that would otherwise be very difficult to control, maintain
or expand.

Price, reward, and penalty are the key interaction instruments in real
markets, so do the markets in the ISE.Whereas the market mechanisms

in the ISE serve as controls for distributed resource collaboration, and
no real monetary transaction will be made in the ISE. (Some service
fee may apply if the agent becomes a commercial product.)

The customer submits his scheduling problem to an agent to solve.
Usually, the customer has requirements on multiple performance mea-
sures, e.g., makespan, number of late jobs, computing time,1 etc. We
write the customer requirements as a set of the following inequalities:

Mi � ri; i = 1–n (1)

that is, the ith performancemeasureMi is required to lie under an upper
bound ri. The customer has various preferences of how the sched-
uling task must be performed. He may allow or disallow contracting
the problems to other agents. He may ask multiple agents to “com-
pete” in solving the same problem, and the solution that best meets the
requirements will be honored.

Let p be the agreed price of solving the scheduling problem. In
our current implementation, p is exogenously determined based on the
problem category and size.2 If all the requirements are met, the cus-
tomer pays the full price p, otherwise he imposes penalty (specified
in problem descriptions) on the agent. The penalty ui is a function of
the shortfall of the performance i. An example of simple linear penalty
function is

ui = �imax(mi � ri; 0) (2)

where mi is the actual performance, ri is the required upper bound,
and �i proxies the stringency of the requirement. The total penalty is
bounded by p. The final payment P is thus

P = max p�
i

ui; 0 : (3)

As mentioned earlier, all these prices and penalties are market in-
struments used to control the resource collaboration. No real transac-
tion actually occurs, but the agents are programmed to be “revenue”
maximizers. They decide when to solve the problem on his own, when
to initiate an auction to sell the problem to others, and when to reject
the task. The following simple threshold-value method can be used in

1Computing time measures the timespan of the problem-solving procedure.
This performance measure is generally not included in the scheduling literature.

2In the auction mechanisms discussed soon after, the bids and selling prices
are endogenously generated from the auction processes. Future research could
make price p endogenously depend on the customer demands and agents’ avail-
ability.

284 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004

Fig. 2. A typical auction session in the ISE.

decision-making processes and is currently implemented in our pro-
totype. When the agent receives a customer request, he estimates the
expected revenue (equals to the payment P) if solving the problem
on his own. If contracting is disallowed by the customer and the rev-
enue-price ratio is below a threshold value (e.g., 0.2), then the task is
considered unworthy of time and effort, and thus rejected. If the ratio
is above the threshold, the task is accepted and solved locally. When
contracting with other agents is allowed, if the revenue-price ratio is
above a threshold value (e.g., 0.95),3 the task is immediately accepted
and solved locally. Below the threshold, the agent will look for other
potential solvers by initiating an auction. If a better solver is found, he
may sell the task at a price higher than that would be if he solves the
problem on his own. Through the auction, the best solver is identified
and the efficient resource collaboration is achieved.

An important measure of the advantage of the ISE over the stand-
alone systems is customer satisfaction or, equivalently, dissatisfaction.
Customer dissatisfaction is incurred when the requirements are not met
or the request is rejected.

D =
Da(m; r); if accepted
Dr; if rejected.

(4)

where Da may take the same form as the penalty functions, and Dr

can take constant or depend on the reasons for rejection.4

Four basic types of auctions are widely analyzed in the literature
[17], [20]. Among them, the Vickrey auction (second-price5 sealed-bid
auction) owns inherent nice properties that make it the best choice for
the ISE:

3We choose threshold 0.95, considering the tradeoff between the time spent on
holding an auction and the probability of finding a better solver. The threshold
should also depend on the type of the problem, but for the ease of implementa-
tion we use a constant.

4There are three possible reasons for rejection:
1) the agent is incapable of solving the problem and contracting is disal-

lowed;
2) the agent is incapable of solving the problem and cannot find any other

contractor;
3) find some contractors but later the they canceled contracts.
5In the case of multiple agents competing in solving the same problem, the

multiunit Vickrey auction is used, in which m identical tasks are sold to the m
highest bidders at a price equal to them+ 1st bid.

1) in the Vickrey auction, each bidder’s strategy is to simply bid
his private value without any game-theoretic analysis on other
bidders;

2) sealed-bid auctions can be implemented in secure point-to-point
communication, while open auctions are more difficult to imple-
ment and less secure than Vickrey auctions;

3) the Vickrey auction is Pareto-optimal in private-value case [25].
It guarantees that scheduling tasks go to the agents with the
highest values, thus achieving efficient resource collaboration.

Fig. 2 shows the auction mechanism of the ISE.

1) First, the auctioneer requests some selected agents for bids. The
bid requests contain short problem descriptions with no massive
data.

2) Each bidder immediately uses the threshold method to make par-
ticipation decision. He will not participate in the auction if he is
incapable of solving the problem or he is currently busy (e.g., he
gets several tasks waiting for solving).

3) Then each participant agent constructs a bid based on the price,
customer requirements and engine capability. He can either
submit an effective bid (>0) indicating his intention to buy the
task, or an ineffective bid (=0) to quit the auction. Meanwhile,
the auctioneer constructs his private value of the task (in the
figure, Bid0 = $8).6

4) Finally, the auctioneer evaluates the bids received and announces
the auction results. The scheduling task is then contracted to the
winner. The contract can be canceled later on if situation changes
(e.g., the contractor wins other more valuable auctions and can-
cels the less valuable).

The market-based ISE are easily scalable because addition or dele-
tion of agents will not change the complexity of the decision problem
facing any other agent. Since the environment changes dynamically, it
is more efficient to maintain the agent identity information on a sepa-
rate server than to broadcast messages to the ISE. The name list servers
are used for this purpose. On entering/leaving the ISE, an agent regis-
ters/deregisters on one or more name list servers. By querying a name

6The auctioneer can announce a reserve price, below which he will not sell
out the task. Riley and Samuelson [20] showed that an optimal reserve price
that maximizes the auctioneer’s expected gain is strictly greater than his private
value, resulting in inefficient task allocation. Nevertheless, computerized agents
are under our control and we can force the auctioneer to set the reserve price
equal his private value.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004 285

Fig. 3. Main window of the LekiNET agent.

list server, an agent gets to know a group of potential collaborators, to
whom bid requests will be sent.

The market-based control mechanisms in this section and imple-
mented in the next are preliminary. More advanced techniques, such
as fuzzy logic and neural network, will enhance the mechanism in the
future.

III. LEKINET: AN IMPLEMENTATION OF THE ISE

LekiNET is a prototype ISE implemented in the Information System
Lab of the Hong Kong University of Science and Technology. The
LekiNET is migrated from LEKIN, a standalone manufacturing sched-
uling system developed in our previous research.7

The communication infrastructure of the LekiNET is implemented
using the common object request broker architecture (CORBA), a pro-
gramming architecture that enables interoperability among distributed
applications. The main implementation tools are Inprise VisiBroker 4.0
andMicrosoft Visual C++ 6.0. The name list server discussed at the end
of Section II is provided by the Naming Service in CORBA. We have
installed the LekiNET agents on 40 computers in the Lab., forming an
ISE testbed. Fig. 3 shows the main window of the LekiNET agent. The
upper part of the window shows the agent status. The lower part is the
event log, recording the occurrence time and duration of each event,
and actions taken in each. These log data are analyzed in Section IV.We
also built the LekiNET client program that interacts directly with cus-
tomers and accesses the ISE. The client program accepts users’ input
(including problem description, requirements, penalty terms) through
friendly interfaces migrated from the original LEKIN. The client then
connects to LekiNET agents, and displays returned schedules in de-
sired format, e.g., Gantt charts.

IV. EXPERIMENTS ON THE LEKINET TESTBED

We conducted some preliminary experiments to show that the dis-
tributed scheduling resource collaboration is feasible on the LekiNET

7See http://www.stern.nyu.edu/om/software/lekin/index.htm for more infor-
mation.

TABLE I
CONFIGURATION OF THE AGENTS IN THE EXPERIMENT

testbed. The experiments also exhibit agents’ opportunistic and goal-di-
rected behavior in the ISE.

A. Configuring the LekiNET Testbed

Our main experiment uses 12 heterogeneous agents, as shown in
Table I. The first eight agents are configured with the same hardware,
and the rest four are different. This allows for comparison of hardware
effect, an important aspect of computational resources.

In a real ISE, scheduling problems can be of very large scale; a single
problem may keep an engine occupied for tens of hours. Significant

286 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004

network delays also creep in if communications involve agents located
at far off places. These include delays due to inviting bids, transferring
data, collecting results, etc. To simulate the real ISE, we scale down the
time: typical problem-solving needs just a few seconds to five minutes;
customers send requests every other a few minutes, and network delays
are minimum in the Lab. Specifically, the input to the testbed is as
follows. Each agent serves three fixed customers who continually send
him scheduling problems randomly drawn from a problem pool.

1) Customers do not shift to different agent during the experiment.
There are 36 customers in total, and each agent gets three. Cus-
tomers are all identical so that no bias is introduced.

2) Each customer submits one problem to the agent at a time. After
the results are returned, the customer waits for a random pe-
riod of time (uniformly distributed between 0 and 1 minute)
and then sends another problem. He behaves so throughout the
experiment.

3) The problem pool contains 113 problems: five single machine
scheduling problems, ten parallel machines scheduling prob-
lems, 37 job shop scheduling problems, 36 flow shop scheduling
problems, 11 flexible flow shop scheduling problems, and 14
flexible job shop scheduling problems. Each problem only
specifies machine and job settings, while the objectives and
customer requirements are randomly generated for each
problem-solving request. Thus, the actual number of scheduling
problems generated from the pool is far more than 113.

The prices of solving problems are exogenously fixed based on
problem category and size (see Section II-B). For example, in job
shop scheduling, problems of two machines and less than five jobs are
worth $30; problems of three to five machines and six to ten jobs are
worth $100; problems of more than ten machines and more than ten
jobs are worth $250.

The knowledge base of each scheduling agent contains knowledge
about the expected computing time and solution quality for each
scheduling algorithm used for each problem type. Solution quality is a
relative measure of scheduling algorithm capability which is used to
estimate the expected reward or penalty during agents decision-making
processes. The best algorithm is of quality 100. For example, the
shifting-bottleneck algorithm for minimizing the makespan of a
ten-machine ten-job job-shop problem requires 200 s on average, and
the solution quality is expected to be 92. The knowledge bases are
fixed; learning algorithms are not implemented at this stage.

B. Experimental Results

With the configuration in the above section, we let all the agents
initially idle, and then let 36 customers start sending requests simulta-
neously. Problem-solving, auctioning and bidding all start at the same
time. The experiment is run for three hours. This time length is suffi-
cient to reach a stationary state (see Fig. 9 for example).

1) Standalone Systems vs. Internet Scheduling Agents: The first
question we ask is whether the collaboration brings value to the agents
and customers. To study this, we ran a supplementary experiment with
communication disabled. The agent performances under no collabo-
ration are tested under the same customer behavior. Fig. 4 shows the
results.

Standalone systems rely on their own scheduling engines and can
only make money on manageable tasks, while scheduling agents can
make money on unmanageable ones by selling them to others. Even
for the manageable tasks, an agent may also consider auctioning them
off to gain more profits. Thus, a universal increase in the task average
revenues is expected, as shown in Fig. 4(a). Fig. 4(b) shows an almost
universal decrease in the task average dissatisfaction—the quality of
service has been improved by collaboration.

Fig. 4. Standalone systems vs. Internet scheduling agents.

Fig. 5. Multiple agents solving the same problem.

The following experimental result shows the additional benefit
brought by multiple agents solving the same problem. The customer
can graphically compare multiple solution schedules returned from
multiple agents, as shown in Fig. 5. The quality of each schedule
is represented by a hexagon—Cmax (makespan), Lmax (maximum
lateness), #late (number of late jobs), etc. The nearer a vertex is to
the center, the better the corresponding performance measure. In
Fig. 5, the customer originally hopes to minimize the makespan.
The agent F has a very good algorithm to minimize the makespan,
but overall solution quality may not be satisfactory. Other agents,
though not as good as F in minimizing the makespan, may achieve
overall satisfactory solutions. On the other hand, the customer usually
fails to describe his requirements precisely, thus efforts in trying to
meet the customer requirements often fail to satisfy the customer.
This happens frequently in real industrial scenarios, where customer’
objectives change with what the system can offer. By using multiple

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004 287

Fig. 6. LekiNET agents serving customers.

solvers, the customer gains much more flexibility in comparing and
selecting the best solution. He may even give up his original objective
of minimizing the makespan and adopt the solution from FF, which
has good overall performance. The quality of service is thus improved.

2) LekiNET Agents Serving Customers: ALekiNET agent receives
two types of problem-solving requests: direct requests sent directly by
customers, and indirect requests sent by customers to other agents and
then contracted to this agent.

Fig. 6(a) shows the proportion of total requests that are indirect re-
quests. This proportion indicates how active an agent is in “helping”
(he gets paid to help) others to solve problems. As expected, the two
generalizts are the most active helpers, while the two simple agents are
the least active ones due to their incapability.

Some direct requests are immediately served by local scheduling en-
gines, while others need to be handled by auctions. The proportion of
direct requests that are handled by auctions reflects the agent’s active-
ness in seeking for help. Fig. 6(b) shows that the activeness in seeking
for help is almost the same for all agents. There are possibly two rea-
sons: high threshold 0.95 indicates that the agent will initiate an action
as long as he expects less than 95% of the full price. Secondly, although
the generalizts and some specialists are able to satisfy customers lo-
cally, their activeness in helping others makes themselves too busy to
serve direct requests. In the future, the agent can balance the efforts in
helping others and seeking for help more intelligently.

3) LekiNET Agents in Auctions: In this 12-agent-sized experi-
ment, an auctioneer requests all the other 11 agents for bids. Fig. 7(a)
compares the bidders behavior using the absolute numbers of auctions
during the 3 hours’ experiment. Fig. 7(b)–(e) compare the bidders
behavior using relative values.

The ratio of participations to requests shows the agents’ activeness in
bidding. In (b), the agents S, S2, and P are relatively more active in par-
ticipating in auctions because they do not solve complicated scheduling
problems and have more time to participate in auctions. Nevertheless,
as shown by the ratio of effective bids to participations in (c), S, S2, and
P quit the auctions more often that others because of their inability in
solving complex scheduling problems. While G, G2 and some others
are comparatively more “serious” bidders: they often submit effective
bids because they are capable of treating various scheduling tasks.

Fig. 7(d) shows the winning probability conditioned on participating
in an auction. As expected, this winning probability is almost in pro-
portion to the agent capability: the generalizts have more than 50% of
chance to win if they participate, while the simple agents participate
many but win few. Fig. 7(e) shows the winning probability conditioned

Fig. 7. LekiNET agents in auctions.

on submitting an effective bid. This winning probability exhibits the
competition intensity of each agent: the more intense the competition,
the lower this winning probability. Simple agents have the worst com-
petition environment because they are not competitive in any sched-
uling problems. While for the agent P, only G and G2 are his major
competitors in solving parallel machine problems, but they are often
busier than P, thus the competition environment favors P in this exper-
iment, making his winning probability over 80%.

4) Agents’ Wealth: Fig. 8 compares the wealth of each agent. Re-
gardless of the effect of hardware configurations, we see that the agents
F, FF, J, FJ, F&J, and G earn from $9000–$16 000, S and P earn around
$5000, whereas, the generalizts did not earn as much as some special-
ists. The generalizts could do better (might be the best) if they only help
others with expensive tasks while auction off cheap ones. But since
more intelligent behavior, such as forecasting, is not implemented yet,
the generalizts may still buy cheaper tasks and miss more profitable
ones, which renders them less wealthy than some specialists.

It can also be seen from the graph that the hardware configurations
noticeably affect the agents’ wealth. 128MRAM and Pentium III CPU
greatly increase the wealth of F2 and G2, even making F2 the wealth-
iest, while low configurations clearly damage the agents’ wealth.

The task average revenues reflect the agent ability of making money
on each task. Fig. 4(a) already shows a universal increase in the task
average revenues compared to the standalone systems. Fig. 9 shows that

288 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004

Fig. 8. Evolution of total revenues.

Fig. 9. Evolution of task average revenues.

the task average revenues also go stationary with the lapse of time. It is
interesting to note that the agent P makes the least money on each task,
but he serves the greatest number of requests (P served 516 requests
during the three hours, nearly 14% of the total requests received by the
ISE). This is because he wins many cheap parallel machine scheduling
tasks, but he needs to pay to the auctioneer for each task bought, thus
each task actually brings him little profit. From another point of view,
this is P’s strategy—he is not capable of making money on complex
tasks, but he tries to take the advantage of his favorable competition
environment [discussed in Fig. 7(e)] to gain revenue by working on
many cheap tasks, thus his total revenue climbs up to nearly $7000.
Notice that this strategy is not programmed, but exhibited by the basic
decision-making processes that are actually programmed.

The LekiNET agent possesses the following characteristics.
Autonomous—the agent analyzes all the user requirements and
autonomously finds solutions that best meet the requirements. Re-
sponsive—the agent responds in a timely fashion to the events in the
ISE. Proactive—the agent exhibits opportunistic and goal-directed
behavior in serving customers and auctions. Social—the agent
communicates with others when appropriate, in order to solve his own

problems or help others with their activities. (See [15] and [26] for the
notion of these characteristics.)

V. CONCLUSION

Scheduling issues have been under research for more than a half
century. The advent of the Internet puts a premium on the develop-
ment of worldwide accessible, communicative and collaborative sched-
uling systems. The ISE designed and implemented in this paper is an
unprecedented attempt to bring all the scheduling computational re-
sources together at a worldwide collaborative level.

The system migration scheme proposed in this paper is an innova-
tive force pushing diverse research efforts into a melting pot. Original
standalone scheduling systems thus become active and communicative
scheduling agents on the Internet. A community of such agents forms
the ISE, under which resource sharing and collaboration among agents
becomes a favorable scheduling paradigm. The implementation of the
LekiNET shows that this migration is feasible.

The auction market determines whether a particular scheduling task
is desirable to an agent, and at what price the task should be contracted.
Thus, scheduling tasks always go to those agents who are capable of
performing the tasks well, which means computational resources are
efficiently allocated. During this procedure, the control emerges from
the individual goals of the scheduling agents rather than a central goal
imposed from above.

The LekiNET testbed and the experiments on the behavior of the
agents demonstrate that the agent-based market-driven ISE is feasible
and advantageous to future scheduling research and development. The
experiments also highlight a number of perspectives that arouse re-
search interests in the future.

Lastly, the ISE is in its primary stage. The core of the ISE needs
to be solidified by a series of steps toward real industrial applications.
We sincerely hope that the research in this paper would inspire other
researchers to build a real ISE for industrial applications.

ACKNOWLEDGMENT

The authors gratefully acknowledge two anonymous referees for
their thoughtful comments and important suggestions.

REFERENCES

[1] C. Badie, G. Bel, E. Basana, and G. Verfaillie, “Operations research
and artificial intelligence cooperation to solve scheduling problems: The
OPAL and OSCAR systems,” in Proc. 1st Int. Conf. Expert Planning
Systems, Brighton, U.K., 1990, pp. 1–5.

[2] H. Beck, “The management of job-shop scheduling constraints in
TOSCA,” in Proc. NSF Workshop Intelligent Dynamic Scheduling
Manufacturing Systems, 1993, pp. 2–14.

[3] R. E. Brown and W. T. Scherer, Intelligent Scheduling Sys-
tems. Norwell, MA: Kluwer, 1995.

[4] W. T. Chan, D. K. H. Chua, and L. Xiong, “Collaborative scheduling
over the internet,” Comput. Aided Civil Infrastruct. Eng., vol. 14, no. 1,
pp. 15–24, 1999.

[5] S. H. Clearwater, Ed., Market-Based Control: A Paradigm for Dis-
tributed Resource Allocation, Singapore: World Scientific, 1996.

[6] A. Collinot, C. LePape, and G. Pinoteau, “SONIA: A knowledge-based
scheduling system,” Int. J. Artif. Intell. Eng., vol. 3, no. 2, pp. 86–94,
1988.

[7] S. E. Cross and E.Walker, “DART: Applying knowledge based planning
and scheduling to crisis action planning,” in Intelligent Scheduling, M.
Zweben and M. Fox, Eds. San Mateo, CA: Morgan Kaufmann, 1994.

[8] J. S. Davis and J. J. Kanet, “Production scheduling: An interactive graph-
ical approach,” J. Syst. Softw., vol. 38, no. 2, pp. 155–163, 1997.

[9] M. S. Fox and S. F. Smith, “ISIS—A knowledge-based system for fac-
tory scheduling,” Expert Syst., vol. 1, no. 1, pp. 25–49, 1984.

[10] M. R.Genesereth and S. P. Ketchpel, “Software agents,”Commun. ACM,
vol. 37, no. 7, pp. 48–53, 1994.

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 2, MARCH 2004 289

[11] K. C. Hadavi, “ReDS: A real time production scheduling system from
conception to practice,” in Intelligent Scheduling, M. Zweben and M.
Fox, Eds. San Mateo, CA: Morgan Kaufmann, 1994.

[12] R.W. Hall, “Vehicle routing software survey,”OR/MS Today, Feb. 2002.
[13] D. W. Hildum, N. M. Sadeh, T. J. Laliberty, S. F. Smith, J. McA’Nulty,

and D. Kjenstad, “Mixed-initiative management of integrated process-
planning and production-scheduling solutions,” in Proc. Artif. Intell.
Manufacturing Research Planning Workshop, 1996, pp. 71–80.

[14] W.-L. Hsu, M. J. Prietula, G. L. Thompson, and P. S. Ow, “A mixed-
initiative scheduling workbench: Integrating AI, OR, and HCI,” Dec.
Support Syst., vol. 9, no. 3, pp. 245–257, 1993.

[15] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent
research and development,” Auton. Agents Multi-Agent Syst., vol. 1, pp.
7–38, 1998.

[16] K. H. Kim, J. W. Bae, J. Y. Song, and H. Y. Lee, “A distributed sched-
uling and shop floor control method,” Comput. Ind. Eng., vol. 31, no.
3–4, pp. 583–586, 1996.

[17] P. Klemperer, The Economic Theory of Auctions. Cheltenham, U.K.:
International Library Critical Writings Economics, Edward Elgar, 2000,
vol. I & II. 113.

[18] M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[19] M. Pinedo and B. P. Yen, “On the design and development of object-
oriented scheduling systems,” Ann. Oper. Res., vol. 70, pp. 359–378,
1997.

[20] J. G. Riley and W. F. Samuelson, “Optimal auctions,” Amer. Econ. Rev.,
vol. 71, no. 3, pp. 381–392, 1981.

[21] J. Sauer, “Integrating transportation in a multi-site scheduling environ-
ment,” in Proc. 33rd Annu. Hawaii Int. Conf. System Sciences, vol. 2,
2000, p. 9.

[22] W. Shen, “Distributed manufacturing scheduling using intelligent
agents,” IEEE Intell. Syst., vol. 17, pp. 88–94, 2002.

[23] S. F. Smith, “OPIS: A methodology and architecture for reactive sched-
uling,” in Intelligent Scheduling. San Mateo, CA: Morgan Kaufmann,
1994.

[24] S. F. Smith and O. Lassila, “Configurable systems for reactive produc-
tion management,” in Knowledge-Based Reactive Scheduling, E. Szelke
and R. M. Kerr, Eds. New York: Elsevier, 1994, pp. 93–106.

[25] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” J. Finance, vol. XVI, pp. 8–37, 1961.

[26] M.Wooldridge and N. R. Jennings, “Intelligent agents: Theory and prac-
tice,” Knowl. Eng. Rev., vol. 10, no. 2, pp. 115–152, 1995.

[27] B. P.-C. Yen, “On the Architecture of Object-Oriented Scheduling
System,” Ph.D. dissertation, Dept. Industrial Eng. Oper. Res, Columbia
Univ., New York, 1995.

Correction to “Elementary Siphons of Petri Nets
and Their Application to Deadlock Prevention

in Flexible Manufacturing Systems”

In the above paper [1], there is an error on pgs. 50–51. For clarification,
the references are reprinted as follows

[8] Z. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible man-
ufacturing systems with concurrently competing process flows,” IEEE
Trans. Robot Automat., vol. 6, pp. 724–734, Dec. 1990.

[27] F. Tricas and J. Martinez, “An extension of the liveness of concurrent
sequential processes competing for shared resource,” in Proc. IEEE
Int. Conf. System, Man, Cybernetics, Vancouver, BC, Canada, 1995,
pp. 3035–3040.

REFERENCES

[1] Z. Li, M. Zhou, and D. Wang, “Elementary Siphons of Petri Nets and
Their Application to Deadlock Prevention in Flexible Manufacturing
Systems,” IEEE Trans. Syst., Man, Cybern. A., vol. 34, pp. 38–51, Jan.
2004.

Manuscript received September 1, 2002; revised April 28, 2003. This work
was supported in part by the National Defense Research Foundation of China,
Youth Scientific Research Workstation in Xidian University, and the New
Jersey Commission on Science and Technology. This paper was recommended
by Guest Editors M. D. Jeng and M. P. Fanti.

Z. Li is with the School of Electro-Mechanical Engineering, Xidian Univer-
sity, Xi’an, 710071 China. He is also with Systems Control Group, Department
of Electrical and Computer Engineering, University of Toronto, Toronto, ON,
M5S 3G4 Canada (e-mail: zhwli@xidian.edu.cn).

M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102 USA and also with In-
stitute of Automation, Chinese Academy of Sciences, Beijing 100080, China
(e-mail: zhou@njit.edu).

Digital Object Identifier 10.1109/TSMCA.2004.824363

1083-4427/04$17.00 © 2004 IEEE

